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a b s t r a c t

Recently the vertex Padmakar–Ivan (PIv) index of a graph G was introduced as the sum
over all edges e = uv of G of the number of vertices which are not equidistant to the
vertices u and v. In this paper the vertex PI index and Szeged index of bridge graphs
are determined. Using these formulas, the vertex PI indices and Szeged indices of several
graphs are computed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In theoretical chemistry molecular structure descriptors – also called topological indices – are used to understand
physico-chemical properties of chemical compounds. By now there exist a lot of different types of such indices which
capture different aspects of the molecular graphs associated with the molecules considered. Arguably the best known of
these indices is the Wiener index [29,12,7,26,27]. The Szeged index [8,15,10] is closely related to the Wiener index and is a
vertex-multiplicative type that takes into account how the vertices of a givenmolecular graph are distributed and coincides
with theWiener index on trees. It has been considered frommany points of view, see, e.g., [7,8,10,11,15,17,21–24,26,27,31,
33] and the literature given therein. Since the Szeged index takes into account how the vertices are distributed, it is natural
to introduce an index that takes into account the distribution of edges. The Padmakar–Ivan (PI) index [14,17] is an additive
index that takes into account the distribution of edges and, therefore, complements the Szeged index in a certain sense.
It is useful to mention that the PI index is a unique topological index related to parallelism of edges (we will make this
more precise below) and it has been studied from many different points of view, see [1–6,9,13,14,16–20,28,30,32]. All the
indices mentioned havemany chemical applications and it was shown that the PI index correlates well with theWiener and
Szeged indices and that they all correlate with the physico-chemical properties and biological activities of a large number
of diverse and complex compounds. Very recently, a new topological index, the vertex PI index, was introduced and some
of its properties were derived [25,24,30]. Its definition is similar to that of the (edge) PI index, in that it is additive, but now
the distances of vertices (instead of edges) from edges is considered.
In this paper we compute the vertex PI index and the Szeged index for the bridge graph built from a collection of

(possibly different) graphs and apply this result to determine the vertex PI index and Szeged index of some classes of
graphs.
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Fig. 1. The bridge graph.

2. Preliminaries

Let G be a connected graph with vertex and edge sets V (G) and E(G), respectively. As usual, we denote the distance
between two arbitrary vertices x and y ofG by d(x, y) and it is defined as the number of edges in theminimal path connecting
the vertices x and y.
Given an edge e = uv ∈ E(G) of G, we define the distance of e to a vertex w ∈ V (G) as the minimum of the distances of

its ends tow, i.e.,

d(w, e) := min{d(w, u), d(w, v)}.

Let us denote the number of vertices lying closer to the vertex u than to the vertex v of e by nu(e|G) and the number of
vertices lying closer to the vertex v than to the vertex u by nv(e|G). Thus,

nu(e|G) := |{a ∈ V (G) | d(u, a) < d(v, a)}|

and similarly for nv(e|G).
The vertex Padmakar–Ivan (PIv) index of a graph G is defined as

PIv(G) :=
∑
e∈E(G)

(nu(e|G)+ nv(e|G)),

see [30,31,33]. Note that in these definitions the vertices equidistant from the two ends of the edge e = uv- i.e., vertices a
with d(u, a) = d(v, a)- are not counted. We also call such vertices parallel to e. This implies that we can write

PIv(G) =
∑
e∈E(G)

ne(G),

where ne(G) := nu(e|G)+ nv(e|G) is the number of vertices of G that are not equidistant from the two ends of the edge e.
The Szeged (Sz) index of a graph G is defined as

Sz(G) =
∑

e=uv∈E(G)

nu(e|G)nv(e|G).

Let us briefly recall the definition of bridge graphs. Let {Gi}di=1 be a set of finite pairwise disjoint graphs with vi ∈ V (Gi).
The bridge graph B(G1,G2, . . . ,Gd) = B(G1,G2, . . . ,Gd; v1, v2, . . . , vd) of {Gi}di=1 with respect to the vertices {vi}

d
i=1 is the

graph obtained from the graphs G1, . . . ,Gd by connecting the vertices vi and vi+1 by an edge for all i = 1, 2, . . . , d− 1, see
Fig. 1.
The main result of this paper is an explicit formula for the vertex PI index and the Szeged index of a bridge graph of

G1, . . . ,Gd.

3. The vertex PI index of the bridge Graph

In order to compute the vertex PI index of the bridge graph B(G1,G2, . . . ,Gd) we need the following notation. Let G be
any graph and let v ∈ V (G) be any vertex of G. We denote the set of all edges uu′ such that d(u, v) = d(u′, v) byMv(G). The
cardinality ofMv(G) is denoted bymv(G).

Theorem 1. The vertex PI index of the bridge graph G = B(G1,G2, . . . ,Gd) of {Gi}di=1 with respect to the vertices {vi}
d
i=1 is given

by

PIv(G) =
d∑
i=1

PIv(Gi)+ (|E(G)| −m(G))|V (G)| − ev(G)+mv(G),

where

m(G) =
d∑
i=1

mvi(Gi), ev(G) =
d∑
i=1

|E(Gi)||V (Gi)|, mv(G) =
d∑
i=1

mvi(Gi)|V (Gi)|.
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Proof. Let G = B(G1,G2, . . . ,Gd). From the definitions we have that

PIv(G) =
∑
e∈E(G)

ne(G)

=

d∑
i=1

∑
e∈E(Gi)

ne(G)+
d−1∑
i=1

nvivi+1(G)

=

d∑
i=1

∑
e∈Mvi (Gi)

ne(G)+
d∑
i=1

∑
e∈E(Gi)\Mvi (Gi)

ne(G)+
d−1∑
i=1

nvivi+1(G).

If e is the edge vivi+1 in G, then there exists no vertex awhich is equidistant from the ends of the edge e, thus ne(G) = |V (G)|.
This implies that

PIv(G) =
d∑
i=1

∑
e∈Mvi (Gi)

ne(G)+
d∑
i=1

∑
e∈E(Gi)\Mvi (Gi)

ne(G)+ (d− 1)|V (G)|.

If e ∈ Mvi(Gi), then all the vertices in V (G) \ V (Gi) are equidistant from the ends of the edge e, thus ne(G) = ne(Gi), yielding
in turn

PIv(G) =
d∑
i=1

∑
e∈Mvi (Gi)

ne(Gi)+
d∑
i=1

∑
e∈E(Gi)\Mvi (Gi)

ne(G)+ (d− 1)|V (G)|.

If e ∈ E(Gi) \ Mvi(Gi), then each vertex in V (G) \ V (Gi) is not equidistant from the ends of the edge e, thus ne(G) =
ne(Gi)+ |V (G)| − |V (Gi)| and, consequently,

PIv(G) =
d∑
i=1

∑
e∈Mvi (Gi)

ne(Gi)+
d∑
i=1

∑
e∈E(Gi)\Mvi (Gi)

(ne(Gi)+ |V (G)| − |V (Gi)|)+ (d− 1)|V (G)|.

This is equivalent to

PIv(G) =
d∑
i=1

∑
e∈E(Gi)

ne(Gi)+
d∑
i=1

∑
e∈E(Gi)\Mvi (Gi)

(|V (G)| − |V (Gi)|)+ (d− 1)|V (G)|

=

d∑
i=1

PIv(Gi)+
d∑
i=1

(|E(Gi)| −mvi(Gi))(|V (G)| − |V (Gi)|)+ (d− 1)|V (G)|

=

d∑
i=1

PIv(Gi)+ (|E(G)| −m(G)− (d− 1))|V (G)| − ev(G)+mv(G)+ (d− 1)|V (G)|

=

d∑
i=1

PIv(Gi)+ (|E(G)| −m(G))|V (G)| − ev(G)+mv(G),

as claimed. �

Define

Gd(H, v) := B(H,H, . . . ,H︸ ︷︷ ︸
d times

, v, v, . . . , v︸ ︷︷ ︸
d times

).

Clearly, G1(H, v) = H for any vertex v of H . As a corollary of Theorem 1 we have the following result.

Corollary 2. Let H be any graph with fixed vertex v. Then the vertex PI index of the bridge graph Gd(H, v) is given by

PIv(Gd(H, v)) = dPIv(H)+ d(d− 1)(|E(H)| + 1−mv(H))|V (H)|.

Proof. Let G = Gd(H, v). Theorem 1 for the bridge graph G gives that

PIv(G) = dPIv(H)+ d(d|E(H)| + d− 1− dmv(H))|V (H)| − d(|E(H)| −mv(H))|V (H)|,

which is equivalent to

PIv(G) = dPIv(H)+ d(d− 1)(|E(H)| + 1−mv(H))|V (H)|,

as requested. �
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Fig. 2. The graph Ad,3 .

Fig. 3. The graph Bd .

Fig. 4. The graph B3,3;(1,2,1) .

Fig. 5. The graph T5,3 .

For example, let Pm be the path graph onm vertices v1, . . . , vm. Clearly, PIv(Pm) = m(m− 1). Let Ad,m := Gd(Pm, v1), see
Fig. 2 form = 3. Clearly, Ad,1 = Pd as well as A1,m = Pm.
Corollary 2 for Ad,m (mv1(Pm) = 0, |V (Pm)| = m, and |E(Pm)| = m− 1) gives that

PIv(Ad,m) = dm(m− 1)+ d(d− 1)m2 = dm(dm− 1).

Note that, in particular, A2,m = P2m, implying PIv(A2,m) = 2m(2m − 1) which can be checked directly by inserting d = 2
into the above equation.
As another example, define Bd := Gd(P3, v2), see Fig. 3 (Polyethene when d = 4).
Then Corollary 2 for Bd yields that PIv(Bd) = 3d(3d− 1).
As a first step to generalize this result, we consider the graphs Bd,m;l := Gd(Pm, vl) where we use a path Pm of arbitrary

length m and choose a (fixed) vertex vl (with 1 ≤ l ≤ m) in each Pm. Clearly, Bd,3;2 = Bd from above. Always choosing the
first vertex yields the graph Ad,m, i.e., Bd,m;1 = Ad,m and, hence, PIv(Bd,m;1) = PIv(Ad,m). It is easy to check that the vertex
PI index of the graph Bd,m;l does not depend on the vertex l which we choose in each path (as long as it is the same in each
path). Thus, we conclude that

PIv(Bd,m;l) = PIv(Bd,m;1) = PIv(Ad,m)

and the last index has been calculated above. Now, if we want to choose the vertex in each path independently, we cannot
use Corollary 2 directly. However, checking the formula given in Theorem 1 we see that – due tomv(Pm) = 0 for any vertex
v in Pm – the resulting formula is the same for any choice of vertices in the paths! We describe the result more precisely in
the following corollary.

Corollary 3. Let I = (i1, . . . , id) ∈ {1, . . . ,m}d be a multi-index and denote the bridge graph of d paths Pm joined via the
vertices vik by Bd,m;I, i.e.,

Bd,m;I := B(Pm, . . . , Pm︸ ︷︷ ︸
d times

; vi1 , vi2 , . . . , vid).

Then the vertex PI index of Bd,m;I is independent of I and is given by

PIv(Bd,m;I) = dm(dm− 1).

An example of the graph B3,3;(1,2,1) is shown in Fig. 4.
As a final example, let us consider a graph which is not a tree. Let Ck be the cycle with k vertices and define Td,k :=

Gd(Ck, v1), see Fig. 5 when k = 3 and d = 5.

Corollary 4. The vertex PI index of Td,k is given by

PIv(Td,k) =
{
kd(kd+ d− 1), k is even,
kd(kd− 1), k is odd.
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Proof. Corollary 2 for the bridge graph Td,k states that

PIv(Td,k) = dPIv(Ck)+ d(d− 1) (k+ 1−mv(Ck)) k,

where we have already used the fact that |E(Ck)| = k = |V (Ck)|. For k odd one has PIv(Ck) = k(k − 1) and mv(Ck) = 1,
whereas for k even one has PIv(Ck) = k2 andmv(Ck) = 0. Inserting these facts yields the required equations. �

4. The Szeged index of the bridge graph

In this sectionwe derive a formula for the Szeged index of the bridge graph. In order to do that we denote the set of edges
e = uv in E(Gi)\Mvi(Gi) such that d(u, vi) < d(v, vi) by L(Gi) and the set of edges with d(u, vi) > d(v, vi) by R(Gi). To make
this well-defined we choose an arbitrary direction on Gi (which we fix for all the following computations) and compute the
distances on the underlying graph; the results do not depend on the direction chosen.

Theorem 5. The Szeged index of the bridge graph G = B(G1,G2, . . . ,Gd) of {Gi}di=1, with respect to the vertices {vi}
d
i=1, is given

by

Sz(G) =
d∑
i=1

Sz(Gi)+
d−1∑
i=1

αi(|V (G)| − αi)+
d∑
i=1

(|V (G)| − |V (Gi)|)(`i + ri),

where αi =
∑i
j=1 |V (Gj)|, `i =

∑
e=uv∈L(Gi)

nv(e|Gi), and ri =
∑
e=uv∈R(Gi)

nu(e|Gi) for all i = 1, 2, . . . , d.

Proof. Let G = B(G1,G2, . . . ,Gd). From the definitions we see that

Sz(G) =
∑

e=uv∈E(G)

nu(e|G)nv(e|G)

=

d∑
i=1

∑
e=uv∈E(Gi)

nu(e|G)nv(e|G)+
d−1∑
i=1

nvi(vivi+1|G)nvi+1(vivi+1|G)

=

d∑
i=1

∑
e=uv∈Mvi (Gi)

nu(e|G)nv(e|G)

+

d∑
i=1

∑
e=uv∈E(Gi)\Mvi (Gi)

nu(e|G)nv(e|G)+
d−1∑
i=1

nvi(vivi+1|G)nvi+1(vivi+1|G).

If e is the edge vivi+1 in G, then there exists no vertex awhich is equidistant from the ends of the edge e = vivi+1, thus

nvi(vivi+1|G)nvi+1(vivi+1|G) =
i∑
j=1

|V (Gj)|
d∑

j=i+1

|V (Gj)| = αi(|V (G)| − αi).

This implies that

Sz(G) =
d∑
i=1

∑
e=uv∈Mvi (Gi)

nu(e|G)nv(e|G)+
d∑
i=1

∑
e=uv∈E(Gi)\Mvi (Gi)

nu(e|G)nv(e|G)+
d−1∑
i=1

αi(|V (G)| − αi).

If e = uv ∈ Mvi(Gi) then all the vertices in V (G) \ V (Gi) are equidistant from the ends of the edge e = uv, thus
nu(e|G)nv(e|G) = nu(e|Gi)nv(e|Gi), yielding in turn

Sz(G) =
d∑
i=1

∑
e=uv∈Mvi (Gi)

nu(e|Gi)nv(e|Gi)+
d∑
i=1

∑
e=uv∈E(Gi)\Mvi (Gi)

nu(e|G)nv(e|G)+
d−1∑
i=1

αi(|V (G)| − αi).

If e = uv ∈ E(Gi) \Mvi(Gi) then there exist the following two cases:

• e ∈ L(Gi). In this case we have that

nu(e|G)nv(e|G) = (nu(Gi)+ |V (G)| − |V (Gi)|)nv(e|Gi).

• e ∈ R(Gi). In this case we have that

nu(e|G)nv(e|G) = nu(Gi)(nv(e|Gi)+ |V (G)| − |V (Gi)|).
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Therefore,

d∑
i=1

∑
e=uv∈E(Gi)\Mvi (Gi)

nu(e|G)nv(e|G) =
d∑
i=1

∑
e=uv∈E(Gi)\Mvi (Gi)

nu(e|Gi)nv(e|Gi)

+

d∑
i=1

∑
e=uv∈L(Gi)

(|V (G)| − |V (Gi)|)nv(e|Gi)

+

d∑
i=1

∑
e=uv∈R(Gi)

(|V (G)| − |V (Gi)|)nu(e|Gi).

Hence, the Szeged index of the graph G is given by

Sz(G) =
d∑
i=1

Sz(Gi)+
d−1∑
i=1

αi(|V (G)| − αi)+
d∑
i=1

(|V (G)| − |V (Gi)|)(`i + ri),

as claimed. �

As a corollary of Theorem 5 we have the following result.

Corollary 6. Let H be any graph with fixed vertex v. Then the Szeged index of the bridge graph Gd(H, v) is given by

Sz(Gd(H, v)) = dSz(H)+
(
d+ 1
3

)
|V (H)|2 + d(d− 1)|V (H)|(`(H)+ r(H)),

where `(H) =
∑
e=uv∈L(H) nv(e|H) and r(H) =

∑
e=uv∈R(H) nu(e|H).

Proof. Let G = Gd(H, v). Theorem 5 for the bridge graph G gives that

Sz(G) = dSz(H)+
d−1∑
i=1

i(d− i)|V (H)|2 +
d∑
i=1

(d− 1)|V (H)|(`(H)+ r(H))

which yields after some algebra the assertion. �

Corollary 6 for Ad,m (|V (Pm)| = m and |E(Pm)| = m− 1) gives that

Sz(Ad,m) = dSz(Pm)+
(
d+ 1
3

)
m2 + d(d− 1)m(`(Pm)+ r(Pm)),

where Sz(Pm) =
(
m+1
3

)
, `(Pm) = 0 and r(Pm) =

(m
2

)
. Therefore,

Sz(Ad,m) = d
(
m+ 1
3

)
+

(
d+ 1
3

)
m2 + 2

(
d
2

)
m
(m
2

)
.

Since A2,m = P2m one should have

Sz(A2,m) = Sz(P2m) =
(
2m+ 1
3

)
=
m
3
(4m2 − 1).

Inserting d = 2 into the above equation yields

Sz(A2,m) = 2
(
m+ 1
3

)
+m2 + 2m

(m
2

)
=
m
3
(4m2 − 1),

as requested. Considering instead an arbitrary d andm = 2 yields

Sz(Ad,2) =
d
3
(2d2 + 6d− 5).

Since Ad,2 is a tree the Szeged index coincides with theWiener index and the latter has already been given in [10] (there the
graph is denoted by F2m and called fasciagraph). As another example consider Bd from above. Here we obtain

Sz(Bd) = d
(
3+ 1
3

)
+

(
d+ 1
3

)
32 + d(d− 1)3(`(P3)+ r(P3)).
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However, due to the different vertex with respect to which we define L(P3) and R(P3), this time we have r(P3) = 1 = `(P3),
implying

Sz(Bd) =
d
2
(3d2 + 12d− 7).

Again, the Wiener index of this graph (which coincides with the Szeged index) can be found already in [10] (where this
graph is denoted by F3m). Now, let us compare Sz(A2,m) and Sz(Bd). In the casem = 3k and d = 2k the two graphs A2,3k and
B2k have the same number of vertices, namely 6k. Here one has Sz(A2,3k) = k(36k2 − 1) and Sz(B2k) = k(12k2 + 24k− 7).
It is clear that Sz(A2,3k) > Sz(B2k). More precisely, one has for a large k the fact that Sz(A2,3k) ∼ 3 · Sz(B2k). The intuitive
explanation for this is that A2,3k has a greater diameter than B2k, therefore having more vertices which contribute higher
values nu(e|G) to the sum. More precisely, one has diam(A2,3k) = 6k− 1 and diam(B2k) = 2k+ 1, showing that for large k
one also has diam(A2,3k) ∼ 3 · diam(B2k). It is, therefore, natural to consider the quotient

Sz(A2,3k)
diam(A2,3k)

=
k(36k2−1)
6k−1 = 6k2 + k

as well as

Sz(B2k)
diam(B2k)

=
k(12k2 + 24k− 7)

2k+ 1
= 6k2 + 9k− 8+

8
2k+ 1

which for a very large k nearly coincide.
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