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Jean-Claude Béı̈que, Keith K. Murai

Correspondence
keith.murai@mcgill.ca

In Brief

Control over protein synthesis is impor-

tant for long-lasting plasticity and mem-

ory storage in the brain. Cook, Nuro,

et al. now reveal that the RNA-binding

protein FXR1P acts as a molecular brake

that limits synthesis and synaptic incor-

poration of the AMPAR subunit GluA2, ul-

timately constraining long-term plasticity

and memory formation.

mailto:keith.murai@mcgill.ca
http://dx.doi.org/10.1016/j.celrep.2014.10.028
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2014.10.028&domain=pdf


Cell Reports

Article
FXR1P Limits Long-TermMemory,
Long-Lasting Synaptic Potentiation,
and De Novo GluA2 Translation
Denise Cook,1,7 Erin Nuro,1,7 Emma V. Jones,1 Haider F. Altimimi,1 W. Todd Farmer,1 Valentina Gandin,2 Edith Hanna,1

Ruiting Zong,3 Alessandro Barbon,4 David L. Nelson,3 Ivan Topisirovic,2 Joseph Rochford,5 David Stellwagen,1
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SUMMARY

Translational control of mRNAs allows for rapid and
selective changes in synaptic protein expression
that are required for long-lasting plasticity and mem-
ory formation in the brain. Fragile X Related Protein 1
(FXR1P) is an RNA-binding protein that controls
mRNA translation in nonneuronal cells and colocal-
izes with translational machinery in neurons. How-
ever, its neuronal mRNA targets and role in the brain
are unknown. Here, we demonstrate that removal
of FXR1P from the forebrain of postnatal mice
selectively enhances long-term storage of spatial
memories, hippocampal late-phase long-termpoten-
tiation (L-LTP), anddenovoGluA2 synthesis. Further-
more, FXR1Pbinds specifically to the 50 UTRofGluA2
mRNA to repress translation and limit the amount
of GluA2 that is incorporated at potentiated syn-
apses. This study uncovers a mechanism for regu-
lating long-lasting synaptic plasticity and spatial
memory formation and reveals an unexpected diver-
gent role of FXR1P among Fragile X proteins in brain
plasticity.

INTRODUCTION

Memories are thought to be stored as long-lasting changes in the

size, strength, and number of synapses in neuronal networks

(Govindarajan et al., 2006; Kessels and Malinow, 2009). These

changes rely on new protein synthesis that occurs locally from

translational machinery found in dendrites and at synapses

(Schuman et al., 2006). This local protein synthesis is regulated
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through a combination of general translational control mecha-

nisms, which act on all mRNAs, and gene-specific mechanisms,

which act on specific subsets of mRNAs. Together, these mech-

anisms ensure that the correct proteins are synthesized in

response to specific patterns of synaptic activity (Costa-Mattioli

et al., 2009). Although several studies have shown that knocking

out components of the general translational control pathway

alters and even enhances synaptic plasticity and memory

(Costa-Mattioli et al., 2005, 2007; Kelleher et al., 2004), further

elucidation of the role of gene-specific mechanisms in these

processes is required.

In the brain, gene-specific mRNA translational control is

achieved by a diverse array of neuronal RNA-binding proteins

whose roles in long-term plasticity and memory storage remain

largely unexplored (Doyle and Kiebler, 2011; Elvira et al., 2006;

Kanai et al., 2004). One of these RNA-binding proteins, Fragile

X Related Protein 1 (FXR1P), is related to FXR2P and Fragile

X Mental Retardation Protein (FMRP), two proteins that are

known to function in synaptic plasticity and memory. Although

it has been shown that FXR1P can regulate protein synthesis in

nonneuronal cells (Garnon et al., 2005; Vasudevan and Steitz,

2007), its role in mRNA translation and synaptic plasticity

in neurons is unknown, largely because complete loss of

FXR1P in mice results in perinatal lethality (Mientjes et al.,

2004). Our recent discovery that FXR1P colocalizes with trans-

lation machinery in dendrites and near a subset of dendritic

spines (Cook et al., 2011) prompted us to investigate its

function in brain development, plasticity, and synaptic protein

expression, and to compare its role with those of FXR2P and

FMRP.

To address the in vivo role of FXR1P in the brain, we condi-

tionally deleted FXR1P from the postnatal forebrain of mice

and found that loss of FXR1P specifically enhances hippo-

campal protein synthesis-dependent late-phase long-term
hors
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Figure 1. Characterization of FXR1P cKO Mice

(A) Hippocampal sections taken from postnatal day 60 WT, cHET, and cKO

mice labeled for FXR1P and NeuN. FXR1P is lost from CA1 cells in cHET and

cKO mice (n = 3 mice/genotype). Scale bar, 200 mm.

(B and C) FXR1P is lost from cortical neurons (B), but not cerebellar Purkinje

cells (C). Scale bar, 100 mm.

(D) Western blots of CA1 lysates from WT, cHET, and cKO mice. FXR1P is

reduced in the cHET and cKOmice (one-way ANOVA, F(2, 6) = 16.66, p = 0.004,

Tukey HSD post hoc, p < 0.05; n = 3 mice/genotype from 3 litters). Error bars

show SE. **p % 0.01, *p % 0.05.

See also Figure S1.
potentiation (L-LTP), spatial memory, and expression of the

AMPA receptor subunit GluA2. Furthermore, we show that

FXR1P binds to GluA2 mRNA and represses its translation

through a conserved GU-rich element in its 50 UTR. Interestingly,
the ability of FXR1P to repress GluA2 synthesis is unique to

FXR1P and is not a property of FXR2P or FMRP. Ultimately,

the loss of FXR1P-mediated GluA2 repression heightens activ-

ity-dependent synaptic delivery of GluA2, increasing its incorpo-

ration at potentiated synapses. Thus, FXR1P has a critical role in

limiting synaptic plasticity and memory storage in the brain, and

serves an unexpected divergent function among Fragile X pro-

teins in these processes.
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RESULTS

Characterization of FXR1P Conditional Knockout Mice
To investigate the role of FXR1P in the brain, we genetically

removed FXR1P from excitatory neurons in the forebrain of early

postnatal mice using a floxed Fxr1 line combined with the

aCaMKII-Cre T29-1 transgenic line (Sonner et al., 2005; Tsien

et al., 1996). Using a fluorescent reporter line, we found that

Cre-mediated recombination in CA1 cells started around

postnatal day 12 and was nearly complete by postnatal day 60

(Figure S1A). Recombination was not seen in cerebellar and

midbrain regions, as previously reported (Sonner et al., 2005).

To verify Cre-mediated loss of FXR1P from CA1 cells,

we labeled hippocampal sections from adult wild-type (WT),

FXR1P conditional heterozygous (cHET), and FXR1P conditional

knockout (cKO) mice with FXR1P and NeuN antibodies. This re-

vealed that FXR1P was lost from the majority of CA1 cells (Fig-

ure 1A). As expected, FXR1P was eliminated frommany neurons

in the cortex but was maintained in cerebellar Purkinje cells (Fig-

ures 1B and 1C). Using protein lysates from area CA1, we found

that FXR1P levels were reduced to 52% (cHET) and 15% (cKO)

of WT levels (Figure 1D).

Analysis of cKO mice showed that hippocampal anatomy was

unperturbed by the loss of FXR1P. This was shown by labeling

for neurons (NeuN) (Figure 1A), dendrites (MAP2), ribosomes

(P0), and astrocytes (GFAP) (Figure S1B). No changes in these

markers were observed, indicating that loss of FXR1P did not

change the overall cell morphology or organization. To deter-

mine whether synapse density and morphology were changed,

we labeled CA1 cells with DiI and analyzed spine density, size,

and shape in adult mice. This revealed that loss of FXR1P caused

a 15% reduction in spine density and an 8% decrease in spine

length without changing the head diameter or shape (Figures

S1C–S1G). Thus, loss of FXR1P reduces spine density and

length.

FXR1P cKO Mice Show Enhanced Long-Term Memory
Storage
To determine whether loss of FXR1P alters behavior, we tested

cKO mice on paradigms that assess basic motor/sensory func-

tion, anxiety, learning, and memory. cKO mice showed no defi-

cits in motor/sensory function or anxiety, as tested using the

open-field test and light/dark box (Figures S2A and S2B). Both

genotypes also performed equally well on strong and weak

contextual fear conditioning paradigms (Figure S2C; not shown)

and on the object recognition test (a test of working memory)

(Figure S2D). These results suggest that basic motor/sensory

function, anxiety, contextual fear memory, and working memory

are intact in cKO mice.

To test for a more specific role of FXR1P in spatial learning/

memory, we used a modified Morris water maze paradigm that

assesses learning, long-term memory storage, and behavioral

flexibility (Figure 2A). WT and cKO mice performed equally well

during the initial 5 training days (Figure 2A). However, during a

probe trial conducted 4 hr after the last training session, the

cKO mice spent more time in the target quadrant and crossed

the target platform location more often than the WT mice,

suggesting that they had acquired a better spatial memory of
ports 9, 1402–1416, November 20, 2014 ª2014 The Authors 1403



Figure 2. Loss of FXR1P Enhances Long-Term Memory and Behavioral Flexibility

(A) cKOmice perform similarly toWTmice in the learning trials of Morris water maze training (two-waymixed ANOVA [genotype, days], main effect days, F(4, 208) =

46.52, p < 0.001), retraining (two-waymixed ANOVA [genotype, days], p > 0.05), and reversal training (two-waymixed ANOVA [genotype, days], main effect days,

F(5, 180) = 24.73, p < 0.001).

(B and C) cKO mice perform better than WT mice on the probe test 4 hr after the third trial on training day 5.

(B) cKOmice spendmore time in the target quadrant comparedwith the average of all other quadrants (two-tailed paired t test, t(27) = 2.73, p = 0.01), whereasWT

mice do not (two-tailed paired t test, t(27) = 0.6784, p = 0.50).

(C) cKOmice cross the platform in the target zone more frequently than the platform in the opposite zone (two-tailed paired t test, t(27) = 2.79, p = 0.01), whereas

WT mice do not (two-tailed paired t test, t(27) = 0.79, p = 0.44).

(D and E) cKO mice have enhanced ability to recall long-term memories 9 days after the original 5 training days.

(D) cKO mice are faster at locating the hidden platform on the first trial of the first day of retraining (two-tailed unpaired t test, t(33) = 2.01, p = 0.05).

(E) cKO mice perform equally well on the first day of retraining (average of three trials) compared with their performance on the last day of the original learning

phase (average of three trials), whereas WT mice are slower (two-tailed unpaired t test, t(31) = 2.19, p = 0.04).

(F and G) cKO mice do not show a preference for the new platform location in the reversal probe test.

(F) WTmice cross the new platform locationmore often than the old platform location during the probe test (two-tailed paired t test, t(19) = 2.49, p = 0.02), whereas

cKO mice do not (two-tailed paired t test, t(19) = 0.92, p = 0.37).

(G) WT mice display a shorter latency to first cross for the new platform location versus the old platform location (two-tailed paired t test, t(19) = 2.40, p = 0.03),

whereas cKO mice show an equivalent latency to first cross of the reversal and original platform locations (two-tailed paired t test, t(19) = 0.57, p = 0.57).

Error bars show SE. *p % 0.05, **p % 0.01. See also Figure S2.
the platform location as compared with WT mice (Figures 2B

and 2C).

Consistent with the improved performance of cKO mice in the

probe test, when the mice were retested 9 days later, cKO mice

were faster thanWTmice at locating the platform. This improved

recall was demonstrated both by a reduction in escape latency

during the first trial of retraining (day 1; Figure 2D) and by differ-

ences in the average performance of themice on day 1 of retrain-

ing versus day 5 of the original training (Figure 2E). Thus, cKO

mice showed an enhanced ability to recall spatial memories.

Since disruption of general protein synthesis can alter behav-

ioral flexibility in spatial memory tasks (Hoeffer et al., 2008), we

tested whether cKO mice can learn and remember a new plat-
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form location. Mice from both genotypes similarly learned the

location of the new platform (Figure 2A). However, unlike WT

mice, cKO mice failed to shift their preference to the new plat-

form location during the reversal probe test (Figure 2F).

Measuring the average latency to the first platform crossing

further revealed that cKO mice showed an equal latency to first

crossing of the original and reversal platform locations, unlike

WT mice that immediately targeted the location of the reversal

platform (Figure 2G). Interestingly, in contrast to other mouse

mutants with disruptions in mRNA translation machinery, cKO

mice did not display perseverative behavior during the learning

phases or probe test (Hoeffer et al., 2008; Trinh et al., 2012),

but in fact showed equal preferences for the original and reversal
hors



platform locations. Together, these results indicate that FXR1P

cKO mice have enhanced spatial memory without perseverative

behaviors.

FXR1P cKO Mice Display a Specific Enhancement in
L-LTP
Alterations in spatial memory are associated with changes in

the function and plasticity of excitatory synapses in hippocam-

pal area CA1. To determine whether cKO mice have altered

synaptic function and plasticity that may affect learning and

memory processes, we conducted a series of electrophysi-

ology experiments. We recorded field potentials in the stra-

tum radiatum and found no differences in the input-output

relationship or paired-pulse ratio (a measure of presynaptic

release probability; Dobrunz and Stevens, 1997) between

genotypes (Figures 3A and 3B), indicating that cKO mice

have normal basal synaptic strength and short-term plasticity,

respectively.

We next tested cKO slices for their ability to establish and

maintain both protein-synthesis independent (early-phase LTP

[E-LTP]) and protein synthesis-dependent forms of synaptic

plasticity (L-LTP, mGluR-LTD) (Kelleher et al., 2004). We

induced E-LTP in WT and cKO slices using a single train of

high-frequency stimulation (HFS; 1 3 100 Hz). We found that

E-LTP was similar in both genotypes (Figure 3C). However,

when we induced L-LTP by delivering four trains of HFS sepa-

rated by a 20 s interval (4 3 100 Hz) (Scharf et al., 2002), we

found that L-LTP was increased at both 20–30 min and 3 hr

post-HFS in the cKO (Figures 3D and 3E). To test whether

the loss of FXR1P has a general effect on protein synthesis-

dependent long-term plasticity, we tested for DHPG-induced

mGluR-LTD (Huber et al., 2002). However, cKO mice showed

normal mGluR-LTD (Figure 3F). Thus, loss of FXR1P specifically

enhanced L-LTP, a form of plasticity that depends on new

protein synthesis, without perturbing E-LTP or mGluR-depen-

dent LTD.

Increased Translation of GluA2 in FXR1P cKO Mice
Since FXR1P is detected in polyribosome fractions in mouse

brain and localized with translation machinery at or near spines

in neurons (Cook et al., 2011; Figure S3), we screened for

changes in expression of molecules involved in protein transla-

tion and synaptic development/function in cKO mice. Impor-

tantly, probing hippocampal lysates showed that loss of

FXR1P did not affect the levels of its paralogs, FMRP and

FXR2P (Figure 4A). Consistent with immunolabeling for ribo-

somal protein P0 (Figure S1B), we also did not see changes in

expression of eIF4E, a cap-binding subunit of the eIF4F complex

that recruits mRNA to the ribosome (Hershey et al., 2012), or

Argonaute 2 (AGO2), a component of the RNA-induced silencing

complex (RISC). Neither Talin 2 nor desmoplakin, which are

known to be altered in cardiac tissue of full FXR1P KO mice,

were changed (Figure S4; Whitman et al., 2011). Blotting for

vGlut1, PSD95, aCaMKII, and PKMzeta showed that levels

of these synaptic proteins were also unaltered in cKO mice

(Figure 4A).

Intriguingly, loss of FXR1P resulted in a significant increase

in expression of the AMPAR subunit GluA2. This increase was
Cell Re
specific for GluA2, as no changes in the levels of GluA1,

GluA3, or the NMDAR subunit GluN1 were found (Figure 4A).

To determine whether the FXR1P paralogs FXR2P and FMRP

regulate GluA2 in a similar manner, we probed hippocampal

lysates from FXR2P and FMRP KO mice. Unexpectedly, we

observed a decrease in GluA2 in FXR2P KO mice that was

not due to a compensatory change in FXR1P expression (Fig-

ure 4B). No alterations in GluA2 or FXR1P were detected in

hippocampal lysates from FMRP KO mice (Figure 4B). These

findings show that FXR1P reduces expression of GluA2 and

indicate an intriguing divergence in the regulation of GluA2 by

Fragile X-related proteins.

To determine whether GluA2 upregulation in FXR1P cKOmice

was due to a change in transcription/stability of GluA2mRNA,we

quantified GluA2 mRNA (Gria2) levels using real-time quantita-

tive RT-PCR (qRT-PCR). As expected, Fxr1 mRNA levels were

reduced by 50% in the hippocampus of cKO mice, but not the

cerebellum, whereas equivalent levels of Gria2 (GluA2) and

Grin1 (GluN1) mRNAs were found in cKO and WT mice (Fig-

ure 4C). This suggests that the elevation in GluA2 protein expres-

sion was not due to an increase in GluA2 mRNA transcription or

stability.

To investigate whether the increase in GluA2 in cKO mice

was due to increased mRNA translation, we used the sur-

face sensing of translation (SUnSET) method (Schmidt et al.,

2009). This method quantifies newly synthesized proteins by

tagging them with puromycin. When we quantified total puro-

mycin incorporation over a period of 45 min, we found no sig-

nificant difference in global protein synthesis between geno-

types (Figure 4D). However, immunoprecipitation (IP) of GluA2

and blotting for puromycin demonstrated a 59% increase in

newly synthesized GluA2 in cKO mice (Figure 4E). This increase

in GluA2 translation in cKO mice without a concomitant change

in GluA2 mRNA abundance indicates that FXR1P represses

(directly or indirectly) the translation of GluA2 mRNA in the

brain.

FXR1P Represses mRNA Translation through a GU-Rich
Element in the GluA2 50 UTR
The long isoforms of GluA2mRNA, which account for at least half

of the GluA2 transcripts across various regions of the rat brain,

are translationally repressed by elements within their 50 UTR
and 30 UTR (Irier et al., 2009). However, the molecular events

that control this repression are unknown. To test whether

FXR1P is a mediator of GluA2 repression, we overexpressed

FXR1P with eGFP reporter constructs containing either the 50

or 30 UTR of GluA2 in 293T cells and monitored eGFP protein

levels (La Via et al., 2013; Figure 5A). Although FXR1P had no ef-

fect on eGFP expression from a control construct (Figure 5B), it

significantly reduced expression of eGFP when the construct

contained the 50 UTR, but not the 30 UTR, of GluA2 (Figure 5C).

qRT-PCR experiments showed that FXR1P did not affect the

levels of mRNAs from 50 UTR and 30 UTR eGFP constructs (Fig-

ure S5), indicating that FXR1P specifically regulates translation

of the GluA2 50 UTR reporter.

Myers et al. (2004) identified a GU-rich sequence within the 50

UTR of long isoforms of GluA2 mRNA that they termed the

‘‘translation suppression domain.’’ This sequence is predicted
ports 9, 1402–1416, November 20, 2014 ª2014 The Authors 1405



Figure 3. FXR1P cKO Mice Show a Specific Enhancement in L-LTP

(A) Left: input-output curve showing synaptic responses upon increasing stimulation intensities for WT and cKO mice. Right: representative traces fromWT and

cKO mice.

(B) Left: paired-pulse facilitation (PPF) is normal in cKO mice (two-way mixed ANOVA, genotype 3 interstimulus interval, F(3,39) = 0.44, p = 0.73). Right: repre-

sentative traces at a 50 ms interval.

(C) Left: E-LTP induced by a single train of HFS (13 100 Hz) is normal in cKOmice (n = 8 mice, 9 slices, from 4 litters; analysis at 50–60 min post-HFS, two-tailed

unpaired t test, t(15) = �0.38, p = 0.71). Right: traces representing (1) 5 min of baseline immediately preceding HFS and (2) the period from 55–60 min post-LTP.

(D) Left: four trains of HFS delivered at 20 s intervals (HFS: 43 100 Hz) produce higher levels of potentiation in cKO animals (n = 7mice, 7 slices, from 5 litters) than

WT animals. Right: traces representing (1) 5 min of baseline immediately preceding HFS and (2) the period from 175–180 min post-LTP.

(E) L-LTP, measured at 20–30 min and 170–180 min post-HFS, is greater in cKO (two-tailed unpaired t tests, t(7) = 2.65, p = 0.03 and t(9) = 2.24, p = 0.05,

respectively).

(F) Left: mGluR-dependent LTD is unchanged in cKO mice (two-tailed, unpaired two-sample t test, p = 0.86). Right: traces representing (1) 5 min of baseline

immediately preceding bath application of DHPG (100 mM, 7–8 min) and (2) the period from 55–60 min after DHPG administration. Error bars show SE. Traces

show an average of approximately 5–10 sweeps.
to form a stem-loop structure that suppresses GluA2 translation

initiation. To determine whether FXR1P uses this sequence to

repress GluA2 translation, we deleted the GU-rich element

from the 50 UTR and repeated the experiments above. Remark-

ably, loss of the GU-rich element prevented FXR1P from both re-
1406 Cell Reports 9, 1402–1416, November 20, 2014 ª2014 The Aut
pressing translation (Figure 5D) and binding to the GluA2 50 UTR
(Figure 5E).

To understand whether repression of GluA2 translation is spe-

cific for FXR1P, we repeated the experiments with FXR2P and

FMRP. Surprisingly, we found that FXR2P enhanced eGFP levels
hors



when either the 50 or 30 UTR was present (Figure 5F), whereas

FMRP did not alter translation of eGFP (Figure 5G). These results

agree with the FXR2P and FMRP KO data presented in Figure 4,

suggesting that FXR1P represses expression of GluA2, whereas

FXR2P promotes it. Together, our results uncover a divergent

role of FXR1P (compared with FXR2P and FMRP) in repressing

GluA2 translation.

Basal Surface Levels of GluA2 in FXR1P cKO Mice Are
Unchanged
GluA2 is a transmembrane receptor that has functional properties

at the cell surface. We next determined whether the overall in-

crease in GluA2 expression in cKO mice caused a change in its

surface level by performing surface biotinylation assays in hippo-

campal slices. Remarkably, the steady-state cell-surface levels

of GluA2 were similar between genotypes (Figure 6A), consistent

with the unaltered AMPAR-mediated field potentials in cKO mice

(Figure 3A). Together, these results indicate that cKO mice have

normal basal surface levels of GluA2 and a potential increase in

intracellular GluA2 receptor subunits.

Activity-Dependent GluA2 Synthesis Is Intact in FXR1P
cKO Mice
To determine whether loss of FXR1P alters the activity-

driven increases in GluA2 translation seen during protein synthe-

sis-dependent synaptic plasticity (Nayak et al., 1998), we sub-

jected slices from both genotypes to forskolin-induced chemical

LTP (cLTP; +forskolin, low Mg2+), which reliably induces long-

lasting synaptic potentiation that occludes electrically evoked

L-LTP (Huang and Kandel, 1994; Otmakhov et al., 2004). As ex-

pected from other LTP studies, phosphorylation of serine 845

(pS845) on GluA1, a PKA phosphorylation site that is known to

promote GluA1 trafficking to perisynaptic and extrasynaptic

sites (Lee et al., 2000; Man et al., 2007; Oh et al., 2006), was

significantly enhanced in WT and cKO slices upon cLTP (Fig-

ure S6A). Interestingly, we found that pS845 levels were signifi-

cantly elevated in cKO slices even under basal conditions (Fig-

ure S6A). We next applied the SUnSET method to test whether

cLTP-driven expression of de novo GluA2 was altered in cKO

mice. Consistent with the results in Figure 4E, cKO slices

showed a basal increase in de novo GluA2 (Figure 6C). Despite

this basal increase, we found that cLTP caused an increase in

GluA2 synthesis in both WT and cKO slices, and post-cLTP de

novo GluA2 levels were similar between the genotypes (Fig-

ure 6C). Control experiments showed that neither cLTP nor

loss of FXR1P resulted in an unspecific change in protein synthe-

sis as monitored by GAPDH production (Figure S6B). These

results show that overall activity-dependent de novo GluA2

translation is not altered in cKO mice and is unlikely to account

for the differences in L-LTP.

Loss of FXR1P Increases cLTP-Driven Synaptic
Incorporation of De Novo GluA2
Despite increased steady-state GluA2 expression in the cKO

mice, we failed to detect significant cLTP-induced differences

between the genotypes that may enhance L-LTP in cKO mice.

This may be due to the fact that the experiments did not discrim-

inate between subcellular compartments in neurons. To address
Cell Re
this issue, we developed a method to investigate GluA2 expres-

sion at synapses using synaptosomal preparations (Figure S7A)

combined with cLTP, SUnSET labeling, and IP/coimmunopreci-

pitation (coIP) techniques on acute slices. Based on our L-LTP

and biochemistry results, we hypothesized that cKOmice would

show enhanced cLTP-driven delivery of GluA2 subunits to syn-

apses during an early stabilization phase of LTP (<1 hr). Thus,

we tagged de novo translated GluA2 subunits with puromycin

to monitor the translocation efficiency of GluA2 subunits to syn-

apses. We found that newly synthesized GluA2 showed similar

baseline incorporation into synapses in WT and cKOmice within

45 min (Figure 6D). This result corresponds well with our data

indicating equal amounts of surface GluA2 in both genotypes un-

der basal conditions (Figure 6A). However, de novo synthesized

GluA2 subunits showed enhanced synaptic incorporation in cKO

slices within 45 min after cLTP (Figure 6D). Enhanced synaptic

GluA2 was corroborated by an increase in surface GluA2 in

cKO slices upon cLTP (Figure S7B). This increase was specific

to GluA2, as delivery of de novo GluN1 remained similar between

the genotypes (Figure 6E). Interestingly, we also found that inWT

slices, FXR1P levels were significantly reduced from both crude

and synaptic fractions 45 min after cLTP, suggesting that native

FXR1P protein can be dynamically regulated in WT neurons by

activity (Figures S7C and S7D). Altogether, these results indicate

that FXR1P controls the amount of GluA2 subunits that are

selectively mobilized to synapses upon long-lasting synaptic

plasticity.

FXR1P Controls AMPAR Composition at Potentiated
Synapses
GluA1andGluA2comprise themajority ofAMPARsubunits at hip-

pocampal synapses (�80%; Lu et al., 2009) and GluA2 synaptic

incorporation is critical for L-LTP (Migues et al., 2010; Yao et al.,

2008). Given the enhanced activity-dependent delivery of GluA2

to synapses in the absence of FXR1P, we investigated whether

AMPAR composition was changed at synapses in cKO mice.

For this purpose, we coimmunoprecipitated GluA2 and GluA1

subunits fromsynaptosomes (Kanget al., 2012).Underbasal con-

ditions, comparable amounts of GluA2- and GluA1-containing

AMPARs were coprecipitated with GluA2 and GluA1, respec-

tively. This suggests a similar AMPAR composition at baseline in

both genotypes (Figures 7A and 7B). However, following cLTP,

significantly more GluA2 subunits coprecipitated with GluA2 in

the cKO as compared with the WT mice, indicating that loss of

FXR1Pbolsters GluA2-GluA2 association (Figure 7A). The inverse

casewas found forGluA1 in thecKO,where IPofGluA1 resulted in

less GluA1-containing AMPA receptors (Figure 7B). These

changes were specific for AMPARs, as GluN1-containing synap-

tic complexes were unaffected in cKO mice (Figure S7E). These

results suggest that FXR1P favors an increase in GluA2 over

GluA1 subunits at synapses in cKO mice following cLTP.

To further dissect the composition of AMPARs at synapses in

cKO mice following cLTP, we determined the relative amount of

GluA1 that coassociated with GluA2, and vice versa, by either

GluA2 IP and blotting for GluA1 or GluA1 IP and blotting for

GluA2. Both IP combinations showed reduced association of

GluA1 with GluA2 at synapses of cKO slices following cLTP

(Figures 7C and 7D). To discriminate whether this reduced
ports 9, 1402–1416, November 20, 2014 ª2014 The Authors 1407



Figure 4. Enhanced GluA2 Translation in FXR1P cKO Mice

(A) Top: analysis of Fragile X family proteins, molecules involved in protein synthesis, and synaptic proteins in WT and cKO mice (four pairs of animals). Most

proteins are similarly expressed in both genotypes (two-tailed, one-sample t tests; p > 0.05) with the exception of GluA2 (two-tailed, one-sample t test; p = 0.02).

Each blot was run two to three times and values were averaged.

(legend continued on next page)
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Figure 5. FXR1P Represses Translation

through a GU-Rich Element in the GluA2

50 UTR
(A) Constructs used in GluA2 reporter assay;

eGFP, eGFP with the GluA2 50 UTR (�433 to 1),

eGFP with the 50 UTR GU-rich element removed

(D50 UTR (�356 to 1)), and eGFP with the GluA2 30

UTR (+2,524 nt).

(B) FXR1P does not affect expression of eGFP

alone (p = 0.62).

(C) FXR1P represses expression from the GluA2 50

UTR-eGFP (p = 0.004), but not the GluA2 eGFP-30

UTR construct (p = 0.84).

(D) Deletion of the GU-rich element relieves

FXR1P-mediated repression.

(E) Loss of the GU-rich element prevents binding

of FXR1P to the 50 UTR of GluA2.

(F) FXR2P increases eGFP expression from

constructs containing either the GluA2 50 UTR

(p = 0.02) or 30 UTR (p = 0.05).

(G) FMRP does not regulate expression from either

construct (p > 0.05).

Analyses were performed using two-tailed, one-

sample t tests. n = 3–4 separate cultures and

transfections. Error bars show SE. *p% 0.05; n.s.,

not significant. See also Figure S5.
GluA1-GluA2 association was due to an enrichment of GluA2-

GluA2 interactions and/or caused by a reduced amount of total

synaptic GluA1, we probed unbound synaptic fractions following

GluA1 or GluA2 IP (Sans et al., 2003). Blotting the unboundGluA2

IP fraction for GluA1 showed that GluA1 was not depleted from

the input (Figure 7E), and in fact showed similar levels between

genotypes. These results indicated that the cLTP-induced
(B) Top: blots of hippocampal lysates from WT and FXR2P KO mice showing levels of GluA2, FXR1P, and G

t test, p = 0.05; n = 3 WT/3 FXR2P KO mice) and FXR1P is unchanged in FXR2P KO mice (two-tailed, one-sam

blots of hippocampal lysates from WT and FMRP KO mice showing levels of GluA2, FXR1P, and GAPDH. G

(two-tailed, one-sample t test, p > 0.05; n = 3 WT/3 FMRP KO mice).

(C) qRT-PCR shows that Fxr1 mRNA levels are reduced in hippocampal lysates from FXR1P cKO mice (two-

WT/4 cKOmice from 3 litters). The mRNA levels ofGria2 (GluA2) andGrin1 (GluN1) are unchanged (two-tailed

cKO mice). Fxr1 mRNA levels are unaltered in the cKO cerebellum (two-tailed, unpaired two-sample t test, p

(D) Puromycin-labeled lysates from WT and cKO mice in the presence or absence of CHX. No differences in

genotypes (p > 0.05; n = 3 WT/3 cKO mice).

(E) IP for GluA2 shows increased puromycin-labeled GluA2 in slices from cKO mice, indicating enhanced G

Unless otherwise stated, statistical analyses were performed using two-tailed, one-sample t tests. Error bars

not significant. See also Figures S3 and S4.

Cell Reports 9, 1402–1416, No
increase in GluA2-containing synaptic

AMPARs in cKO slices was due to prefer-

ential GluA2-GluA2 associations. Impor-

tantly, blotting the unbound fraction for

GluA2 showed that GluA2 was abundant

in samples from both genotypes, con-

firming that the change in GluA2-GluA2

association following cLTP was not

caused by an IP-mediated depletion

of GluA2 from WT slices (Figure 7F).

In contrast to these findings, GluA1 IP

caused a depletion of GluA1 from the

unbound fractions from inputs for both

genotypes (Figure 7G). This suggests
that the reduction inGluA2 coprecipitatingwithGluA1 (Figure 7D)

is related to decreased GluA1-containing AMPARs at synapses

in cKO slices upon cLTP. Blotting the GluA1 IP unbound fraction

for GluA2 showed an increase in residual synaptic GluA2 from

cKO slices (Figure 7H). These results demonstrate that FXR1P

regulates GluA2 incorporation at potentiated synapses and con-

trols activity-dependent changes in AMPAR composition.
APDH. GluA2 is reduced (two-tailed, one-sample

ple t test, p = 0.26; n = 3 WT/3 KO mice). Bottom:

luA2 and FXR1P are unchanged in FMRP KO mice

tailed, unpaired two-sample t test, p = 0.005; n = 3

, unpaired two-sample t tests, p > 0.05; n = 3WT/4

> 0.05; n = 3 WT/3 cKO mice from 3 litters).

overall puromycin labeling are detected between

luA2 translation (p = 0.002; n = 3 WT/3 cKO mice).

show SE. ***p% 0.001, **p% 0.01, *p% 0.05; n.s.,
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Figure 6. FXR1P Controls Activity-Dependent

Synaptic Delivery of GluA2

(A) Basal surface GluA2 levels are similar between

genotypes (p = 0.66; n = 3 WT/3 cKO mice). Only low

levels of GAPDH were biotinylated during the surface

labeling process and purified with streptavidin (SA) beads

(GAPDH background).

(B) Time course for cLTP experiments.

(C) cKO slices show increased basal de novo synthesis of

GluA2 (p = 0.04). Both WT and cKO slices increase GluA2

synthesis upon cLTP (WT: p = 0.02; cKO: p = 0.05; two-

tailed, unpaired, two-sample t test).

(D) cKO slices show increases in GluA2 synaptic delivery

following cLTP (n = 3 WT/3 cKO mice; p = 0.01).

(E) GluN1 synaptic delivery is similar between genotypes

(n = 3 WT/3 cKO mice; p > 0.05).

Unless otherwise stated, statistical analyses were per-

formed using two-tailed, one-sample t tests. Error bars

show SE. **p% 0.01, *p% 0.05; n.s., not significant. See

also Figure S6.
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Figure 7. FXR1P Controls Activity-Dependent AMPAR Composition

(A) cKO slices show increases in GluA2-containing AMPARs at synapses following cLTP (n = 3 WT/3 cKO mice; p = 0.03).

(B) cKO slices show decreases in GluA1-containing AMPARs at synapses following cLTP (n = 3 WT/3 cKO mice; p = 0.002).

(C and D) cKO slices show decreases in association of GluA1 with GluA2 following cLTP in cKO slices (n = 3WT/3 cKOmice; p = 0.04 and p = 0.01, respectively).

(E–H) Blotting unbound fractions from coIPs (C and D) show the amount of residual GluA1 and GluA2 molecules.

(I and J) cKO slices preincubated with myristoylated Pep2m show a significant reduction in potentiation at 20–30 min after L-LTP induction (WT (± pep2m):

p = 0.36; cKO (± pep2m): p = 0.04, two-tailed, unpaired t tests).

Unless otherwise stated, statistical analyses were performed using two-tailed, one-sample t tests; *p % 0.05; n.s., not significant. See also Figure S7.
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Given these biochemical changes at cKO synapses, we

sought to determine whether increased trafficking/stabilization

of GluA2-containing receptors to synapses contributes to

elevated L-LTP (Figures 3D and 3E). To that end, we preincu-

bated WT and cKO slices with myr-Pep2m, a cell-permeable

peptide that blocks GluA2 subunit trafficking and stabilization

at synapses by disrupting GluA2-NSF interactions (Nishimune

et al., 1998; Yao et al., 2008) and repeated the L-LTP experi-

ments. Remarkably, preincubation of slices with myr-Pep2m

caused a significant reduction in L-LTP in cKO slices, but not

in WT slices (Figures 7I–7K). Thus, enhanced trafficking or stabi-

lization of GluA2-containing receptors at synapses contributes

to elevated L-LTP in cKO mice.

DISCUSSION

For long-term synaptic plasticity andmemory formation to occur

properly, new proteins must be synthesized in a temporally and

spatially precisemanner in response to specific patterns of activ-

ity, a process that is tightly controlled at the level of mRNA trans-

lation. We have identified the RNA-binding protein FXR1P as a

key player in controlling specific aspects of synaptic protein

expression, synaptic plasticity, and memory formation. Loss of

FXR1P enhances synthesis of GluA2, increases delivery of

GluA2 to potentiated synapses, heightens L-LTP, and improves

long-term memory storage. Mechanistically, FXR1P utilizes the

GU-rich element in the GluA2 50 UTR to repress translation.

These findings define amolecular pathway that regulates distinct

features of synaptic plasticity and cognitive function.

This study also addresses a long-standing issue in the protein

translation field regarding how the three Fragile X protein family

members (FMRP, FXR1P, and FXR2P) functionally relate to

each other (Bontekoe et al., 2002). All three proteins associate

with polyribosomes and messenger ribonucleoprotein particles

(mRNPs), are found at spines, and are expressed in similar pat-

terns in the brain, raising the question as to whether they perform

redundant functions (Cook et al., 2014; Tamanini et al., 1997,

2000). However, until now, nothing was known about the

mRNA targets of FXR1Por its role in the brain.Weprovide several

lines of evidence demonstrating the functional divergence of

FXR1P from FMRP and FXR2P in synaptic plasticity, behavior,

spine development, and GluA2 translational control. First,

whereas FMRP and FXR2P function predominantly in hippocam-

pal mGluR-LTD (Zhang et al., 2009), FXR1P participates selec-

tively in L-LTP. Second, FXR1P cKO mice display improved

long-term spatial memory, whereas FMRP and FXR2P KO ani-

mals show memory impairments (Bontekoe et al., 2002; Kooy

et al., 1996). Third, lossof FXR1P reduces spinedensity andspine

size, whereas loss of FMRP increases spine density and length.

Lastly, FXR1P represses GluA2 translation, whereas FXR2P en-

hances it andFMRPhasnomajor effect.Overall, ourwork reveals

a unique function for FXR1P and offers a clear demonstration of

thedifferential role of Fragile Xproteins in brain plasticity. In future

studies, it may be of interest to explore the combinatorial role of

this family ofmRNA-binding proteins in plasticity by using double

cKO models of FXR1P/FMRP and FXR1P/FXR2P.

An intriguing finding is the specificity of the FXR1P cKO behav-

ioral phenotype. Although cKO mice performed normally in the
1412 Cell Reports 9, 1402–1416, November 20, 2014 ª2014 The Aut
majority of behavioral paradigms, they demonstrated a specific

improvement in long-term spatial memory and alteration in

behavioral flexibility. Most revealing is the observation that

cKOs showed greater long-term memory recall 9 days after the

initial training and a similar preference for new and old platform

locations during the reversal probe test, suggesting that cKO

mice maintain stronger memories that allow them to keep multi-

ple memories ‘‘online’’ when performing a task. This phenotype

is striking considering that mutant mice with alterations in gen-

eral protein synthesis pathway components commonly show

impairments in long-term memory (Costa-Mattioli et al., 2005,

2007; Kelleher et al., 2004) or, in some cases, increased persev-

erative behavior (Hoeffer et al., 2008; Trinh et al., 2012). The fact

that cKOmice readily learn a new platform location suggests that

they do not perseverate in this task; rather, they maintain and

retrieve multiple spatial memory traces and are able to more

rapidly and efficiently shift between memory stores based on

changing performance demands (i.e., platform removal during

the reversal probe trial). By constraining the magnitude of long-

lasting increases in synaptic strength, FXR1P may control the

extent of information storage in brain circuits.

Remarkably, among the synaptic proteins we screened,

FXR1P only affected the protein synthesis of GluA2. This is sur-

prising in light of the fact that FMRP binds �800 brain mRNAs

(Darnell et al., 2011), associates with diverse RNA cargoes (As-

cano et al., 2012; Miyashiro et al., 2003), and controls translation

initiation of multiple targets through eIF4E (Napoli et al., 2008).

Although we cannot rule out the possibility that FXR1P also reg-

ulates other proteins, GluA2 is an interesting target because it is

present at the majority of brain excitatory synapses, confers cal-

cium impermeability to AMPARs, and is critical for long-lasting

synaptic plasticity and spatial memories (Isaac et al., 2007;

Migues et al., 2010; Yao et al., 2008). Furthermore, GluA2 is

known to be regulated at the level of mRNA translation, although

exactly how this is accomplished is unknown. Our results indi-

cate that FXR1P binds and represses translation of transcripts

with the long 50 UTR of GluA2 containing a GU-rich element

that is predicted to form a stem-loop structure that interferes

with translation initiation (Myers et al., 2004). Notably, this GU-

rich repeat is present in human GluA2 transcripts, causing a

2.5- to 3-fold reduction in GluA2 translation efficiency (Myers

et al., 2004). Translational control of GluA2 mRNA through the

GU-rich sequence by FXR1P may be a conserved mechanism

for carefully titrating the amount of long-lasting synaptic plas-

ticity and memory storage in the brain.

Interestingly, a basal increase in GluA2 mRNA translation in

FXR1P cKO mice is not accompanied by baseline increases in

its surface levels, synaptic incorporation, or synaptic transmis-

sion. This indicates that neurons in cKOmice have a larger inter-

nal reserve of GluA2 that is specifically mobilized to synapses

during protein synthesis-dependent plasticity such as L-LTP.

Baseline phosphorylation of GluA1 S845, but not total levels of

GluA1, is also enhanced in cKOmice. The reason for this modifi-

cation is unclear. However, as pS845 promotes trafficking of

GluA1-containing AMPARs to extrasynaptic and perisynaptic

sites, this alteration in cKO mice may further promote the

exchange of GluA2 for GluA1 at synapses and increase the ability

of GluA2-containing AMPARs to compete for synaptic territory
hors



during L-LTP.Remarkably, theenhancement in synaptic strength

in the cKO mice is revealed only by a strong stimulus that elicits

protein synthesis-dependent L-LTP, and not by a stimulus that

promotes E-LTP. Thus, the activity-dependent production or

modification of facilitatory proteins is still required to mobilize

the reserve pool of GluA2 to synapses. Furthermore, elevations

of L-LTP in cKOmice can be suppressed by blocking GluA2 traf-

ficking or stabilization at the synapse with myr-Pep2m, a peptide

that blocks GluA2-NSF interactions. This result further supports

the increased role played by GluA2-containing receptors in L-

LTP. The increased size of the GluA2 reserve pool in cKO mice

may enable more rapid stabilization of L-LTP and better mainte-

nance of memories (Kelz et al., 1999; Migues et al., 2010; Yao

et al., 2008). These findings align with discoveries showing that

the size of the AMPAR reserve pool is important for LTP (Granger

et al., 2013) and provide an in vivo demonstration of an endoge-

nous GluA2 gain-of-function effect on synaptic properties. Inter-

estingly, SNPs inglutamate receptor interactingprotein 1 (GRIP1)

that promote GluA2 surface stabilization in neurons are associ-

ated with autism (Mejias et al., 2011), further implicating synaptic

GluA2 levels in regulating cognitive function. Future studies will

need to dissect the molecular network surrounding FXR1P and

further elucidate its role in modifying brain plasticity states.

EXPERIMENTAL PROCEDURES

Animals

Experiments were approved by the Montreal General Hospital Facility Animal

Care Committee and followed the guidelines of the Canadian Council on Ani-

mal Care. Both male and female mice were used for experiments. All mice

were kept on a standard 12 hr light/dark cycle and socially housed (n = 2–5

animals per cage).

FXR1P cKO Mice

Floxed Fxr1mice (Fragile-XMutantMouse Facility, Baylor College ofMedicine)

were crossed into the aCaMKII-Cre T29-1 Cre-recombinase driver line (The

Jackson Laboratory) (Sonner et al., 2005; Tsien et al., 1996). Experimental an-

imals were generated by crossing aCaMKII-Cre tg/tg; Fxr1 fl/+ mice with Fxr1

fl/+ mice to generate aCaMKII-Cre tg/+; Fxr1 fl/fl (FXR1P cKO), aCaMKII-Cre

tg/+; Fxr1 fl/+ (FXR1P cHET), and aCaMKII-Cre tg/+; Fxr1 +/+ (WT). These lines

were backcrossed into C57BL/6 for at least ten generations. To track cells that

had undergone Cre-mediated recombination, we crossed aCaMKII-Cre tg/tg;

Fxr1 fl/+ mice with the mTom/mGFP reporter line (The Jackson Laboratory)

(Muzumdar et al., 2007). The reporter line was backcrossed into a C57BL/6

background for at least five generations.

FMRP and FXR2P KO Mice

Whole hippocampal tissue from C57BL/6 background Fmr1 KO and Fxr2

KO adult mice (>7 weeks old) was provided by the David L. Nelson laboratory.

Lysates were prepared and processed for western blotting as previously

described (Cook et al., 2011).

Plasmids

The 50 UTR (�433-1) and 30 UTR (+2524nt) GluA2 eGFP constructs were

described previously (La Via et al., 2013). The 50 UTR GU mutant (deletion of

65 bases from�429 to�365 containing the GU-repeat region) was generated

using the existing restriction sites BssHII and NheI as described previously

(Irier et al., 2009).

Immunohistochemistry, DiI Labeling of CA1 Dendrites, and Imaging

Perfusion, cryostat sectioning, and imaging were performed as previously

described (Cook et al., 2011). See Supplemental Experimental Procedures

for details on DiI labeling and antibodies.
Cell Re
Whole Hippocampal and CA1 Lysates and Western Blotting

Whole hippocampal and CA1 lysates were prepared and processed for

western blotting as previously described (Cook et al., 2011). See Supplemental

Experimental Procedures for details on the antibodies used.

Polysome Fractionation

Experiments were performed on 13- to 16-week-old mice as previously

described (Gandin et al., 2014). EDTA (200 mg/ml) was added to the lysis buffer

to disrupt polysomes.

Behavior

Behavioral assessments were performed between 9:00 a.m. and 3:00 p.m. on

2- to 6-month-old mice by an investigator blind to genotype. A period of accli-

matization to the environment (10–15 min) preceded all experiments. Four

separate cohorts of mice were tested on the Morris water maze, object-recog-

nition test, and fear-conditioning tests (in that order), with at least 72 hr

between the beginning and end of each new paradigm. Mice from cohorts 3

and 4 were subsequently used in field recording experiments. Mice that

were tested in both the open-field and dark/light box tests were allowed at

least 1 week between the two behavioral paradigms. Besides the differences

in behavioral phenotypes reported in Figure 2, no other phenotypic changes

were observed. See Supplemental Experimental Procedures for additional

details regarding each of the behavioral paradigms used.

Electrophysiology

Standard procedures were used for field excitatory postsynaptic potential

(fEPSP) recordings. Mice (5–9 months old, used previously in behavioral

testing) were anesthetized with isoflurane and quickly decapitated. The whole

brain was immersed in ice-cold ACSF (in mM: NaCl 124, KCl 3, NaH2PO4 1.25,

CaCl2 2, MgSO4 1, NaHCO3 26, D-Glucose 10) and saturated with 95%O2/5%

CO2. Coronal slices (300–400 mm thick) were cut with a Leica VT1200S and

transferred to a submersion chamber containing regular ACSF at a tempera-

ture of 32–37�C for 25–30 min, after which the chamber was placed on the

bench at room temperature. The slices were allowed to recover in the submer-

sion chamber for at least 4 hr (Sajikumar et al., 2005). After the recovery period,

the slices were transferred to a submersion chamber mounted on an electro-

physiology rig, perfused with regular ACSF (3 ml/min), and maintained at

28�C–31�C. Field synaptic responses were evoked by stimulating Schaffer

collaterals with 0.1 ms pulses delivered at 0.033–0.067 Hz and recorded

extracellularly in CA1 stratum radiatum. Input-output curves were generated

by stimulation at different intensities (n = 18 WT mice from 11 litters, n = 19

cKO mice from 11 litters). For all subsequent experiments, the stimulation in-

tensity was set to elicit an fEPSP with a slope that was approximately 40% of

the maximum obtained slope. Paired-pulse facilitation was determined by

delivering pulses at varying interpulse intervals (n = 7 WT mice from 6 litters,

n = 8 cKO mice from 6 litters). E-LTP was induced with a single train of HFS

(1 3 100 Hz) using the baseline stimulation intensity (n = 10 mice, 12 slices,

from 5 litters). L-LTP was induced using four trains of HFS with a 20 s interval

(4 3 100 Hz) using baseline stimulation intensity (n = 7 mice, 7 slices, from 5

litters). For mGluR-LTD induction, slices from 5- to 9-week-old mice were

perfused for 7–8 min with DHPG (100 mM) and the initial stimulation was

kept at 0.5 mV (n = 4 mice, 8 slices for WT; n = 6 mice, 8 slices for cKO). For

GluA2-NSF disruption experiments, slices from 3.5- to 6-month-old mice

were incubated for at least 1 hr with myristoylated-pep2m (100 mM; Tocris)

in ACSF and then switched to normal ACSF for baseline recordings and L-

LTP (n = 5 mice, 5 slices for WT control; n = 4 mice, 7 slices for WT pep2m,

n = 4mice, 5 slices cKO control; n = 5mice, 5 slices for cKOpep2m). To reduce

the possibility of rundown of basal responses by pep2m, test stimulationswere

given every 15 s as described previously (Yao et al., 2008).

Real-Time qRT-PCR

Standard methods were used for qRT-PCR. More information on qRT-PCR

can be found in Supplemental Experimental Procedures.

GluA2 Reporter Assays and FXR1P Binding to the GluA2 50 UTR
For information on GluA2 reporter assays and FXR1P binding to the GluA2 50

UTR, see Supplemental Experimental Procedures.
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SUnSET Labeling of Newly Synthesized Proteins and IP Assays

Adult mice (>12 weeks old) were deeply anesthetized with isoflurane in an

enclosed chamber and decapitated. The brain was quickly removed and

immersed in ice-cold ACSF containing (in mM) 119 choline-Cl, 2.5 KCl, 4.3

MgSO4, 1.0 NaH2PO4, 1.0 CaCl2, 1.30 Na-ascorbate, 11 glucose, and 26.2

NaHCO3, continuously bubbled with 95% O2 and 5% CO2 (pH 7.4). Coronal

slices (400 mm) containing the hippocampus were obtained with a vibratome.

Slices (three or four per condition) were recovered at room temperature for 1–

1.5 hr in oxygenated ACSF with the following composition (in mM): 119 NaCl,

2.5 KCl, 1.3 MgSO4, 1.0 NaH2PO4, 2.5 CaCl2, 11 glucose, and 26.2 NaHCO3

(pH 7.4). SUnSET (Schmidt et al., 2009) was then used to probe for

newly synthesized proteins. Briefly, slices were incubated with puromycin

(5 mg/ml) for 45 min. Control slices were incubated first with cycloheximide

(CHX) (20 mg/ml, C7698; Sigma-Aldrich) for 30 min and then with puromycin

plus CHX for 45 min. Following the incubation, the tissue was snap-frozen us-

ing either dry ice or liquid nitrogen. The tissue was then lysed (RIPA lysis

buffer) and prepared for western blot or IP with GluA2 antibodies. GluA2

immunoprecipitates were blotted for puromycin, stripped, and reprobed for

GluA2. The level of puromycin-labeled GluA2 was normalized to the amount

of immunoprecipitated GluA2. For analysis of the synaptic GluA1/GluA2

AMPA receptor complex, after puromycin incubation, the tissue was lysed

in Syn-PER Synaptic Protein extraction Reagent (Thermo Scientific #87793)

and the synaptosomal fraction was extracted according to the supplier’s di-

rections. Following synaptosomal purification, coIP experiments for GluA1

and GluA2 were carried out according to a previously published protocol

(Kang et al., 2012). Coimmunoprecipitated lysate and the unbound fraction

from the coIP were blotted for GluA2 and GluA1 using anti-GluA2 and anti-

GluA1 antibodies.

cLTP

The cLTP methods were adapted from previously published studies (Huang

and Kandel, 1994; Otmakhov et al., 2004). Briefly, coronal slices (prepared

as mentioned above) were incubated for 5 min in oxygenated ACSF (low

Mg2+, 0.13 mM) with forskolin (F6886 Sigma-Aldrich; 50 mM dissolved in

DMSO). Slices were then transferred into oxygenated ACSF containing puro-

mycin (P8833 Sigma-Aldrich; 5 mg/ml) and incubated for 45min. For the control

group, slices were incubated with DMSO (50 mM) in regular ACSF for 5min and

then incubated in puromycin for 45 min. The slices were then processed for

western blotting or IP as described above.

Surface Biotinylation Assays

To investigate cell-surface expression of GluA2, a tissue chopper was used to

obtain transverse hippocampal sections (300 mm) from adult mice (>8 weeks

old). The sections were incubated with biotin (1 mg/ml in PBS) solution for

30–40 min at 4�C and then homogenized with lysis buffer (PBS/0.1% SDS/

10% glycerol). Upon homogenization, the lysate was incubated with streptavi-

din beads (50 ml/sample prewashed with PBS) for 1 hr and then prepared for

western blotting. For analysis of the activity-dependent surface GluA2 recep-

tor, after cLTP induction, tissue was incubated at 4�C in bubbling ACSF with

biotin for 45 min. The tissue was then snap-frozen using dry ice, lysed, and

incubated with streptavidin beads (50 ml/sample prewashed with PBS) for

1 hr and then prepared for western blotting.

Statistical Analysis

Analyses were performed using R (http://www.R-project.org) with the

Reshape, Hmisc, gplots, plotrix, ezANOVA, and Microsoft Excel packages;

a = 0.05 was chosen for statistical significance. The tests used are noted in

the figure legends. Analyses were collapsed across sex to reflect the fact

that preliminary ANOVAs demonstrated no sex effect. All graphs were created

using R or Microsoft Excel.
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