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Abstract
This paper studies the CUDA programming challenges with using multiple GPUs inside a single
machine to carry out plane-by-plane updates in parallel 3D sweeping algorithms. In particular,
care must be taken to mask the overhead of various data movements between the GPUs. Mul-
tiple OpenMP threads on the CPU side should be combined multiple CUDA streams per GPU
to hide the data transfer cost related to the halo computation on each 2D plane. Moreover, the
technique of peer-to-peer data motion can be used to reduce the impact of 3D volumetric data
shuffles that have to be done between mandatory changes of the grid partitioning. We have in-
vestigated the performance improvement of 2- and 4-GPU implementations that are applicable
to 3D anisotropic front propagation computations related to geological folding. In compari-
son with a straightforward multi-GPU implementation, the overall performance improvement
due to masking of data movements on four GPUs of the Fermi architecture was 23%. The
corresponding improvement obtained on four Kepler GPUs was 47%.
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1 Introduction

Motivated by higher energy efficiency, a new trend with high-end computing platforms is the
adoption of multiple hardware accelerators such as general-purpose GPUs and many-integrated-
core coprocessors per compute node. The most prominent example is Tianhe-2, which is the
current No. 1 system on the TOP500 list [1]. Three Xeon Phi coprocessors can be found in
each of Tianhe-2’s 16,000 compute nodes. With respect to clusters that have multi-GPU nodes,
the TSUBAME 2.5 system is known for having three NVIDIA Tesla K20x GPUs per compute
node.

Together with this new hardware configuration trend, there comes the challenge of pro-
gramming. In addition to properly offloading portions of a computation to the individual
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accelerators to achieve higher computing speed, a new issue arises regarding accelerator-to-
accelerator data transfers. Although MPI communication should be used between accelerators
residing on different compute nodes, intra-node data transfers between cohabitant accelerators
have the possibility of using low-level APIs that incur less overhead than the MPI counterpart.

The hardware context of this paper is using multiple NVIDIA GPUs within the same com-
pute node. As the computational domain, we choose to study parallel 3D sweeping algorithms,
which have a causality constraint in that 2D planes have to updated one by one in sequence,
where parallelism exists between mesh points lying on the same 2D plane. Following our pre-
vious work in the simpler scenario of 3D stencil computations [2], we want to investigate how
to apply multiple CUDA streams, multiple OpenMP threads and NVIDIA GPUDirect [3] to
3D sweeping algorithms for masking the overhead of GPU-to-GPU data transfers. Another
objective of this paper is to quantify the actual performance gain of using multiple GPUs for
simulating 3D anisotropic front propagation, compared with using a single GPU [4]. To our
knowledge, previous work on using GPUs to simulate anisotropic front propagation all targeted
single-GPU platforms, such as [5, 6, 7]. Therefore, this paper is also novel with respect to using
multiple GPUs for this particular computational problem.

2 Parallel 3D sweeping algorithms

(a) (b) (c)

Figure 1: The 2D planes involved in the six sub-sweeps that constitute a parallel 3D sweeping
algorithm.

In this paper, we consider parallel 3D sweeping algorithms that use a Cartesian grid, which
is of dimension (nx + 2) × (ny + 2) × (nz + 2). The mesh point values, denoted by Ti,j,k, are
iteratively updated by sweeps each being made up of six sub-sweeps that alternate between
the positive and negative x, y and z-directions. Each sub-sweep consists of plane-by-plane
updates that move consecutively through the 3D mesh. Computations of the mesh points that
lie on a 2D update plane are independent of each other, thus parallelizable. The following
pseudocode shows one sub-sweep along the positive x-direction and another sub-sweep in the
opposite direction (see Fig. 1(a)):

for i = 2→ nx do
for all j ∈ [1, ny] and k ∈ [1, nz] do
Update Ti,j,k using values Ti−1,j±a,k±b, a ∈ {0, 1}, b ∈ {0, 1}

end for
end for
for i = nx − 1→ 1 do
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for all j ∈ [1, ny] and k ∈ [1, nz] do
Update Ti,j,k using values Ti+1,j±a,k±b, a ∈ {0, 1}, b ∈ {0, 1}

end for
end for

The four other sub-sweeps (two in the y-direction and two in the z-directions) are similar.
We also remark that the sub-sweeps update only the interior mesh points, i.e., 1 ≤ i ≤ nx,
1 ≤ j ≤ ny, 1 ≤ k ≤ nz. The boundary points assume known solution values. In the above
pseudocode, updating a mesh point relies on 9 mesh points that lie on the preceding plane, see
Fig. 2 for an example. A concrete application of such a sweeping algorithm can be to simulate
anisotropic front propagation that is described by the following static Hamilton-Jacobi equation:

F‖∇T (x)‖+ ψ (a · ∇T (x)) = 1, (1)

given T = t0 on Γ0,

where T (x) can model the first-arrival time of a propagating front that originates from the
initial surface Γ0. When the viscosity solution of (1) is used to model geological folding, vector
a marks the axial direction of the fold, with F and ψ being nonzero constants. For details about
the mathematical model and the derivation of sweeping-based numerical schemes, we refer the
reader to [7] and the references therein.

Figure 2: An example of data dependency associated with sub-sweeps along the z-direction.
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Figure 3: A partitioning of the 3D Cartesian grid that suits parallelization of sub-sweeps in
both x and z-directions.
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3 Parallelization

3.1 Mesh partitioning

Parallelism within parallel 3D sweeping algorithms exists among mesh points that lie on the
same 2D update plane, but not across the planes. That is, parallelization can be realized by
dividing each 2D plane among multiple computing hardware units, such as GPUs. Due to the
rectangular shape of a 2D plane, it is natural to assign each GPU with a rectangular subdomain.
Moreover, since each sub-sweep moves along a given spatial direction, from the top (or bottom)
2D plane to the bottom (or top) plane, all the 2D planes associated with one sub-sweep can
use the same partitioning. This means that, for sub-sweeps along a specific spatial direction,
the 3D Cartesian grid should be partitioned by cutting surfaces parallel with the sub-sweeping
direction. However, we recall that the sub-sweeps alternate between the three spatial directions,
thus there does not exist a universal partitioning that works for all x, y and z-directions. The
best partitioning strategy is to let sub-sweeps of two spatial directions share one partitioning,
switching to another partitioning for the third spatial direction. Fig. 3 shows a partitioning of
the 3D Cartesian grid that can be used to parallelize sub-sweeps in both x and z-directions.

3.2 Data transfers

There are two types of data transfers that must be carried out between the GPUs. The first
type of data movement happens on each 2D (yz or xz or xy) plane, for the purpose of com-
municating results of the halo computation (i.e., on mesh points that lie immediately beside
a neighbor) from one subdomain to another. Consider for example the partitioning shown in
Fig. 3, which can be shared by sub-sweeps in the x and z-directions. Then parallel computing
on each yz-plane (inside a x-directional sub-sweep) will require one subdomain to send (and
receive) nz point values to (and from) each of its two neighbors. When updating each xy-plane
(inside a z-directional sub-sweep), nx point values are exchanged between a pair of neighboring
subdomains. It should be noted that this halo-induced type of communication happens once
per 2D plane.

Figure 4: An example of volumetric data shuffle in connection with changing the grid parti-
tioning.

The second type of data transfer is due to the need of switching the grid partitioning
between some of the sub-sweeps. For example, the partitioning shown in Fig. 3 cannot be
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used for sub-sweeps along the y-direction. In connection with switching the grid partitioning,
a 3D volumetric data shuffle among all GPUs is necessary. A concrete example of data shuffle
involving four GPUs is shown in Fig. 4. There, each GPU can keep one fourth of its data, but
has to exchange one fourth of its data with each of the other three GPUs. This volumetric data
shuffle happens only twice per sweep (every six sub-sweeps). In other words, the second type of
communication is considerably less frequent than the first type of halo-induced communication.

4 CUDA implementations

4.1 Plain multi-GPU implementation

If there already exists a single-GPU CUDA implementation of a 3D sweep algorithm, it is a
relatively simple programming task to write a plain implementation that uses multiple GPUs
residing on the same compute node. Of the existing single-GPU code, its six kernels associated
with the six different sub-sweeps can be reused by each GPU to work within its assigned
subdomain of a 2D plane. Additional kernels have to be implemented to support the two types
of data transfers: halo-induced communication and 3D volumetric data shuffle. The following
pseudocode segment shows one sub-sweep in the positive x-direction for the case of using two
GPUs:

for (i=2; i<=nx; i++) {
cudaSetDevice(0);
compute-kernel: update all points on GPU0’s part of a yz-plane
pack-kernel: fill a buffer containing halo values needed by GPU1

cudaSetDevice(1);
compute-kernel: update all points on GPU1’s part of a yz-plane
pack-kernel: fill a buffer containing halo values needed by GPU0

cudaMemcpy (GPU0 buffer to host buffer H0)
cudaMemcpy (GPU1 buffer to host buffer H1)
cudaMemcpy (host buffer H0 to GPU1 buffer)
cudaMemcpy (host buffer H1 to GPU0 buffer)

cudaSetDevice(0);
unpack-kernel: handle the incoming H1 data from host

cudaSetDevice(1);
unpack-kernel: handle the incoming H0 data from host

}

There are two problems with the plain implementation above. First, due to the default
synchronous CUDA stream on each GPU, the halo-induced communication will not start until
all the mesh points on the subdomain 2D plane are updated. There is thus no possibility of
hiding the overhead of this communication, as shown in Fig. 5(a). The second problem is the
use of synchronous data copies (cudaMemcpy for both device-host and host-device transfers),
meaning that only one data transfer can happen at a time. The same problem also applies to
the second type of communication: 3D volumetric data shuffles (not shown in the above code
segment).
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(a) Plain 2-GPU implementation: the default synchronous CUDA stream per GPU

(b) Improved 2-GPU implementation version 1: two CUDA streams per GPU

(c) Improved 2-GPU implementation version 2: two CUDA streams and one OpenMP thread per GPU

Figure 5: The timeline view (provided by nvprof) of two subsequent sub-sweeps in three 2-GPU
implementations.
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4.2 Improvement 1

The key to hiding the overhead of halo-induced communications is to overlap this type of data
transfers with computations of the interior points (i.e., non-halo points) on each GPU. For this
purpose, every data-packing kernel from the plain implementation is extended (as a halo-kernel)
to compute its line of “halo points” as well as packing. Moreover, each GPU adopts at least two
CUDA streams, one being responsible for updating its interior mesh points, the other (“halo
stream”) for independently executing the data-packing kernels. Consequently, asynchronous
device-host and host-device data transfers (by calling cudaMemcpyAsync) can be enabled by
using the halo streams. The following pseudocode implements this improvement, and the effect
can be seen in Fig. 5(b) for the case of two GPUs.

for (i=2; i<=nx; i++) {
cudaSetDevice(0);
halo-kernel using halo_stream(0)
compute-kernel over interior points using compute_stream(0)
cudaMemcpyAsync (GPU0->H0) using halo_stream(0)

cudaSetDevice(1);
halo-kernel using halo_stream(1)
compute-kernel over interior points using compute_stream(1)
cudaMemcpyAsync (GPU1->H1) using halo_stream(1)

cudaStreamSynchronize halo_stream(0)
cudaStreamSynchronize halo_stream(1)

cudaSetDevice(0);
cudaMemcpyAsync (H0->GPU1) using halo_stream(1)
unpack-kernel using halo_stream(1)

cudaSetDevice(1);
cudaMemcpyAsync (H1->GPU0) using halo_stream(0)
unpack-kernel using halo_stream(0)

cudaSetDevice(0);
cudaStreamSynchronize compute_stream(0);
cudaSetDevice(1);
cudaStreamSynchronize compute_stream(1);

}

4.3 Improvement 2

The situation can be improved further. We note from Fig. 5(b) that the start of the kernels on
GPU1 has a delay with respect to those on GPU0. This is because both GPUs are controlled
by the same host CPU thread, which first initiates the kernels on GPU0 and then those on
GPU1. This delay will become more severe when more GPUs are involved. To solve the
above problems, we adopt the strategy of using multiple OpenMP threads on the CPU side, as
proposed in [2]. That is, one controlling OpenMP thread is now in charge of each GPU. The
entire code will thus be wrapped into an OpenMP parallel region, and the thread ID will dictate
the responsibility of an OpenMP thread. The effect of this improvement is clearly visible in
Fig. 5(c). The pseudocode is not shown due to page limit.
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4.4 Improvement 3

As can be seen in Fig. 5(c), the combination of multiple CUDA streams and one controlling
OpenMP thread per GPU can result in halo-induced data exchanges being carried out while
computations on the interior mesh points proceed. The overhead of this type of communication
can therefore be effectively hidden, even though the communication is relayed through the CPU
host. For the second type of communication, i.e., 3D volumetric data shuffles between switches
of the grid partitioning, relaying data via CPU is unnecessarily costly if there is hardware sup-
port for direct peer-to-peer (P2P) communication [3] between the GPUs. Specifically, to draw
benefit from P2P and enable bi-directional data transfers, the cudaMemcpyPeerAsync function
should be simultaneously called by the controlling OpenMP threads. Afterwards, the CUDA
streams that execute the asynchronous P2P communication must be properly synchronized, via
cudaStreamSynchronize called by the multiple controlling CPU threads, to make sure that the
shuffled data has arrived.

Finally, we remark that the above three improvements were first discussed in [8]. However,
the multi-GPU implementations used in this paper have made substantial adjustments (and
corrections) of those in [8].

5 Experiments and measurements

5.1 Hardware platforms

We tested our multi-GPU implementations on two GPU clusters, Erik [9] and Zorn [10], for
running 3D simulations of anisotropic front propagation. In particular, one 4-GPU node on the
Erik cluster was used, where each GPU is of type NVIDIA Tesla K20m. The CPU host has
dual-socket 8-core Intel Xeon E5-2650 2.0 GHz processors. It is important to notice that the
four GPUs are organized as two PCIe “islands”, meaning that the GPU0-GPU1 and GPU2-
GPU3 pairs have a direct PCIe connection in between, whereas across-pair traffic is subject to
a slower speed. On the Zorn cluster, we used one of its 4-GPU nodes where each GPU is of
type Tesla C2050 and the CPU host consists of dual-socket 4-core Intel Xeon E5620 2.4 GHz
processors. The four GPUs are also organized as two pairs with intra-pair PCIe connection.
CUDA v5.5 was used on both platforms.

5.2 An example of geological folding

To compare with the single-GPU implementation from [4], we have chosen to simulate the same
example of geological folding. More specifically, F = 1.1, ψ = 1.0 and a = (−0.34, 0.4, 0.7) were
used in (1). The 3D spatial domain has length 10 in all three directions. The initial surface
Γ0 is shown in the left plot of Fig. 6, whereas the simulation result is depicted in the right
plot. (The numerical results from the multi-GPU implementations were all verified by those
produced by the original single-GPU implementation.)

5.3 Time measurements

Table 1 summarizes the time measurements that were obtained on the Erik and Zorn systems.
Two problem sizes were tested: nx = ny = nz = 512 and nx = ny = nz = 640. Each simulation
ran 8 sweeps, i.e., 48 sub-sweeps in total. All computations used double precision. Recall from
Section 4 that the first improvement to the plain multi-GPU implementation is to let each
GPU use multiple CUDA streams. That is, the number of CUDA streams per GPU equals the
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Figure 6: The initial surface Γ0 (left plot) and the simulation result of (1) after running 8
sweeps.

number of neighbors plus one. Halo computations are thus carried out as early as possible, and
the data transfers (type 1 communication) between neighboring GPUs can be carried out while
computations on the interior mesh points proceed. As can be seen in Table 1, the benefit of
the first improvement is more obvious for the 4-GPU cases. Likely, the second improvement
(assigning one controlling OpenMP thread per GPU) also has a clearer advantage for the 4-
GPU cases. For the third improvement, using P2P data communication for the 3D volumetric
data shuffles (type 2 communication) instead of relaying data via the CPU, the benefit is more
profound for the 2-GPU cases. This is due to the fact that GPU0 and GPU1 have a direct PCIe
connection that provides hardware support for P2P. When four GPUs are used, although GPU2
and GPU3 also form a pair with direct PCIe connection, data transfers across the two pairs
(e.g. GPU0-GPU2) still have to relay through the CPU, thus not fully enjoying the performance
benefit of P2P data communication.

Grid size nx = ny = nz = 512 nx = ny = nz = 640
Time on Erik Time on Zorn Time on Erik Time on Zorn

Single-GPU 31.71 64.95 59.54 123.34
2-GPU plain impl. 24.75 44.50 45.05 82.14
2-GPU improved v1 24.35 41.40 44.73 81.36
2-GPU improved v2 22.39 40.38 39.58 75.42
2-GPU improved v3 19.37 37.40 35.34 69.64
4-GPU plain impl. 23.28 30.77 41.03 54.61
4-GPU improved v1 20.68 28.54 38.65 51.56
4-GPU improved v2 14.31 25.54 25.18 46.83
4-GPU improved v3 12.48 23.57 21.91 43.02

Table 1: Time measurements (in seconds) of running eight sweeps of various multi-GPU imple-
mentations.

6 Concluding remarks

In comparison with single-GPU implementations of parallel 3D sweeping algorithms, the use
of multiple GPUs introduces the complicating issue of having to switch between two grid par-
titionings and the resulting 3D volumetric data shuffles among all the GPUs. These come
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on top of the conventional halo-induced data exchanges between neighboring GPUs. In other
words, parallelizing a 3D sweeping algorithm is more difficult than parallelizing a regular 3D
finite difference method. The achievable parallel efficiency will consequently be lower due to
the costly 3D volumetric data shuffles. Nevertheless, our time measurements have shown that
with a proper use of multiple multiple CUDA streams per GPU, in combination with adopting
one controlling OpenMP thread per GPU and P2P data communication offered by NVIDIA
GPUDirect, we can secure satisfactory parallel efficiency. This means that using multiple GPUs
for performing parallel 3D sweeps is a viable technical solution, especially considering the ben-
efit of aggregating the device memory of the GPUs to solve larger problems that exceed the
memory limit of a single GPU.

As future work, the current work can be extended to the scenario of multiple compute nodes,
each with one or several GPUs. Asynchronous CUDA memory copies have to be replaced with
suitable non-blocking MPI calls. Then, really huge-scale simulations can be made possible.
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