Counting Rational Points on K3 Surfaces

David McKinnon
Mathematics Department, University of California, Berkeley, California 94720
Communicated by Y. Manin

Received July 21, 1999; revised September 17, 1999

Abstract

For any algebraic variety X defined over a number field K, and height function H_{D} on X corresponding to an ample divisor D, one can define the counting function $N_{X, D}(B)=\#\left\{P \in X(K) \mid H_{D}(P) \leqslant B\right\}$. In this paper, we calculate the counting function for hyperelliptic $K 3$ surfaces X which admit a generically two-to-one cover of $\mathbf{D}^{1} \vee D^{1}$ hronohed aver a cingular corve In nortionlar we effectivelv conctruct a

CORE

Key Words: rational points; K3 surfaces; height; Kummer surfaces; Abelian surfaces.

1. INTRODUCTION

Counting rational points on algebraic varieties is one of the fundamental questions of number theory. However, if an algebraic variety contains infinitely many rational points one must define the question more precisely. The most natural way to do this is to define a notion of density on the set of rational points. This density is calculated with respect to a height H, which assigns a real number to a rational point P. Thus, for a variety X defined over a number field K and an ample divisor D on X, we study the counting function:

$$
N_{X, D}(B)=\operatorname{card}\left\{P \in X(K) \mid H_{D}(P) \leqslant B\right\}
$$

and investigate the properties of $N_{X, D}(B)$ as B gets arbitrarily large. This function may be radically different for different choices of D. Also, the precise definition of H_{D} depends not simply on the geometric choice of D, but on a choice of metrisations of certain line bundles as well. Happily, these choices will not affect our results, so they can be made arbitrarily.

In the case of $K 3$ surfaces, this question has been investigated by many people. Silverman [10] introduced a canonical height on $K 3$ surfaces
embedded in $\mathbf{P}^{2} \times \mathbf{P}^{2}$, analogous to the canonical height on an elliptic curve. Baragar [1] extended Silverman's results to other $K 3$ surfaces. Although both authors obtain theorems about the distribution of rational points in orbits of certain group actions, neither was able to obtain estimates of the global counting function. Billard [3] has recently extended their results still further, and gives an estimate for $N_{X, D}(B)$ in a certain case.

Another approach was taken by Tschinkel [11], who develops a theory of finite heights to obtain estimates of $N_{X, D}(B)$ for some rational surfaces, and upper bounds on $N_{X, D}(B)$ for some $K 3$ and Enriques surfaces. King and Todorov [6] use the results of [11] to estimate $N_{X, D}(B)$ for a certain class of Kummer surfaces admitting a double cover of a del Pezzo surface.

In this paper, the particular $K 3$ surfaces we will study are hyperelliptic $K 3$ surfaces, which admit a generically two-to-one map to $\mathbf{P}^{1} \times \mathbf{P}^{1}$, branched over a singular $(4,4)$ curve. We define a certain cone \mathscr{C} of ample divisors in the Néron-Severi lattice of X, and calculate the value of $N_{X, D}(B)$ with respect to an arbitrary divisor in \mathscr{C}. In the generic case, this cone is of full dimension in $N S_{\mathbf{R}}(X)$. More specifically, if we measure heights with respect to a divisor $D \in \mathscr{C}$, we will show that $N_{X, D}(B)$ is asymptotically equal to $N_{Y, D}(B)$, where Y is the union of all rational curves of minimal D-degree on X. We also calculate explicitly which curves lie in C.

Batyrev and Manin [4] have introduced a refinement of the counting function called the arithmetic stratification. Roughly speaking, a subset Y of X is said to be accumulating with respect to an ample divisor D if most of the rational points of X lie on Y, where heights are measured with respect to D. That is, if $\lim _{B \rightarrow \infty} N_{X, D}(B) / N_{Y, D}(B)=1$. The arithmetic stratification of a variety X with respect to D is an ascending chain of Zariski closed subsets $Y_{1} \subset Y_{2} \subset Y_{3} \subset \cdots$ with the property that $Y_{i}-Y_{i-1}$ is an accumulating subset of $X-Y_{i-1}$ with respect to $D . Y_{i}$ is said to be the i th layer of the arithmetic stratification. Since layers in the arithmetic stratification are typically finite unions of rational curves, the value of $N_{X, D}(B)$ will immediately follow from Schanuel's theorem [8], which calculates the counting function for \mathbf{P}^{n}.

Given a divisor D in \mathscr{C}, Corollary 2.2 explicitly identifies the first layer of the arithmetic stratification of X with respect to D. The number of rational points lying on any given rational curve on X can be easily calculated from Schanuel's theorem; the hard part comes from Theorem 2.1, which estimates the number of rational points on the complement of the union of these curves. By comparing the counting functions for certain rational curves constructed on X with the counting function for the complement U of the union of these curves, the structure of the top layers of the arithmetic stratification is revealed.

We conclude by proving some more precise results in the case that X is a Kummer surface whose associated Abelian surface is isomorphic to a product of elliptic curves. In this case, the cone \mathscr{C} is 18 -dimensional, and is of full dimension exactly when the corresponding pair of elliptic curves is non-isogenous.

I thank Jim Bryan, Yuri Tschinkel, and Tom Tucker for helpful comments and conversations. I am especially grateful to Paul Vojta, without whose advice and support this paper would never have appeared.

2. GENERAL HYPERELLIPTIC K3 SURFACES

Algebraic $K 3$ surfaces lie in countably infinitely many 19-dimensional families, one family for each positive integer. The nth such family consists of the $K 3$ surfaces containing a smooth irreducible curve C with $C^{2}=2 n$, and no smooth irreducible curves of positive self-intersection less than $2 n$.

Fix a number field K. In this paper, we will be concerned with smooth, K-rational $K 3$ surfaces which admit a generically two-to-one K-rational morphism to $\mathbf{P}_{K}^{1} \times \mathbf{P}_{K}^{1}$, branched over a singular curve of type $(4,4)$. Such surfaces are all of type $n=1$; that is, they contain a curve of selfintersection 2 . This curve is explicitly calculated below.

Let X be a smooth $K 3$ surface with a generically two-to-one map $f: X \rightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}$ branched over a singular (4, 4)-curve. The singularities of the branch curve will correspond to the one-dimensional fibres of f; assume that K is large enough so that all of these singular points are K-rational. Assume further that the one-dimensional fibres of f are simple and irreducible, and denote them by E_{1}, \ldots, E_{m}. By composition of f with the projections, we have two morphisms $\pi_{i}: X \rightarrow \mathbf{P}^{1}$. Hence, we may define divisor classes F_{1} and F_{2} on X, corresponding to the fibres of the maps π_{1} and π_{2}, respectively.

For each $i=1, \ldots, m$, define a divisor $A_{i}=F_{1}+F_{2}-E_{i}$. Together with F_{1} and F_{2}, these define an ($m+2$)-dimensional subspace of the realification $N S_{\mathbf{R}}(X)$ of the Néron-Severi group of X. For a generic surface X of this type, $N S_{\mathbf{R}}(X)$ is of dimension $m+2$, so these divisors form a basis. Note also that $\left|A_{m}\right|$ contains curves on X with self-intersection 2.

Choose a divisor D, and assume it can be written in the form $D=$ $\sum a_{i} A_{i}+c_{1} F_{1}+c_{2} F_{2}$ for some rational numbers a_{i} and c_{i}. (In the generic case, this will always be possible.) Computation shows that $F_{i}^{2}=0$, $E_{i}^{2}=-2, F_{i} \cdot E_{j}=0, F_{1} \cdot F_{2}=2$, and $E_{i} . E_{j}=0$ if $i \neq j$. Also, define divisors $L_{i j}=F_{i}-E_{j}$, with $E_{i} . L_{i k}=0$ if $i \neq k, E_{j} . L_{i j}=2, F_{i} . L_{i j}=0$, and $F_{i} . E_{j k}=2$ if $i \neq j$. We are now ready to state the main theorem.

Theorem 2.1. Let $D=\sum a_{i} A_{i}+c_{1} F_{1}+c_{2} F_{2}$ be an ample divisor on X, and write $a=\sum a_{i}$. Define $U=X-\bigcup E_{i}-\bigcup L_{i j}$. Then we have the following bound for the number of K-rational points of bounded D-height on U,

$$
N_{U, D}(B)=\#\left\{P \in U(K) \mid H_{D}(P) \leqslant B\right\}=O\left(B^{\alpha} \log B\right)
$$

where $\alpha=\max \left\{4 /\left(a+c_{1}+c_{2}\right), 2 /\left(a+c_{1}\right), 2 /\left(a+c_{2}\right)\right\}$. If $a \neq\left|c_{1}-c_{2}\right|$, then:

$$
N_{U, D}(B)=O\left(B^{\alpha}\right)
$$

If furthermore we have $c_{i} \geqslant 0$, then we may take $\alpha=6 /\left(2 a+3 \min \left\{c_{i}\right\}\right)$ and prove that $N_{U, D}(B)=O\left(B^{\alpha} \log B\right)$.

Corollary 2.2. Let X be a $K 3$ surface as described above, and let $D=$ $\sum a_{i} A_{i}+c_{1} F_{1}+c_{2} F_{2}$ be an ample divisor. Define e to be the minimum D-degree of a curve disjoint from U, and assume that $e \alpha<2$. Then the counting function for $X(K)$ is given by $N_{X, D}(B)=c B^{2 / e}+E(B)$, where c is a constant depending only on K, X, and the choice of height function H_{D}, and $E(B)=O\left(B^{q}\right)$ is an error term with an easily calculable $q<2 / e$.

More precisely, the main term measures the number of rational points lying on the union of rational curves of minimal D-degree, which all must be components of some E_{i} or $L_{i j}$, and $E(B)$ bounds the number of rational points not lying on such curves. $E(B)$ is the maximum of Schanuel's error term for rational points on \mathbf{P}^{1}, the estimate from Theorem 2.1 for $N_{U, D}(B)$, and the number of rational points lying on curves outside U, but of non-minimal D-degree.

Put another way, the first layer of the arithmetic stratification (as defined by Batyrev and Manin [4]) of X with respect to an ample divisor D is the union of all smooth rational curves of minimal D-degree, provided that D satisfies $e \alpha<1$. Moreover, these curves are all of the form E_{i} or $L_{i j}$.

Note also that Theorem 2.1 is still true in the case that S is smooth. Moreover, in that case, there are no exceptional curves E_{i}, and therefore $U=X$, so Theorem 2.1 directly gives an estimate for $N_{X, D}(B)$. However, this estimate is quite poor, and the fact that $U=X$ makes the definition of e in Corollary 2.2 nonsensical in that case.

Proof of Corollary 2.2. Consider the union of curves of minimal D-degree in $X-U$. By Schanuel's theorem [8], the counting function for those curves is $c B^{2 / e}+O\left(B^{2 / e-2 / N e}\right)$, where $N=[K: \mathbf{Q}]$. (In the special case $K=\mathbf{Q}$, the error term must be modified to $O\left(B^{1 / e} \log B\right)$.) By Theorem 2.1, it suffices to show that $2 / e>\alpha$, which is to say that $e \alpha<2$. This is true by assumption.

Finally, we must establish that there are no rational curves of minimal D-degree not contained in $X-U$. But by the estimate of $N_{U, D}(B)$, there are
simply not enough rational points in U for it to contain an open subset of a rational curve of minimal D-degree.

Proof of Theorem 2.1. The key idea is to estimate the height function H_{D} in terms of the the height functions $H_{F_{i}}$, which are easily computable. Write $D=\sum a_{i} A_{i}+c_{1} F_{1}+c_{2} F_{2}$; since D is ample, we must have $a_{i}>0$ and $a+c_{i}-a_{j}>0$ for each i and j, where $a=\sum a_{i}$. Write $H_{i}=H_{F_{i}}$. The basic height estimate follows from the following general lemma:

Lemma 2.3. Let V be a normal algebraic variety defined over a number field K. Let Γ_{1}, Γ_{2}, and Δ be divisors on V such that $\Gamma_{i}-\Delta$ is effective for $i=1,2$. Let W be the union of the fixed loci of $\left|\Gamma_{1}-\Delta\right|$ and $\left|\Gamma_{2}-\Delta\right|$, and let U be the complement $V-W$ of W. Write $\Gamma=\Gamma_{1}+\Gamma_{2}-\Delta$. Then for any point $P \in U(K)$, we have

$$
\begin{equation*}
H_{\Gamma}(P) \gg \max \left\{H_{\Gamma_{1}}(P), H_{\Gamma_{2}}(P)\right\} \tag{1}
\end{equation*}
$$

for any choice of height functions $H_{\Gamma}, H_{\Gamma_{1}}$, and $H_{\Gamma_{2}}$.
Proof of Lemma. The lemma follows immediately from the effectivity of $\Gamma_{i}-\Delta$.

Lemma 2.3, together with elementary properties of height functions (see for example [9]) gives the estimate

$$
\begin{equation*}
H_{D}(P) \gg H_{1}(P)^{c_{1}} H_{2}(P)^{c_{2}} \max \left\{H_{1}(P), H_{2}(P)\right\}^{a} \tag{2}
\end{equation*}
$$

for any point P in the set $U(K)$, where $U=X-\left(\bigcup E_{i} \cup L_{i j}\right)$. We wish to compute $N_{U, D}(B)$. Since P is determined up to a finite choice by fixing $\pi_{1}(P)$ and $\pi_{2}(P)$, it suffices to count the number of pairs $\left(P_{1}, P_{2}\right) \in \mathbf{P}^{1} \times \mathbf{P}^{1}$ corresponding to points of D-height at most B in U.

Set $x=H_{1}(P)^{2}$ and $y=H_{2}(P)^{2}$. If $H_{D}(P) \leqslant B$, then 2.2 implies that

$$
\max \left\{x^{a+c_{1}} y^{c_{2}}, x^{c_{1}} y^{a+c_{2}}\right\} \leqslant B^{2} .
$$

Consider the function $H_{i}^{2}: U(K) \rightarrow \mathbf{R}$. By Schanuel's Theorem, its image G_{i} has the property that there is some constant C_{i} such that for any $B>0$, the set $\left\{x \in G_{i} \mid x<B\right\}$ has cardinality at most $C_{i} B$. By increasing C_{i} slightly, and by decreasing the elements of G_{i} slightly, we may retain all these properties while also demanding that G_{i} be a subset of $\left(1 / C_{i}\right) \mathbf{Z}$. Hence, for the purposes of our calculation, we may assume that x and y are each elements of $\left(1 / C_{i}\right) \mathbf{Z}$.

Thus, $N_{U, D}(B)$ is bounded above by a constant factor times the number of integer lattice points contained in the plane region R defined by the inequalities:

$$
R=\left\{(x, y) \in \mathbf{R}^{2} \mid x \geqslant 1, y \geqslant 1, x^{a+c_{1}} y^{c_{2}} \leqslant B^{2}, \text { and } x^{c_{1}} y^{a+c_{2}} \leqslant B^{2}\right\} .
$$

This is asymptotically equal to the area of this region (again, up to an irrelevant constant factor), plus two extra terms counting lattice points lying on the boundary lines $x=1$ and $y=1$. This may be computed as follows.

Case I. $\quad c_{2}>0$. Define $\delta=2\left(a+c_{1}+c_{2}\right)^{-1}$. The two curves $x^{a+c_{1}} y^{c_{2}}=$ B^{2} and $x^{c_{1}} y^{a+c_{2}}=B^{2}$ intersect at the point (B^{δ}, B^{δ}). Thus, the number of lattice points inside R may be computed by

$$
\begin{aligned}
& \int_{1}^{B^{\delta}}\left(B^{2} x^{-c_{1}}\right)^{1 /\left(a+c_{2}\right)} d x \\
&+\int_{B^{\delta}}^{B^{2 /\left(a+c_{1}\right)}}\left(B^{2} x^{-a-c_{1}}\right)^{1 / c_{2}} d x+B^{2 /\left(a+c_{1}\right)}+B^{2 /\left(a+c_{2}\right)} \\
&=-\left(\frac{a+c_{2}}{a+c_{2}-c_{1}}\right)\left(B^{2 /\left(a+c_{2}\right)}-B^{2 \delta}\right) \\
&-\left(\frac{c_{2}}{a+c_{1}-c_{2}}\right)\left(B^{2 /\left(a+c_{1}\right)}-B^{2 \delta}\right)+B^{2 /\left(a+c_{1}\right)}+B^{2 /\left(a+c_{2}\right)} \\
&= O\left(B^{\alpha}\right)
\end{aligned}
$$

unless $a+c_{1}=c_{2}$ or $a+c_{2}=c_{1}$, in which case obvious modifications to the computation will give the desired result. Note that $a+c_{i}>0$ for all i by the positivity of $\operatorname{deg}_{D} L_{i j}$.

Case II. $\quad c_{2}=0$. Retain the notation of the previous case. The number of lattice points lying inside R is now bounded by:

$$
\begin{aligned}
\int_{1}^{B^{2 /\left(a+c_{1}\right)}} & \left(B^{2} x^{-c_{1}}\right)^{1 / a} d x+B^{2 /\left(a+c_{1}\right)}+B^{2 / a} \\
= & -\left(\frac{a}{a-c_{1}}\right)\left(B^{2 / a}-B^{2 /\left(a+c_{1}\right)}\right)+B^{2 /\left(a+c_{1}\right)}+B^{2 / a} \\
= & O\left(B^{\alpha}\right) .
\end{aligned}
$$

Note that the ampleness of D ensures that $a \neq c_{1}$.

Case III. $c_{2}<0$. Again retaining the notation of the previous cases, we may compute the number of lattice points lying inside R by

$$
\begin{aligned}
& \int_{1}^{B^{\delta}}\left(B^{2} x^{-c_{1}}\right)^{1 /\left(a+c_{2}\right)}-\max \left\{\left(B^{2} x^{-a-c_{1}}\right)^{1 / c_{2}}, 1\right\} d x+B^{\delta}+B^{2 /\left(a+c_{2}\right)} \\
& \quad \leqslant \int_{1}^{B^{\delta}}\left(B^{2} x^{-c_{1}}\right)^{1 /\left(a+c_{2}\right)} d x+B^{\delta}+B^{2 /\left(a+c_{2}\right)} \\
& \quad=-\left(\frac{a+c_{2}}{a+c_{2}-c_{1}}\right)\left(B^{2 /\left(a+c_{2}\right)}-B^{2 \delta}\right)+B^{2 /\left(a+c_{1}\right)}+B^{2 /\left(a+c_{2}\right)} \\
& \quad=O\left(B^{\alpha}\right)
\end{aligned}
$$

again with obvious modifications in the case that $c_{1}=c_{2}+a$.
Now assume that $c_{i} \geqslant 0$, and write $F=\frac{2}{3}\left(F_{1}+F_{2}\right)$. Then we may write $D=\sum a_{i} A_{i}+\frac{3}{2} \min \left\{c_{i}\right\} F+E$ for some effective divisor E. The following lemma will give us the estimate we need.

Lemma 2.4. Let V be a normal algebraic variety defined over a number field K, and let D_{1}, \ldots, D_{n} be Weil divisors on V. Let U be an arbitrary subset of V, and assume that the counting functions $N_{U, D_{i}}(B)$ are well defined (i.e., finite) for K-rational points. Assume without loss of generality that $N_{U, D_{i}}(B) \ll N_{U, D_{1}}(B)$ for all i, and write $D=\sum D_{i}$. If $N_{U, D_{1}}(B)=O(f(B))$ for some increasing real-valued function $f(B)$, then

$$
N_{U, D}(B)=O\left(f\left(B^{1 / n}\right)\right)
$$

Proof of Lemma. Take any K-rational point $P \in U(K)$, and assume $H_{D}(P) \leqslant B$. We have $H_{D}(P)=\prod H_{D_{i}}(P) \leqslant B$, so by the Pigeonhole Principle there must be some i for which $H_{D_{i}}(P) \leqslant B^{1 / n}$. For each i, the number of K-rational points in $U(K)$ with $H_{D_{i}}(P) \leqslant B^{1 / n}$ is $N_{U, D_{i}}(B) \ll N_{U, D_{1}}(B)=O\left(f\left(B^{1 / n}\right)\right)$. Therefore, there are at most $n O\left(f\left(B^{1 / n}\right)\right)=O\left(f\left(B^{1 / n}\right)\right)$ points in $U(K)$ of D-height at most B, as desired.

For each i, the divisor A_{i} is the pullback of $\mathcal{O}(1)$ via a certain morphism from X to \mathbf{P}^{2} (see [7, (5.1)]). Therefore, we have $N_{U, A_{i}}(B)=O\left(B^{3}\right)$, by Schanuel's Theorem for \mathbf{P}^{2}. The divisor $F_{1}+F_{2}$ is the pullback of the class $(1,1)$ via a morphism from X to $\mathbf{P}^{1} \times \mathbf{P}^{1}$, so we have $N_{U, F_{1}+F_{2}}(B)=$ $O\left(B^{2} \log B\right)$, and hence $N_{U, F}(B)=O\left(B^{3} \log B\right)$.

We have $D=\sum_{i=1}^{m} a_{i} A_{i}+\left(\frac{3}{2} \min \left\{c_{i}\right\}\right) F+E$ for some effective divisor E. Write $D^{\prime}=D-E$; it follows that $N_{U, D}(B) \ll N_{U, D^{\prime}}(B)$. The lemma, using $D_{i}=A_{j}$ or F, gives that $N_{U, D^{\prime}}(B)=O\left(B^{3 /\left(a+(3 / 2) \min \left\{c_{i}\right\}\right)} \log B\right)$. The proof of Theorem 2.1 is complete.

3. THE GEOMETRY OF KUMMER SURFACES

In this section, we specialise to the case in which X is a Kummer surface whose associated Abelian surface is a product of elliptic curves, and use slightly more refined techniques to estimate $N_{U, D}(B)$. In particular, we will be able to say much more about the set of rational curves on X, and hence about the relations between height functions on X.

Let C_{1} and C_{2} be elliptic curves defined over some number field K, such that all points of order 1 and 2 on the curve are also defined over K. Let A be the product $C_{1} \times C_{2}$. Let $i: A \rightarrow A$ be the involution $i(x, y)=$ $(-x,-y)$, and let V be the quotient of A by i. Then there is a 2-to-1 map $q: A \rightarrow V$ which is ramified at 16 points; namely, the points (a, b), where a and b are points of order 1 or 2 . It turns out that these 16 points are rational double points of V, which is smooth away from them.

By blowing up these 16 points, one constructs a smooth surface $p: X \rightarrow V$, which is a $K 3$ surface defined over K [5]. This construction can be done with an arbitrary Abelian surface A, and the resulting $K 3$ surface is called the Kummer surface associated to the Abelian surface A.

Let $\tilde{\pi}_{i}: A \rightarrow C_{i}$ be the projection maps, and let F_{i}^{\prime} be the algebraic equivalence class of fibres of $\tilde{\pi}_{i}$. This induces a pair of algebraic equivalence classes $F_{i}=p^{*} q_{*} F_{i}^{\prime}$ on X. Since algebraic and linear equivalence are identical on a $K 3$ surface [5], these are divisor classes on X. Thus, the maps $\tilde{\pi}_{i}$ descend to maps $\pi_{i}: X \rightarrow \mathbf{P}^{1}$.

Denote the 16 singular points of V by $\left(a_{i}, b_{j}\right), 1 \leqslant i, j \leqslant 4$, where a_{i} and b_{j} denote the 2 -division points on C_{1} and C_{2}, respectively, and let $E_{i j}$ denote the corresponding exceptional divisors on S. For each $i, 1 \leqslant i \leqslant 4$, the divisor $B_{i}=p^{*} q_{*} \pi_{i}^{*} a_{i}$ is the union of the four curves $E_{i j}, 1 \leqslant j \leqslant 4$, and the strict transform of $q_{*}\left(\left\{a_{i}\right\} \times E_{2}\right)$. By the theory of singular fibres of elliptic surfaces [5], it follows that this strict transform is a double curve, which is smooth and rational in its induced reduced structure. Thus, we may write $F_{1} \equiv B_{i}=\sum_{j=1}^{4} E_{i j}+2 L_{i}$, where L_{i} is a smooth rational curve. Similarly, we may write $F_{2} \equiv \sum_{i=1}^{4} E_{i j}+2 M_{j}$, where M_{j} is a smooth rational curve.

Using the adjunction formula and elementary properties of intersection theory, it is not hard to verify the following intersection numbers:

$$
\begin{array}{rlrlrl}
L_{i}^{2} & =M_{i}^{2}=E_{i j}^{2}=-2 & & L_{i} M_{j}=0 \\
F_{1} L_{i} & =F_{2} M_{i}=0 & & & F_{1} M_{i}=F_{2} L_{i}=1 \\
L_{i} L_{j} & =M_{i} M_{j}=0 \quad(\text { if } \quad i \neq j) . & &
\end{array}
$$

Let S and T be non-empty subsets of $N_{4}=\{1,2,3,4\}$. Define divisors

$$
A_{S, T}=(\operatorname{card}(S)) F_{1}+(\operatorname{card}(T)) F_{2}-\sum_{i \in S, j \in T} E_{i j} .
$$

These divisors, together with F_{1} and F_{2}, span a rank 18 sublattice of $\operatorname{Pic}(X)$, and therefore an 18-dimensional subspace of the vector space $N S_{\mathbf{R}}(X)=\operatorname{Pic}(X) \otimes \mathbf{R}$. For a generic choice of C_{1} and $C_{2}, N S_{\mathbf{R}}(X)$ has dimension 18 [5], so the divisors $A_{S, T}$, and F_{i} span all of $N S_{\mathbf{R}}(X)$ for such X.

Moreover, for any ample divisor D, write $D=d_{1} F_{1}+d_{2} F_{2}+\sum e_{i j} E_{i j}$. Since $D . E_{i j}>0$ and $E_{i j}^{2}=-2$, we must have $e_{i j}<0$. Therefore, it follows that any ample divisor D on X can be written as

$$
\begin{equation*}
D=\sum_{S, T} a_{S, T} A_{S, T}+c_{1} F_{1}+c_{2} F_{2}, \tag{3}
\end{equation*}
$$

where $a_{S, T} \geqslant 0$. Note that this representation is not unique, unlike in the previous, more general case, since the divisors $A_{S, T}, F_{1}$, and F_{2} are not linearly independent. Different representations of the same divisor D will lead to different estimates of $N_{U, D}(B)$ from Theorem 4.1. In such cases, since Theorem 0.0 gives an upper bound, the lowest estimate can be inferred. If D is written in the form of (3), then we may assume without loss of generality that $a_{N_{4}, N_{4}}=\min \left\{e_{i j}\right\}$. This will be assumed to be true in all that follows.

4. THE MAIN THEOREM FOR KUMMER SURFACES

We are now ready to state the main theorem for Kummer surfaces. All counting functions are defined with respect to the height associated to the divisor D.

Theorem 4.1. Let D be an ample divisor on X written as in (3). Assume that $a_{S, T}$ are non-negative rational numbers, and c_{i} are rational numbers. Define:

$$
\begin{gathered}
\gamma_{1}=\sum_{S, T} \operatorname{card}(S) a_{S, T}, \gamma_{2}=\sum_{S, T} \operatorname{card}(T) a_{S, T} \\
\alpha=\max \left\{\frac{2 \gamma_{1}+2 \gamma_{2}}{\gamma_{1} \gamma_{2}+\gamma_{2} c_{1}+\gamma_{1} c_{2}}, \frac{2}{\gamma_{1}+c_{1}}, \frac{2}{\gamma_{2}+c_{2}}\right\} .
\end{gathered}
$$

Define $U=X-\cup R$, where R ranges over all smooth rational curves on X of the form $E_{i j}, L_{i}$, or M_{i}. Assume that $\gamma_{1} \gamma_{2}+\gamma_{2} c_{1}+\gamma_{1} c_{2}>0$. Then:
(i) If $\alpha=\left(2 \gamma_{1}+2 \gamma_{2}\right) /\left(\gamma_{1} \gamma_{2}+\gamma_{2} c_{1}+\gamma_{1} c_{2}\right)$ and either $c_{1}=\gamma_{2}+c_{2}$ or $c_{2}=\gamma_{1}+c_{1}$, then $N_{U, D}(B)=O\left(B^{\alpha} \log B\right)$.
(ii) If $\alpha=2 /\left(\gamma_{1}+c_{1}\right)$ and $c_{2}=\gamma_{1}+c_{1}$, then $N_{U, D}(B)=O\left(B^{\alpha} \log B\right)$.
(iii) If $\alpha=2 /\left(\gamma_{2}+c_{2}\right)$ and $c_{1}=\gamma_{2}+c_{2}$, then $N_{U, D}(B)=O\left(B^{\alpha} \log B\right)$.
(iv) If none of the previous three cases occur, then $N_{U, D}(B)=O\left(B^{\alpha}\right)$.

Corollary 4.2. Let X be a $K 3$ surface as described above, and let D be an ample divisor, written as in (3). Write $A=\min \left\{D . E_{i j}, D . L_{i}, D . M_{i}\right\}$, and assume that the following inequality holds:

$$
\begin{equation*}
A\left(\gamma_{1}+\gamma_{2}\right)<\gamma_{1} \gamma_{2}+\gamma_{2} c_{1}+\gamma_{1} c_{2} \tag{4}
\end{equation*}
$$

Then the counting function for $X(K)$ is given by $N_{X, D}(B)=c B^{8 / A}+E(B)$, where c is a constant depending only on K, X, and the choice of height function H_{D}, and $E(B)=O\left(B^{q}\right)$ is an error term with an easily calculable $q<8 / A$. Moreover, the main term measures the number of rational points lying on the union of rational curves of minimal D-degree, which must all be of the form $E_{i j}, L_{i}$, or M_{i}, and $E(B)$ bounds the number of rational points not lying on such curves.

More precisely, we prove that the first term in the above expression represents the number of rational points lying on smooth rational curves of minimal D-degree on X. The error term represents the combination of Schanuel's error term, the estimate from Theorem 4.1 for $N_{U, D}(B)$, and the number of rational points lying on the curves $E_{i j}, L_{i}$, and M_{i} of non-minimal D-degree.

Put another way, the first layer of the arithmetic stratification (as defined by Batyrev and Manin [4]) of X with respect to an ample divisor D is the union of all smooth rational curves of minimal D-degree, provided that D can be expressed in a form for which inequality (4) is satisfied. Moreover, these curves are all of the form $E_{i j}, L_{i}$, or M_{i}.

Proof of Corollary 4.2. The following curves have the following degrees,

$$
\begin{aligned}
\operatorname{deg}_{D}\left(E_{m n}\right) & =2 \sum_{S \ni m, T \ni n} a_{S, T} \\
\operatorname{deg}_{D}\left(L_{n}\right) & =c_{2}+\sum_{S \ngtr n} \sum_{T} \operatorname{card}(T) a_{S, T} \\
\operatorname{deg}_{D}\left(M_{n}\right) & =c_{1}+\sum_{S} \sum_{T \ngtr n} \operatorname{card}(S) a_{S, T}
\end{aligned}
$$

and by Schanuel's Theorem for a smooth rational curve C of degree d in projective space, we have $N_{C, \mathcal{O}(d)}(B)=c B^{2 / d}+O\left(B^{2 / d-1 / N d}\right)$, where $N=$ [$K: \mathbf{Q}]>1$ and c is a complicated constant, calculated explicitly by Schanuel. (In the special case $K=\mathbf{Q}$, the error term must be replaced by $O\left(B^{1 / d} \log B\right)$.)

It suffices to show that $N_{U, D}(B)<N_{E_{i j}, D}(B)$ for sufficiently high B, where $E_{i j}$ is the exceptional curve of lowest degree. By Schanuel's Theorem, we have $N_{E_{i j}, D}(B)=c B^{2 / A}+O\left(B^{2 / A-2 / N A}\right)$, where c is a constant depending only on K, X, and D, and $N=[K: \mathbf{Q}]$. (If $K=\mathbf{Q}$, the error term must be appropriately modified.) By Theorem 4.1, then, it suffices to show that $\frac{2}{A}>\alpha$.

If $\alpha=\left(2 \gamma_{1}+2 \gamma_{2}\right) /\left(\gamma_{1} \gamma_{2}+\gamma_{2} c_{1}+\gamma_{1} c_{2}\right)$, then the desired inequality follows immediately from Eq. (4).

Assume that $\alpha=2 /\left(c_{1}+\gamma_{1}\right)$. Since $\operatorname{deg}_{D} M_{n}>0$ for $n=1,2,3,4$, it follows that

$$
\begin{aligned}
0 & <c_{1}+\sum_{S} \sum_{T \nRightarrow n} \operatorname{card}(S) a_{S, T} \\
& <c_{1}+A+\sum_{S \neq N_{4} \neq T} \operatorname{card}(S) a_{S, T} \\
& <c_{1}-A+\gamma_{1}
\end{aligned}
$$

which implies immediately that $\frac{2}{A}>\alpha$, as desired. Similarly, if $\alpha=2 /$ $\left(c_{2}+\gamma_{2}\right)$, then $\frac{2}{A}>\alpha$ follows from the positivity of $\operatorname{deg} L_{n}$.

Finally, we must establish that there are no rational curves of minimal D-degree other than those of the form $E_{i j}, L_{i}$, or M_{i}. Assume there exists such a curve C of minimal D-degree. Then $C \cap U$ is a dense open subset of U, so $N_{C, D}(B) \ll N_{U, D}(B)$. But for a curve of minimal D-degree, we have just established that $N_{C, D}(B) \ll N_{U, D}(B)$. The corollary follows.

Proof of Theorem 4.1. The key idea is to estimate an arbitrary height function H_{L} in terms of the height functions $H_{F_{i}}$, which are easily computed. The first step is to note that the divisors $A_{S, T}, F_{1}$, and F_{2} span a rank 18 sublattice of $\operatorname{Pic}(X)$. This can be proven by explicit calculation. For non-isogenous elliptic curves C_{1} and C_{2} (as is generally the case), $\operatorname{Pic}(X)$ is a free Z-module of rank 18. Therefore, height calculations with respect to a general ample sheaf L can be reduced to calculations with respect to the divisors $A_{S, T}, F_{1}$, and F_{2}. Write $H_{1}=H_{F_{1}}$ and $H_{2}=H_{F_{2}}$.

From Lemma 2.3, we get the following inequalities:

$$
\begin{gathered}
H_{1}(P)^{c_{1}} H_{2}(P)^{c_{2}} \prod_{S, T} \max \left\{H_{1}(P)^{\operatorname{card}(S)}, H_{2}(P)^{\operatorname{card}(T)}\right\}^{a_{S, T}} \ll H_{D}(P) \\
H_{D}(P) \ll H_{1}(P)^{\gamma_{1}+c_{1}} H_{2}(P)^{\gamma_{2}+c_{2}} .
\end{gathered}
$$

These estimates are enough to prove Theorem 4.1. The first inequality above implies for any point $P \in U(K)$ (since $a_{S, T} \geqslant 0$):

$$
H_{D}(P) \gg \max \left\{H_{1}(P)^{\gamma_{1}+c_{1}} H_{2}(P)^{c_{2}}, H_{1}(P)^{c_{1}} H_{2}(P)^{\gamma_{2}+c_{2}}\right\} .
$$

The number of points of points of height at most B on U is therefore bounded by the number of integer lattice points contained in a certain plane region times a constant factor (which is immaterial to the result of the theorem). By Schanuel's Theorem, there are $\ll B^{2}$ points of height at most B on \mathbf{P}^{1} with respect to the height attached to $\mathcal{O}(1)$, so that if $H_{1}(P) \leqslant B$, then there are $\ll B^{2}$ choices for $\pi_{1}(P)$, and similarly for $H_{2}(P)$. Therefore, set $x=H_{1}(P)^{2}$ and $y=H_{2}(P)^{2}$. If $H_{D}(P) \leqslant B$, then we get

$$
\max \left\{x^{\gamma_{1}+c_{1}} y^{c_{2}}, x^{c_{1}} y^{\gamma_{2}+c_{2}}\right\} \leqslant B^{2} .
$$

Thus, $N_{U, D}(B)$ is bounded above by a constant factor times the number of lattice points contained in the plane region R defined by the inequalities:

$$
R=\left\{(x, y) \in \mathbf{R}^{2} \mid x \geqslant 1, y \geqslant 1, x^{\gamma_{1}+c_{1}} y^{c_{2}} \leqslant B^{2}, \text { and } x^{c_{1}} y^{\gamma_{2}+c_{2}} \leqslant B^{2}\right\}
$$

This is asymptotically equal to the area of this region (again, up to an irrelevant constant factor), plus two extra terms counting lattice points lying on the boundary lines $x=1$ and $y=1$. This may be computed as follows.

Case I. $c_{2}>0$. Define $\delta=2\left(\gamma_{1} \gamma_{2}+\gamma_{2} c_{1}+\gamma_{1} c_{2}\right)^{-1}$. The two curves $x^{\gamma_{1}+c_{1}} y^{c_{2}}=B^{2}$ and $x^{c_{1}} y^{\gamma_{2}+c_{2}}=B^{2}$ intersect at the point ($B^{\delta \gamma_{2}}, B^{\delta \gamma_{1}}$). Thus, the number of lattice points inside R may be computed by

$$
\begin{aligned}
\int_{1}^{B^{\delta, 2}} & \left(B^{2} x^{-c_{1}}\right)^{1 /\left(\gamma_{2}+c_{2}\right)} d x \\
& +\int_{B^{\delta / 2}}^{B^{2 /(\gamma 1+c 1)}}\left(B^{2} x^{-\gamma_{1}-c_{1}}\right)^{1 / c_{2}} d x+B^{2 /\left(\gamma_{1}+c_{1}\right)}+B^{2 /\left(\gamma_{2}+c_{2}\right)} \\
= & -\left(\frac{\gamma_{2}+c_{2}}{\gamma_{2}+c_{2}-c_{1}}\right)\left(B^{2 /\left(\gamma_{2}+c_{2}\right)}-B^{\delta\left(\gamma_{1}+\gamma_{2}\right)}\right) \\
& -\left(\frac{c_{2}}{\gamma_{1}+c_{1}-c_{2}}\right)\left(B^{2 /\left(\gamma_{1}+c_{1}\right)}-B^{\delta\left(\gamma_{1}+\gamma_{2}\right)}\right)+B^{2 /\left(\gamma_{1}+c_{1}\right)}+B^{2 /\left(\gamma_{2}+c_{2}\right)} \\
= & O\left(B^{\alpha}\right)
\end{aligned}
$$

unless $\gamma_{1}+c_{1}=c_{2}$ or $\gamma_{2}+c_{2}=c_{1}$, in which case obvious modifications to the computation will give the desired result. (Note that $\gamma_{i}+c_{i}>0$ for all i by the positivity of $\operatorname{deg}_{D} L_{n}$ and $\operatorname{deg}_{D} M_{n}$.)

Case II. $\quad c_{2}=0$. Retain the notation of the previous case. The number of lattice points lying inside R is now bounded by:

$$
\begin{aligned}
\int_{1}^{B^{2 /(\gamma 1+c 1)}} & \left(B^{2} x^{-c_{1}}\right)^{1 / \gamma_{2}} d x+B^{2 /\left(\gamma_{1}+c_{1}\right)}+B^{2 / \gamma_{2}} \\
= & -\left(\frac{\gamma_{2}}{\gamma_{2}-c_{1}}\right)\left(B^{2 / \gamma_{2}}-B^{2 /\left(\gamma_{2}+c_{1}\right)}\right)+B^{2 /\left(\gamma_{1}+c_{1}\right)}+B^{2 / \gamma_{2}} \\
= & O\left(B^{\alpha}\right),
\end{aligned}
$$

again with the obvious modifications in the case that $c_{1}=\gamma_{2}$.
Case III. $\quad c_{2}<0$. Again retaining the notation of the previous cases, we may compute the number of lattice points lying inside R by

$$
\begin{aligned}
\int_{1}^{B^{\delta \gamma_{2}}} & \left(B^{2} x^{-c_{1}}\right)^{1 /\left(\gamma_{2}+c_{2}\right)}-\max \left\{\left(B^{2} x^{-\gamma_{1}-c_{1}}\right)^{1 / c_{2}}, 1\right\} d x+B^{\gamma_{2} \delta}+B^{2 /\left(\gamma_{2}+c_{2}\right)} \\
& \leqslant \int_{1}^{B^{\delta \gamma_{2}}}\left(B^{2} x^{-c_{1}}\right)^{1 /\left(\gamma_{2}+c_{2}\right)} d x+B^{\delta \gamma_{2}}+B^{2 /\left(\gamma_{2}+c_{2}\right)} \\
& =-\left(\frac{\gamma_{2}+c_{2}}{\gamma_{2}+c_{2}-c_{1}}\right)\left(B^{2 /\left(\gamma_{2}+c_{2}\right)}-B^{\delta\left(\gamma_{1}+\gamma_{2}\right)}\right)+B^{2 /\left(\gamma_{1}+c_{1}\right)}+B^{2 /\left(\gamma_{2}+c_{2}\right)} \\
& =O\left(B^{\alpha}\right),
\end{aligned}
$$

again with obvious modifications in the case that $c_{1}=c_{2}+\gamma_{2}$.
Thus, the proof of Theorem 4.1 is complete.

REFERENCES

1. A. Baragar, Rational points on $K 3$ surfaces in $\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}$, Math. Ann. 305 (1996), 541-558.
2. J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive green forms, J. Amer. Math. Soc. 7 (1994), 903-1027.
3. H. Billard, Propriétés arithmétiques d'une famille de surfaces K3, Comp. Math. 108 (1997), 247-275.
4. V. Batyrev and Yu. Manin, Sur le nombre de points rationnels de hauteur bornée des variétés algébriques, Math. Ann. 286 (1990), 27-43.
5. V. A. Iskovskikh and I. R. Shafarevich, Algebraic Surfaces, in "Algebraic Geometry II, Encyclopedia of Mathematical Sciences," Vol. 35, Springer-Verlag, Berlin, 1996.
6. H. King and A. Todorov, Rational points on some Kummer surfaces, preprint, 1992.
7. B. Saint-Donat, Projective Models of K3 Surfaces, Amer. J. Math. 96 (1974), 602-639.
8. S. H. Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979), 433-449.
9. J.-P. Serre, "Lectures on the Mordell-Weil Theorem," Vieweg, Braunschweig/Wiesbaden, 1989.
10. J. Silverman, Computing heights on $K 3$ surfaces: a new canonical height, Invent. Math. 105 (1991), 347-373.
11. Yu Tschinkel, Ph.D. thesis, MIT, Cambridge, MA, 1992.
