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The equation of state of cold baryonic matter is studied within a relativistic mean-field model with 
hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a 
universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense 
neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the 
reduction of the φ meson mass is included. Our equation of state matches well the constraints known 
from analyses of the astrophysical data and particle production in heavy-ion collisions.
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1. Introduction

A nuclear equation of state (EoS) is one of the key ingredients 
in the description of neutron star (NS) properties [1], supernova 
explosions [2] and heavy-ion collisions [3,4]. A comparison of var-
ious EoSs in how well they satisfy various empirical constraints 
was undertaken in Ref. [5] for the EoSs obtained within relativistic 
mean-field models (RMF) and some more microscopic calculations 
and in Ref. [6] for the Skyrme models. It turns out difficult to rec-
oncile the constraint on the maximum NS mass, which must be 
larger than 1.97 M� after the recent measurements reported in [7,
8], and the upper constraints on the stiffness of the EoS extracted 
from the analyses of heavy-ion collisions (HICs) [3,4]. Another rel-
evant constraint on the EoS of the NS matter is imposed by the 
direct Urca (DU) processes, like n → p +e + ν̄ , which occur as soon 
as the nucleon density exceeds some critical value nn

DU. The oc-
currence of these very efficient processes, even with account for 
the nucleon pairing, is hardly compatible with NS cooling data, 
if the value of the NS mass, at which the central density be-
comes larger than nn

DU, is Mn
DU < 1.5 M� (the so-called “strong” 

DU constraint) [9,5]. There should be Mn
DU < 1.35 M� (the “weak” 

DU constraint) [10,5], since 1.35 M� is the mean value of the NS 
mass distribution, as it follows from the analysis of the observa-
tional data on NSs in binary systems. The DU problem appears 
in the EoSs with linear dependence of the symmetry energy ex-
cept, maybe, most stiff ones. All the standard RMF EoSs and the 
microscopic Dirac–Brueckner–Hartree–Fock (DBHF) EoS suffer of 
this linear dependence. On the contrary, variational calculations 
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of the Urbana–Argonne group with A18 + δv + UIX∗ forces [11], 
as well as the RMF models with density dependent hadron cou-
pling constants [12], generate a weaker growth of the symmetry 
energy with the density, and the problem with the DU reactions is 
avoided. The later models are also able to describe NSs, as heavy 
as those in Refs. [7,8].

The problems worsen if strangeness is taken into account, be-
cause the population of new Fermi seas of hyperons leads to a 
softening of the EoS and reduction of the maximum NS mass. By 
employing a recently constructed hyperon–nucleon potential, the 
maximum masses of NSs with hyperons are computed to be well 
below 1.4 M� [13]. Also, within RMF models one is able to explain 
observed massive NSs only, if one artificially prevents the appear-
ance of hyperons, cf. [13,14] and the references therein. This is 
called in the literature, the “hyperon puzzle”. So, the difference 
between NS masses with and without hyperons proves to be so 
large for reasonable hyperon fractions in the standard RMF ap-
proach that in order to solve the puzzle one has to start with 
very stiff purely nuclear EoS, that hardly agrees with the results 
of the microscopically-based variational EoS [11] and the EoS cal-
culated with the help of the auxiliary field diffusion Monte Carlo 
method [15]. Such an EoS would also be incompatible with the 
restrictions on the EoS stiffness extracted from the analysis of nu-
cleon and kaon flows in heavy-ion collisions [3,4]. All suggested 
explanations require additional assumptions, see discussion in [16]. 
For example, the inclusion of an interaction with a φ-meson mean 
field, and the usage of smaller ratios of hyperon coupling constants 
to nucleon ones following the SU(3) symmetry relations [17], as 
well as other modifications performed within the standard RMF 
approach, all help to increase the NS mass.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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There is also another part of the “hyperon puzzle”, which at-
tracted less attention so far. With the hyperon coupling constants 
introduced with the help of the SU(6) symmetry relations the criti-
cal densities for the appearance of first hyperons prove to be rather 
low, nH

DU ∼ 3n0, cf. [18,19]. However with the appearance of the 
hyperons the efficient DU reaction on hyperons, e.g. � → p +e + ν̄ , 
occurs that may potentially cause a very rapid cooling of the NSs 
with M > M H

DU, M H
DU being the NS mass, at which the central den-

sity reaches the value nH
DU. The problem should be additionally 

studied with account for a suppression of hyperon concentrations 
and weak interaction vertices of hyperons compared to the cor-
responding neutron concentrations and nucleon weak interaction 
vertices, and with account for the hyperon pairing, cf. [20,21].

In Ref. [10] two of us formulated an RMF model, in which 
hadron masses and meson–baryon coupling constants are depen-
dent on the σ mean field. A working model MW(n.u., z = 0.65) la-
beled in [5] as KVOR model has been constructed. This model was 
shown in [5] to satisfy appropriately the majority of experimental 
constraints known by that time. In Ref. [22] the particle thermal 
excitations were incorporated and the model was successfully ap-
plied to description of heavy-ion collisions. However hyperons are 
not included in the model. Even without hyperons the KVOR EoS 
with the added (BPS) crust EoS from [23] yields MKVOR

max = 2.01 M�
that fits the new constraint [7,8] only marginally.

In the present Letter we will show that within the RMF mod-
els with hadron masses and coupling constants dependent on the 
σ mean field one is able to overcome the mentioned above prob-
lems and to construct the appropriate EoS with hyperons satisfying 
presently known experimental constraints.

2. Energy density functional

In our RMF model we include nucleons N = (p, n) and hyperons 
H = (�0, �±,0, �−,0) interacting with mean fields of mesons m =
σ , ω, ρ, φ. For simplicity, we drop the ρ meson self-interaction 
and disregard, therefore, a possibility of the charged ρ-meson 
condensation discussed in [10]. As the bare masses of the parti-
cles we take mN = 938 MeV, m� = 1116 MeV, m� = 1193 MeV, 
m� = 1318 MeV and neglect the small mass splitting in isospin 
multiplets. Lepton masses are me = 0.5 MeV and mμ = 105 MeV.

Following the approach [10], the scalar field enters as a dimen-
sionless variable f = gσ Nχσ N (σ )σ/mN and the meson–baryon 
coupling constants gmB , B = (N, H), are made σ -dependent with 
the help of scaling coupling constants, gmBχmB( f ) with χωH ( f ) =
χωN ( f ), χρH ( f ) = χρN ( f ). The bare masses of hadrons mB and 
mm are replaced in the model by the effective masses m∗

B =
mB�B( f ) and m∗

m = mm�m( f ) scaled by the functions

�N( f ) = �m( f ) = 1 − f ,

�H ( f ) = 1 − xσ H
mN

mH
ξσ H f , (1)

where xσ H = gσ H/gσ N and ξσ H ( f ) = χσ H ( f )/χσ N( f ).
Taking into account the equations of motion for vector fields, 

the energy density of the cold infinite matter with an arbitrary 
isospin composition is recovered from the Lagrangian of the model 
in the standard way, see Ref. [10]:

E[ f ] =
∑

B

Ekin
(

pF,B ,mB�B( f )
) +

∑
l=e,μ

Ekin(pF,l,ml)

+ m4
N f 2

2C2
σ

ησ ( f ) + 1

2m2
N

[ C2
ωñ2

B

ηω( f )
+ C2

ρñ2
I

ηρ( f )
+ C2

φñ2
S

ηφ( f )

]
, (2)
ñB =
∑

B

xωBnB , ñI =
∑

B

xρBt3BnB , ñS =
∑

H

xφHnH ,

where xω(ρ)B = gω(ρ)B/gω(ρ)N , xφH = gφH/gωN , gφN = 0.
The values of the isospin projections for baryons t3i follow from 

the Gell-Mann–Nishijima relation t3B = Q B −(1 + S B)/2, where Q B

and S B are the baryon electric charge and strangeness, respectively. 
The baryon densities are related to the baryon Fermi momentum 
as nB = p3

F,B/3π2 and the fermionic kinetic energy density is

Ekin(pF,m) =
pF∫

0

p2dp

π2

√
p2 + m2.

The dimensionless coupling constants are Cm = gmN mN
mm

for all m
except φ. Since the ratios xφH are determined through gωN , the 
φ-field contribution enters the energy density with the constant 
Cφ = Cωmω/mφ . Here we take mω = 783 MeV, mφ = 1020 MeV. 
Bare masses and coupling constants of all mesons except φ enter 
the energy density only in combinations Cm and the scaling func-
tions �m and χm enter only through the scaling factors

ηm( f ) = �2
m( f )/χ2

mN( f ). (3)

Therefore we actually do not need to determine �m( f ) and χm( f )
separately, but only ηm( f ) combinations. The self-interaction of 
the scalar field introduced usually in RMF models through a poten-
tial U ( f ) is hidden now in the definition of ησ ( f ). The equation of 
motion for the remaining field variable f follows from the mini-
mization of the energy density ∂ E[ f ]/∂ f = 0. If we suppress φ and 
H terms, put ησ = 1 + 2 C2

σ

f 2 ( b
3 f 3 + c

4 f 4) and put all other scaling 
functions to unity, we recover the energy density functional of the 
standard non-linear Walecka σ –ω–ρ model.

For the NS matter sustained in the β-equilibrium the Fermi 
momenta of a baryon can be expressed through the baryon chem-
ical potential, μB , as p2

F,B = (μB − V B)2 − m2
B�2

B , where V B m2
N =

C2
ωxωBñB/ηω + C2

ρxρBt3BñI/ηρ + C2
φxφBñS/ηφ ; μB is related to the 

nucleon and electron chemical potentials as μB = μn − Q Bμe . 
Solving the system of equations for pF,B and making use of the 
electro-neutrality condition 

∑
B Q BnB = ne + nμ , where the lep-

ton densities are ne = μ3
e /3π2, nμ = (μ2

e − m2
μ)3/2/3π2, we can 

express the hadron densities and the total energy density through 
the total baryon density n = ∑

B nB . The total pressure is calculated 
as P = ∑

i=B,l μini − E .
The parameters of the nucleon sector are tuned to reproduce 

the properties of nuclear matter at saturation: the saturation den-
sity n0, the binding energy per nucleon E0, the effective nucleon 
mass m∗

N , the compressibility modulus K , and the symmetry en-
ergy ̃ J (n0). The coupling constants of hyperons with vector mesons 
are interrelated by SU(6) symmetry relations [26]:

gω� = gω� = 2gω� = 2
3 gωN , gρ� = 2gρ� = 2gρN ,

2gφ� = 2gφ� = gφ� = − 2
√

2
3 gωN , gρ� = gφN = 0. (4)

The coupling constants of hyperons with the scalar mean field are 
constrained with the help of the hyperon binding energies per nu-
cleon EH

bind in the isospin symmetric matter (ISM) at n = n0 given 
by [18]:

EH
bind(n0) = C2

ωm−2
N xωHn0 − (mN − m∗

N(n0))xσ H , (5)

where we suppose ξσ H ( f (n0)) = 1 and use

E�
bind(n0) = −28 MeV, E�

bind(n0) = 30 MeV,

E� (n0) = −15 MeV. (6)
bind
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Table 1
Characteristics of KVOR and MKVOR models at saturation.

EoS E0 n0 K m∗
N (n0) J̃ L K ′ Ksym

[MeV] [fm−3] [MeV] [mN ] [MeV] [MeV] [MeV] [MeV]

KVOR −16 0.16 275 0.805 32 71 422 −86
MKVOR −16 0.16 240 0.73 30 41 557 −158
The repulsive � potential prevents the appearance of � hyperons 
in all models considered below.

The NS configuration follows from the solution of the Tolman–
Oppenheimer–Volkoff equation. For n � (0.6 − 0.8)n0, our RMF 
EoSs should be matched with the EoS of the NS crust, where the 
formation of a pasta phase is explicitly included. The presence 
of the pasta, although it may change transport properties of the 
matter, affects an EoS only slightly [24]. Therefore simplifying con-
sideration we chose the frequently-used crust BPS EoS from [23], 
ignoring the pasta phase. The same BPS crust EoS was used in [5]
where it was joined with the various EoSs describing the inte-
rior region. The pressure as a function of the density for the EoSs, 
we consider here, intersects the BPS pressure at density n1, such 
that 0.45n0 � n1 � 0.7n0. We construct the resulting pressure as a 
function of the density by using the BPS pressure for n ≤ 0.45n0, 
then a cubic spline interpolation for 0.45n0 < n ≤ 0.7n0, and the 
pressure for beta-equilibrium matter (BEM) given by our model 
for n > 0.7 n0. The choice of the interval, which includes the in-
tersection points for both EoSs, guarantees the smoothness of the 
interpolation. We have also checked that a narrowing of the inter-
polation interval limits almost does not reflect on such observables 
as the star mass and radius.

3. Models

We discuss now two models constructed according to the prin-
ciples described above. One is the formal extension of the KVOR 
model from Ref. [10] to hyperons, which we call the KVORH model 
now. In this example we demonstrate the problems, which ap-
pear when one includes hyperons. For the second model, labeled 
as MKVOR (or MKVORH when hyperons are included), we propose 
new set of scaling functions. In Table 1 we present the saturation 
parameters for both models and the coefficients of the expansion 
of the nucleon binding energy per nucleon near the nuclear satu-
ration density n0,

E = E0 + K

2
ε2 − K ′

6
ε3 + β2 J̃ (n) + O (β4),

J̃ (n) = J̃ + Lε + Ksym

2
ε2 + · · · , (7)

in terms of small ε = (n −n0)/3n0 and β = (nn −np)/n parameters.

3.1. KVORH model

Reference [10] proposed a set of input parameters for the RMF 
model, which matches the APR EoS (in the relativistic HHJ pa-
rameterization of [27]) up to n � 4n0, see Eq. (61) in [10]. To 
fulfill the DU constraint Ref. [10] introduced the scaling function 
ηρ( f ) 	= 1, see Eq. (63) in [10]. Thus the model labeled as KVR 
in Ref. [5] was constructed. The idea behind the KVOR modifica-
tion of the KVR model was to demonstrate that introducing the 
additional scaling function ηω 	= 1 one can increase the maximum 
value of the NS mass without a sizable change of the EoS for densi-
ties n � 4n0. The coupling constants for the KVOR model are given 
in Eq. (58) in Ref. [10]. The KVOR model produces the maximum 
NS mass Mmax = 2.01 M� , and the critical proton density for the 
Fig. 1. Baryon concentrations and the variable f in BEM as functions of total baryon 
density for the KVORH, MKVORHφ and MKVORHφσ models. Dotted lines show the 
thresholds of the DU reaction on neutrons. For the MKVORHφ and MKVORHφσ
models the thresholds are not distinguishable on the plot scale. Short vertical bars 
on the lines show the maximum densities reachable in the NS for the given model.

DU reaction threshold on neutrons nn
DU = 3.92n0 corresponding to 

Mn
DU = 1.76 M� .

In the KVORH model the parameters xσ H deduced from hy-
peron binding energies in Eq. (5) are

xσ� = 0.599, xσ� = 0.282, xσ� = 0.305. (8)

The baryon concentrations for the KVORH model are depicted 
in Fig. 1 as functions of the baryon density n. For n < 0.6n0
the curves presented in Fig. 1 should be replaced by those com-
puted within the EoS of the crust. The KVORH model produces 
the maximum NS mass Mmax = 1.66 M� . The critical density for 
the appearance of first hyperons, which is simultaneously the crit-
ical density for the onset of the DU reactions on hyperons (� in 
this case) is n�

DU = 2.82n0, and the corresponding NS mass at 
which first �s appear in the NS center is M�

DU = 1.38 M� . The 
total strangeness concentration (the ratio of the number of strange 
quarks to the total number of quarks) in the NS with the maxi-
mum mass is fS = 0.034.

3.2. MKVORH model

Reference [10] showed that the EoS is more sensitive to the 
value of m∗

N(n0) than to the compressibility K . The smaller m∗
N (n0)

is in a certain RMF model, the larger is the value of the maxi-
mum NS mass. The input parameters for the new MKVOR model 
are listed in Table 1 together with the corresponding parameters 
of the nuclear binding energy per nucleon at saturation. We took 
in the MKVOR model a smaller value of m∗

N(n0) than in the KVOR 
model and a smaller value of the compressibility, K = 240 MeV, 
that agrees with canonical value K = 240 ± 20 MeV extracted from 
the analysis of giant monopole resonances (GMR) [28].

The scaling functions of the MKVOR model are as follows:

η−1
σ ( f ) = 1 − 2

3
C2

σ bf
[
1 + 3

4

(
c − 8

9
C2

σ b2) f
] + 1

3
df 3,

ηω( f ) =
(1 + zf0

)α + aω
[1 + tanh(bω( f − fω))] ,
1 + zf 2
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Table 2
Parameters of the MKVOR model.

C2
σ C2

ω C2
ρ b × 103 c × 103 d α z aω

234.15 134.88 81.842 4.6750 −2.9742 −0.5 0.4 0.65 0.11
bω fω β γ fρ aρ a(1)

ρ a(2)
ρ a(3)

ρ dρ eρ

7.1 0.9 3.11 28.4 0.522 0.448 −0.614 3 0.8 −4 6
ηρ( f ) = a(0)
ρ + a(1)

ρ f + a(2)
ρ f 2

1 + a(3)
ρ f 2

+ β exp
[
− γ

( f − fρ)2(1 + eρ( f − f0)
2)

1 + dρ( f − f0) + eρ( f − f0)2

]
. (9)

The parameters of the model and of the scaling functions are col-
lected in Table 2. The choice of the scaling functions is definitively 
not unique. Their final form was tuned to satisfy best the exper-
imental constraints, that we demonstrate below, and to keep a 
connection to the KVOR model parameterization. The first term in 
ηω is the same as in the KVOR model, the function ησ and the 
first three terms in ηρ are basically the reparameterization of the 
functions of the KVOR model. The new terms, the second one in 
ηω and the last one in ηρ are added to control the growth of the 
scalar field with density. Note that the density dependencies of 
our scaling functions for the σ N , ωN and ρN coupling constants 
prove to be similar to those exploited in the DD and DD-F mod-
els with the density dependent coupling constants and bare meson 
field masses, cf. [25,5].

The maximum NS mass increases in the MKVOR model com-
pared to the KVOR model up to Mmax = 2.33 M� . The DU thresh-
old values are nn

DU = 4.14n0 and Mn
DU = 2.22 M� .

In the model with hyperons (MKVORH) we use the σ H cou-
pling constant ratios deduced from hyperon binding energies in 
ISM following Eq. (5) for ξσ H = 1:

xσ� = 0.607, xσ� = 0.378, xσ� = 0.307. (10)

Note that the value xσ� 
 0.61 is close to the best value derived 
from hypernuclei xσ� 
 0.62 in Ref. [26].

To have an opportunity for an increase of the maximum NS 
mass in the model with hyperons, we incorporate the φ-meson 
mean field with a scaled φ meson mass (version labeled
MKVORHφ) and, additionally, allow for a scaling of the σ H cou-
pling constants, ξσ H (n) 	= 1 (version MKVORHφσ ).

In the model MKVORHφ we will exploit the very same scaling 
of the φ-meson mass as for other hadrons �φ = 1 − f . This implies 
the scaling function

ηφ = (1 − f )2. (11)

We use the minimal model, assuming parameterization Eq. (4) for 
the vector–meson–hyperon coupling constants, and the σ H cou-
pling constants from Eq. (10). As the result the maximum NS 
mass in MKVORHφ model becomes Mmax = 2.22 M� with the 
strangeness concentration fS = 0.023. The critical density for the 
appearance of first hyperons is n�

DU = 2.63n0, corresponding to the 
star mass M�

DU = 1.43 M� . Although the model does not satisfy the 
“strong” DU constraint (MDU > 1.5 M�), we should notice that for 
reactions on hyperons this constraint might be a bit soften since 
the baryon part of the squared matrix element of the DU reaction 
on �s is 25 times smaller than that for the DU reaction on neu-
trons [20], besides the pairing gaps might be not as small.

The effect of the ξσ H (n) scaling we demonstrate at hand of 
the MKVORHφσ model, where we take ξσ H (n) such that ξσ H (n ≤
n0) = 1, and assume that ξσ H (n) decreases with an increase of n
and vanishes for densities n > min{nH

DU}. This means that effec-
tively we will exploit vacuum hyperon masses for n > min{nH }. 
DU
Note that the KVOR model extended to high temperatures in 
Ref. [22] (called there as the SHMC model) matches well the lattice 
data up to T ∼ 250 MeV provided σ B coupling constants for all 
baryons except the nucleons, are artificially suppressed, that par-
tially motivates our choice of suppressed values ξσ H .

The baryon concentrations from the MKVORHφ and MKVORHφσ
models are shown in Fig. 1. The proton fractions of the MKVORHφ

and MKVORHφσ models are smaller than those for the KVORH 
model. We also see that inclusion of the φ scaling (11) reduced the 
hyperon population. The reduction of the σ H coupling constants 
prevents the appearance of � and �0 hyperons and shifts the 
threshold density of the �− appearance to higher values. With-
out �s the reaction �− → � + e− + ν̄e does not occur and the 
DU threshold is determined by the DU reactions on nucleons. Re-
placing the values of f (n) depicted in Fig. 1 for the BEM in Eq. (1)
one can recover the density dependence of the effective hadron 
masses and from Eqs. (9) and (11) that of the effective coupling 
constants. Within the MKVORHφσ model we get Mmax = 2.29 M� , 
nn

DU = 3.69 n0 (Mn
DU = 2.09 M�), and the total strangeness concen-

tration in the heaviest NS is reduced to fS = 6.2 × 10−3.
Applying the φ-mass scaling and the ξσ H scaling to the KVORH 

model we obtain for the KVORHφ model Mmax = 1.88 M� and 
that the first hyperons, �s, appear at the density n�

DU = 2.81 n0

(M�
DU = 1.37 M�). The strangeness fraction is fS = 0.035. For the 

KVORHφσ model we find Mmax = 1.96 M� , fS = 9.2 × 10−3. The 
first among hyperons appear �−s, therefore the DU threshold is 
shifted to nn

DU = 3.95 n0 (Mn
DU = 1.76 M�).

Below we compare how well the EoSs obtained within the 
MKVORHφσ and KVORH models satisfy various phenomenological 
constraints.

4. Constraints on the models

4.1. Symmetry energy and nucleon optical potential

Constraints on the density dependence of the symmetry energy 
[parameter J̃ (n) in Eq. (7)] are extracted in [29] from the study of 
the analog isobar states and in [30] from the electric dipole po-
larizability of 208Pb nuclei. They are shown in Fig. 2 (left panel) 
by the shaded and hatched regions, respectively, together with the 
symmetry energies calculated in the KVOR and MKVOR models. 
We see that the both models follow the lower boundary of the re-
gion.

The dependence of the nucleon optical potential on the nucleon 
kinetic energy in the ISM at n = n0 is shown in Fig. 2 (right panel). 
The shaded region is extracted from the atomic nucleus data [31]
and recalculated to the case of the infinite nuclear ISM in [32]. 
The KVOR model describes the nucleon optical potential for low 
and high particle energies but does not describe it for intermediate 
energies. The MKVOR model describes the nucleon optical poten-
tial rather well for nucleon energies E N − mN � 400 MeV. To fit 
appropriately the data at higher particle energies, the momentum 
dependence of the N N interaction would be required that is not 
present in the mean-field approach. The iso-vector part of the op-
tical potential Un

opt − U p
opt is less constrained by the data, therefore 

we do not show it.
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Fig. 2. (Left) The symmetry energy coefficient ̃ J(n) as a function of the nucleon den-
sity calculated in the KVOR and MKVOR models. Shaded area shows the constraint 
from the study of analog isobar states (AIS) in [29]. Hatched area is the constraint 
from the electric dipole polarizability (αD) in 208Pb [30]. (Right) The nucleon opti-
cal potential as a function of the nucleon kinetic energy for ISM at n = n0 for the 
KVOR, cf. [22], and MKVOR models. Shaded area shows the extrapolation from finite 
nuclei to the nuclear matter from [32].

Fig. 3. Pressure as a function of the nucleon density in ISM and PNM for the KVOR 
and MKVOR models. Hatched areas show the empirical constraints from the analy-
ses of a particle flow in HICs in [3], kaon production in HICs [33,4], and the GMR 
data [33].

4.2. Particle flow in heavy-ion collisions

The analysis of the transverse and elliptical flow data in HICs 
allowed [3] to extract a constraint on the pressure of the ISM as 
a function of the nucleon density and to reconstruct the pressure 
for the purely neutron matter (PNM) with some assumptions about 
the density dependence of the symmetry energy J̃ (n) (soft or stiff 
one). Ref. [33] on the basis of calculations of the kaon production 
in HICs [4] provided some restrictions on the pressure at lower 
densities. These constraints are shown in Fig. 3 together with the 
results of the GMR data analysis taken from [33] and the pressure 
calculated in the KVOR and MKVOR models. The constraints rule 
out a very stiff EoS. We see that the KVOR model satisfies the 
requirements. The MKVOR model fulfills the constraints, for n <
4n0 in ISM. For PNM the MKVOR curve passes through the hatched 
region with stiffer J̃ (n), whereas the KVOR EoS is softer. The choice 
of the smaller m∗

N (n0) leads to a stiffening of the EoS in ISM and 
the scaling functions ησ ( f ) and ηω( f ) are chosen to soften the 
EoS for n � 4n0 to fulfill the nucleon- and kaon-flow constraints. 
To increase the maximum NS mass we had to stiffen the EoS in 
the BEM that was accomplished by the choice of the ηρ function.

4.3. DU constraint

In the BEM the DU process on neutrons, n → p + e + ν̄e , can 
occur only, if the proton fraction is high enough so that the Fermi 
momenta of neutrons, protons and electrons (pF,i=n,p,e) satisfy the 
Fig. 4. (Left) Gravitational NS mass MG versus the baryon mass MB . Shaded rectan-
gles show the constraints from J0737-3039(B) pulsar derived in Refs. [38] and [39]
labeled by 1 and 2, respectively. The empty rectangle demonstrates the change of 
the constraint [38] by 1% M� . (Right) The NS mass–radius relations for the KVORH, 
MKVORHφ , MKVORHφσ models compared with constraints from the isolated NS RX 
J1856.5-3754 [40], QPOs in the LMXBs 4U 0614+09 [42], the millisecond pulsar PSR 
J0437-4715 [43], and the Byesian probability distribution analyses (BPA) [1]. The 
horizontal lines border the uncertainty range for the mass of PSR J0348+0432 [8].

inequality pF,n ≤ pF,p + pF,e . Usually, RMF models yield uncom-
fortably low values of the threshold densities for these reactions 
and correspondingly low values of the NS mass, Mn

DU, at which the 
process begins to occur in the NS center. Every star with a mass 
only slightly above Mn

DU cools down fast due to the DU process, 
even in the presence of nucleon pairing, and becomes invisible for 
the thermal detection within few years [9]. Most of single NSs 
have likely masses below 1.5 M� in accordance with the type-
II supernova explosion scenario [2] and the population synthesis 
analysis [34]. Therefore, it is natural to believe that majority of 
the pulsars, which surface temperatures have been measured, have 
masses M � 1.5 M� . The analysis of these data in the existing cool-
ing scenarios supports the constraint Mn

DU � 1.5 M� [35,36]. The 
adequate description of the new data on the cooling of the Cassio-
pea A also requires the absence of the DU reactions [35].

In the presence of � hyperons, reactions � → p + e + ν̄ may 
occur. As seen in Fig. 1, proton concentrations for the KVORH, 
MKVORHφ models do not exceed the neutron-DU threshold for 
n < n�

DU, and for higher densities the DU reactions on �s start oc-
curring. For the MKVORHφσ model �s do not appear at all and 
the DU processes occur for n > nn

DU.

4.4. Gravitational mass versus baryon mass constraint

The unique double-neutron-star system J0737-3039 with two 
millisecond pulsars provided an important constraint on the nu-
clear EoS. The gravitational mass of one of the companions (B) is 
very low MG = 1.249 ± 0.001 M� [37] which implies a very pecu-
liar mechanism of its creation – a type-I supernova of an O–Ne–Mg 
white dwarf driven hydrostatically unstable by electron captures 
onto Mg and Ne. Knowing this mechanism Refs. [38,39] calculated 
the number of baryons in the pulsar and the corresponding baryon 
mass: MB = 1.366–1.375 M� [38] and MB = 1.358–1.362 [39]. The 
constraint of Ref. [38] can be released by 1% M� because of a pos-
sible baryon loss and a critical mass variation due to carbon flashes 
during the collapse. Therefore one can speak about “strong” (with-
out the mass loss) and “weak” (with the mass loss) constraints on 
the EoS, respectively. Microscopically motivated EoSs, like the rela-
tivistic DBHF EoS [41], the APR EoS [11], the diffusion Monte-Carlo 
one [15], and many RMF-based models do not fulfill the strong 
constraint of Ref. [38]. Many EoSs do not satisfy the constraint 
of [39] and even the weak constraint of Ref. [38], cf. [5].

In Fig. 4 (left panel) we plot the gravitational NS mass MG ver-
sus the baryon mass MB . The KVOR model matches marginally the 
weak constraint of Ref. [38], whereas the MKVOR model matches 
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marginally both the result from Ref. [39] and the strong constraint 
of [38], the latter was not reproduced by the EoSs considered in 
Ref. [5]. Note that hyperons do not appear in the NS with the 
mass of 1.25 M� , therefore the curves for the models KVORH and 
KVOR coincide, as well as the curves for the MKVOR, MKVORHφ

and MKVORHφσ models. Comparing particle concentration for dif-
ferent models shown in Fig. 1 and the baryon mass of the NS, 
we observe a correlation: the smaller is the proton fraction within 
the density interval n0 < n � 2.5n0, the better the given EoS satis-
fies the baryon-mass constraint. For n ∼ n0 the value of the proton 
fraction is correlated with the values of J̃ and L in Eq. (7). The 
value of J̃ may vary only a little (from 28 MeV to 34 MeV or even 
in a narrower interval) but L varies broadly in various works, e.g., 
cf. Fig. 4 in Ref. [33]. With a decrease of L curves in Fig. 4 (left 
panel) are shifted to the right. For L < 40 MeV (at fixed other 
parameters) the MKVOR curves would pass through the shaded 
area 1. The smaller L is for the given EoS, the less the proton 
fraction is in the relevant density interval n0 < n � 2.5n0, and the 
better the constraint is satisfied.

4.5. Mass and radius constraints

In Fig. 4 (right panel) we show mass–radius relations of NSs for 
the KVORH, MKVORHφ and MKVORHφσ models. Largest precisely-
measured masses of NSs are 1.97 ±0.04 M� for PSR J1614-2230 [7]
and 2.01 ± 0.04 M� for PSR J0348+0432 [8]. The MKVORHφ and 
MKVORHφσ models can describe these high-mass NSs, whereas 
the KVORH model fails badly. Experimental information about 
heavier NSs is plagued with large experimental errors and with ad-
ditional theoretical uncertainties, see Ref. [1] for a review. In Fig. 4
(right panel) we confront our models with other constraints de-
rived from the quasi-periodic oscillations in the low-mass X-ray 
binary 4U 0614+091 [42] and thermal spectra of the nearby iso-
lated NS RX J1856.5-3754 [40]. More details on these constraints 
can be found in Ref. [5]. In contrast to the mass determination, 
there are no accurate estimates of NS radii. Some constraints were 
derived recently from the X-ray spectroscopy of PSR J0437-4715 
with the proper account for the system geometry [43] and from 
the Bayesian probability analysis of several X-ray burst sources in 
Ref. [1]. These constraints are also shown in Fig. 4. We see that the 
MKVORHφ and MKVORHφσ satisfy the mass–radius constraints 
and produce the radii of NSs in a narrow interval 11.7 ± 0.5 km
for star masses M > 0.5 M� .

5. Concluding remarks

We constructed relativistic mean-field models with scaled 
hadron masses and coupling constants including a φ meson mean 
field and hyperons. The hyperon–vector–meson (ω, ρ, φ) coupling 
constants obey the SU(6) symmetry relations. The most challeng-
ing is to fulfill the flow constraint and produce a high maximum 
neutron-star mass simultaneously. For that we introduced the scal-
ing functions such that our equation of state is rather soft for 
n � 4n0 in the isospin symmetric matter but is sufficiently stiff 
in the beta-equilibrium matter. This behavior is achieved by the 
proper selection of the scaling functions ηω and ηρ . The inclusion 
of the φ meson with the mass scaled in the same way as masses 
of nucleons and other mesons, but with the φ coupling constants 
being fixed, allows to fulfill the empirical constraints on the max-
imum neutron star mass; see curve for the MKVORHφ model in 
Fig. 4 (right panel). In such an approach the “hyperon puzzle” can 
be resolved within our model without any additional assumptions, 
like, e.g., the change of a scheme for the choice of the hyperon–
vector–meson coupling constants from SU(6) to SU(3), as in [17]. 
We stress that we would not succeed if we used the bare φ meson 
mass. Other constraints are also satisfied except that the model 
MKVORHφ produces a rather low threshold value of the neutron 
star mass M�

DU 
 1.44 M� for the occurrence of direct Urca reac-
tions on �s. On the other hand, such a value of M�

DU might be 
already sufficiently high to cause no problems with the too rapid 
cooling of neutron stars, since the DU process on �s might be 
less efficient than that on neutrons. Nevertheless we demonstrated 
how one can fully eliminate this possible deficiency. The model 
MKVORHφσ , where the hyperon masses do not change in medium, 
satisfies appropriately all constraints discussed in this Letter, which 
are known from the analyses of atomic nuclei, heavy-ion collisions 
and neutron star data. Moreover, the maximum neutron star mass 
increased. As an interesting finding, we indicate that the smaller 
the proton fraction is in the density interval n0 < n < 2.5n0 and the 
smaller the value of L is at n0, the better the baryon-gravitational 
mass constraint is fulfilled.
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