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a b s t r a c t

A numerical technique is presented for the solution of a parabolic partial differential
equation with a time-dependent coefficient subject to an extra measurement. The method
is derived by expanding the required approximate solution as the elements of Chebyshev
cardinal functions. Using the operational matrix of derivative, the problem can be reduced
to a set of algebraic equations. From the computational point of view, the solution obtained
by this method is in excellent agreement with those obtained by previous works and also
it is efficient to use.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The parameter determination in a parabolic partial differential equation from the overspecified data plays an important
role in applied mathematics, physics and engineering. These problems are widely encountered in the modelling of physical
phenomena [1–3].
In this paperwe shall consider an inverse problemof finding an unknownparameter a(t) in a parabolic partial differential

equation.
The classical example is that one needs to find the temperature distribution u(x, t) as well as the thermal coefficient a(t)

simultaneously that satisfy

∂u
∂t
= a(t)

∂2u
∂x2

, 0 < x < 1, 0 < t ≤ T , (1.1)

with an initial condition

u(x, 0) = f (x), 0 ≤ x ≤ 1, (1.2)

and boundary conditions

u(0, t) = g0(t), 0 ≤ t ≤ T , (1.3)
u(1, t) = g1(t), 0 ≤ t ≤ T , (1.4)
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and subject to an extra measurement

u(x∗, t) = E(t), 0 ≤ t ≤ T , x∗ ∈ (0, 1), (1.5)

where f , g0, g1, and E are known functions, while the functions u(x, t) and a(t) are unknown. It is worth pointing that, the
problem (1.1)–(1.4) is under-determined and we are forced to impose an additional boundary condition, such that a unique
solution pair (u, a) is obtained. Employing the condition (1.5), a recovery of the function a(t) together with the solution u
can be made possible.
The problem (1.1)–(1.5) represents a large class of parabolic inverse problems inwhich an unknown function a(t) is to be

determined as well as the solution itself. Here and through this paper ‘‘parabolic inverse problem’’ means that an unknown
coefficient that is assumed to be a function of only the time variable and the solution of a parabolic partial differential
equation subject to suitable initial-boundary conditions are to be determined [1–3].

1.1. A brief review of other methods existing in the literature

The numerical solution of the problem (1.1)–(1.5) is discussed by several authors. The problem of determining a
conductivity a(t) in Eq. (1.1) subject to the time-dependent boundary condition is investigated in [4–6]. The main idea
behind their approach is to reduce the problem to an integral equation for the coefficient a(t). It is worth pointing out
that this idea does not easily extend to the problems with n space variables. Also, authors of [7] proved the determination
of a time-dependent conductivity is possible for an arbitrary domain in Rn in a well-posed manner. Several local and
global existence results for this problem are given in [8]. Cannon and Yin [9] studied the numerical solution of (1.1)–(1.5)
and developed finite element techniques. In [2] several explicit and implicit finite difference procedures have been
developed to find the numerical solution of the problem (1.1)–(1.5). Authors of [10] presented the backward Euler finite
difference formula [11] for solving this problem. Their method is stable in the maximum norm and results in an error
of O

(
(∆x)2 + (∆t)

)
. Authors of [12] used the pseudospectral Legendre method to solve this problem. Also, a method is

proposed in [13] to solve this problem which is based on a semi-analytical approach. An unconditionally stable efficient
fourth-order numerical algorithm based on the functional transformation, the Pade approximation and the Richardson
extrapolation is proposed in [14] to compute themain function and the unknown coefficient in (1.1).We refer the interested
reader to [15–21] for more research works on inverse problems.

1.2. A brief discussion on the existence and uniqueness

The existence and uniqueness of the solutions to this problem are discussed in [7,8]. It is shown [8] that the following
conditions lead to [10] an existence and uniqueness theorem (also note that the solution u ∈ C4,2(QT ), where QT = {(x, t) :
0 < x < 1, 0 < t < T }):
(i) f (x) ∈ C4+α[0, 1], fxx(x) > 0, fxxxx(x∗) =

δ0
2 > 0, and fxxxx(x) > 0, on [0, 1].

(ii) g0(t), g1(t) and E(t) ∈ C l+
α
2 [0, T ], E ′(t) > 0, on [0, T ], 0 < g0(t)

E′(t) < 1, 0 <
g1(t)
E′(t) < 1,

(
g1(t)
E′(t)

)′
> 0, on [0, T ].

Remark. There is a fundamental difference between the direct and inverse problems. It is known that an inverse problem
is not well posed in general, while the direct problem is well posed. Thus an important task is to formulate the problem
properly and to find the conditions that ensure its well posedness. If the solution of the given problem exists and is unique
but it does not depend continuously on the data, then in general the computed solution has nothing to do with the true
solution. The ill-posedness may be a main difficulty for the inverse problems. Since it is hard to avoid some errors in the
observation E(t)which is obtained from experiments, a small perturbation in E(t)may result in a big change in a(t)which
maymake the obtained results meaningless [22]. In the current investigation wewill not discuss on this issue. However, we
refer the interested reader to [23,24].

1.3. A brief introduction to application

Certain types of physical problems can be modelled by (1.1)–(1.5). The problem (1.1)–(1.5) can be used to determine
the unknown properties in a region by measuring only data on the boundary [1,3]. The coefficient a(t) can represent some
physical quantities [2]. Here, we briefly mention the conductivity of a medium.
As is said in [10] one application is in the determination of the unknown properties in a region by measuring only

data on the boundary, and particular attention has been focused to coefficients that present physical meaning quantities.
For example, the conductivity of a medium. The techniques used depend strongly on the type of equations and variables
on which the unknown coefficient is assumed a priori to depend. An interesting case is when the unknown conductivity
depends on the dependent variable of the solution u. When we study the heat flow problem, this has the physical
interpretation of a temperature dependent on conductivity. Note that if the spatial change in the function u(x, t) is small
in comparison with the change in time, then a reasonable approximation to this state of affairs may be to consider the
coefficient to be a function only of the time variable [10,2]. It can be seen that in the current paperwe study an approximation
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method to an inverse problem of finding the function u(x, t) and the unknown positive coefficient a(t) in a parabolic initial-
boundary value problem.
It is worth to note that some other types of inverse problems are studied in [25–27,22,28,29]. When an unknown

coefficient appears in the lower order terms, some results have been obtained. We refer the interested reader to [1,3,30–
32] and the references therein. Some applications are described in [3]. Also, very recently authors of [33,34] investigated
some new types of inverse parabolic problems. Some research works on the theoretical solution of the inverse parabolic
problems can be found in [35–41]. Also the references [42–45] contain recent investigation on the numerical solution of
one-dimensional parabolic problems with non-classic boundary specifications.
The outline of this paper is as follows. In Section 2, we describe Chebyshev cardinal functions and its properties and

construct its operational matrix of derivative. In Section 3 the presented technique is used to approximate the solution
of problem (1.1)–(1.5). As a result a set of algebraic equations is formed and the solution of the considered problem is
introduced. Some numerical illustrations are given in Section 4 to show the efficiency of the proposed method. Finally, a
brief conclusion is drawn in Section 5.

2. Chebyshev cardinal functions

Chebyshev cardinal functions of order N in [−1, 1] are defined as [46]

Cj(z) =
TN+1(z)

TN+1,z(zj)(z − zj)
, j = 1, 2, . . . ,N + 1, (2.6)

where TN+1(z) is the second kind Chebyshev function of order N + 1 in [−1, 1], defined by

TN+1(z) = cos((N + 1) arccos(z)),

the subscript z denotes z-differentiation and zj, j = 1, 2, . . . ,N + 1 are the zeros of TN+1(z) defined by cos((2j− 1)/(2N +
2)), j = 1, 2, . . . ,N + 1.
We change the variable x = (z + 1)L/2 to use these functions on [0, L]. Now any function g(x) on [0, L] can be

approximated as

g(x) ≈
N+1∑
j=1

g(xj)Cj(x) = GTΦN(x), (2.7)

where xj, j = 1, 2, . . . ,N + 1 are the shifted points of zj, j = 1, 2, . . . ,N + 1 by using the transformation x = (z + 1)L/2,

G = [g(x1), g(x2), . . . , g(xN+1)]T , (2.8)

and

ΦN(x) = [C1(x), C2(x), . . . , CN+1(x)]T . (2.9)

2.1. The operational matrix of derivative

The differentiation of vectorsΦN in (2.9) can be expressed as

Φ ′N = DNΦN , (2.10)

where DN is (N + 1) × (N + 1) operational matrix of derivative for Chebyshev cardinal functions. The matrix DN can be
obtained by the following process. Let

Φ ′N(x) = [C
′

1(x), C
′

2(x), . . . , C
′

N+1(x)]
T .

Using Eq. (2.7), any function C ′j (x) can be approximated as

C ′j (x) =
N+1∑
k=1

C ′j (xk)Ck(x). (2.11)

Comparing Eqs. (2.10) and (2.11), we obtain

DN =

 C
′

1(x1) . . . C ′1(xN+1)
...

...
C ′N+1(x1) . . . C ′N+1(xN+1)

 . (2.12)
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To calculate the entries C ′j (xk), j, k = 1, 2, . . . ,N + 1, we have

TN+1(x)
x− xj

= α ×

N+1∏
k=1
k6=j

(x− xk), (2.13)

where α = 22N+1/LN+1 is the coefficient of xN+1 in the shifted Chebyshev polynomial function TN+1(x). Using Eq. (2.13), we
obtain

d
dx

(
TN+1(x)
x− xj

)
= α ×

N+1∑
i=1
i6=j

N+1∏
k=1
k6=i,j

(x− xk) =
N+1∑
i=1
i6=j

TN+1(x)
(x− xj)(x− xi)

, (2.14)

so we have

C ′j (x) =
1

TN+1,x(xj)
×
d
dx

(
TN+1(x)
x− xj

)
=

1
TN+1,x(xj)

N+1∑
i=1
i6=j

TN+1(x)
(x− xj)(x− xi)

= Cj(x)
N+1∑
i=1
i6=j

1
x− xi

. (2.15)

For k = j using Eq. (2.15), we obtain

C ′j (xj) =
N+1∑
i=1
i6=j

1
xj − xi

. (2.16)

For k 6= j using Eq. (2.15) we have

C ′j (xk) =
α

TN+1,x(xj)

N+1∏
`=1
`6=k,j

(xk − x`). (2.17)

So the entries of the matrix DN can be found using Eqs. (2.16) and (2.17).

3. Description of the new computational technique

To use the Chebyshev cardinal functions for solving the problem (1.1)–(1.5), at first we use the following transformation.

3.1. The employed transformation

Using (1.1)–(1.4) and (1.5), we have

E ′(t) = a(t)uxx(x∗, t). (3.18)
We assume that uxx(x∗, t) > 0; hence

a(t) =
E ′(t)
uxx(x∗, t)

, 0 ≤ t ≤ T . (3.19)

Thus the inverse problem (1.1)–(1.5) is equivalent [2] to the following problem:

ut =
E ′(t)
uxx(x∗, t)

uxx, 0 ≤ x ≤ 1, 0 < t ≤ T , (3.20)

u(x, 0) = f (x), 0 ≤ x ≤ 1,
u(0, t) = g0(t), 0 ≤ t ≤ T ,
u(1, t) = g1(t), 0 ≤ t ≤ T .

(3.21)

Our main idea is based on utilization of the following transformation: Employing [1–3]
v(x, t) = uxx(x, t), (3.22)

we will have

vt(x, t) =
E ′(t)
v(x∗, t)

vxx(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T , (3.23)

v(x, 0) = f ′′(x), 0 ≤ x ≤ 1, (3.24)

v(0, t) =
g ′0(t)
E ′(t)

v(x∗, t), 0 ≤ t ≤ T , (3.25)

v(1, t) =
g ′1(t)
E ′(t)

v(x∗, t), 0 ≤ t ≤ T . (3.26)
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Note that

v(0, t) = uxx(0, t) =
ut(0, t)
a(t)

= ut(0, t)
uxx(x∗, t)
E ′(t)

=
ut(0, t)
E ′(t)

v(x∗, t) =
g ′0(t)
E ′(t)

v(x∗, t). (3.27)

3.2. The computational framework

SupposeΦN(x) is the vector of Chebyshev cardinal functions on [0,1] defined in (2.9) andΦM(t) is the vector of cardinal
functions on [0,T]. Now the unknown function v(x, t) in (3.23) can be approximated as

v(x, t) '
N+1∑
i=1

M+1∑
j=1

Vi,jCi(x)Cj(t) = ΦTN(x)VΦM(t), (3.28)

where the unknown matrix V is (N + 1)× (M + 1) and can be shown as

V =

 V1,1 . . . V1,M+1
...

...
VN+1,1 . . . VN+1,M+1

 .
Employing Eq. (2.10), we can write

vt(x, t) =
∂

∂t
ΦTN(x)VΦM(t) = Φ

T
N(x)VΦ

′

M(t)

= ΦTN(x)VDMΦM(t). (3.29)

Also, we have

vxx(x, t) =
∂2

∂x2
ΦTN(x)VΦM(t) = Φ

′′T
N(x)VΦM(t)

= ΦTN(x)(D
2
N)
TVΦM(t), (3.30)

and

v(x∗, t) = ΦTN(x
∗)VΦM(t). (3.31)

Using Eqs. (3.29)–(3.31) in Eq. (3.23), we obtain

ΦTN(x)VDMΦM(t) =
E ′(t)

ΦTN(x∗)VΦM(t)
ΦTN(x)(D

2
N)
TVΦM(t). (3.32)

By collocating Eq. (3.32) in (N − 1)×M points (xi, tj), i = 2, . . . ,N, j = 2, . . . ,M + 1,where xi, i = 1, . . . ,N + 1, are the
shifted points of zj on [0, 1] and tj, j = 1, . . . ,M + 1, are the shifted points of zj on [0, T ], we obtain

R(xi, tj) = ΦTN(xi)VDMΦM(tj)−
E ′(tj)

ΦTN(x∗)VΦM(tj)
ΦTN(xi)(D

2
N)
TVΦM(tj) = 0, i = 2, . . . ,N, j = 2, . . . ,M + 1. (3.33)

The property of cardinal functions yields

ΦN(xi) = eNi , i = 1, . . . ,N + 1 and ΦM(tj) = eMj , j = 1, . . . ,M + 1, (3.34)

where e`j is the jth column of (`+ 1)× (`+ 1) identity matrix I. Using (3.34) in (3.33), we have

R(xi, tj) = (eNi )
TVDMeMj −

E ′(tj)
ΦTN(x∗)Ve

M
j
(eNi )

T (D2N)
TVeMj

= (VDM)i,j −
E ′(tj)

[ΦTN(x∗)V ]j
((D2N)

TV )i,j = 0, i = 2, . . . ,N, j = 2, . . . ,M + 1, (3.35)

where (A)i,j and [W ]j show (i, j)th entry of matrix A and the jth entry of vector W , respectively. Using Eq. (3.28) in
Eqs. (3.24)–(3.26) yields

ΦTN(x)VΦM(0) = f
′′(x),

ΦTN(0)VΦM(t) = g
′

0(t)/E
′(t)ΦTN(x

∗)VΦM(t),
ΦTN(1)VΦM(t) = g

′

1(t)/E
′(t)ΦTN(x

∗)VΦM(t).
(3.36)
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Collocating Eq. (3.36) in N + 1 points xi, i = 1, . . . ,N + 1 and M points tj, j = 1, . . . ,M and using the property of (3.34),
we have

[VΦM(0)]i = f ′′(xi), i = 1, 2, . . .N + 1,
[ΦTN(0)V ]j = g

′

0(tj)/E
′(tj)[ΦTN(x

∗)V ]j, j = 1, . . . ,M,
[ΦTN(1)V ]j = g

′

1(tj)/E
′(tj)[ΦTN(x

∗)V ]j, j = 1, . . . ,M.
(3.37)

Eq. (3.35) together with Eq. (3.37) give a (M + 1) × (N + 1) system of nonlinear equations, which can be solved for
Vi,j, i = 1, 2, . . . ,N + 1, j = 1, 2, . . . ,M + 1, using Newton’s iterative method. So the unknown function of v(x, t) can
be found.
In order to recover u from v, we need to solve the following boundary value problem:

uxx(x, t) = v(x, t), 0 < x < 1, (3.38)
u(0, t) = g0(t), 0 < t ≤ T , (3.39)
u(1, t) = g1(t), 0 < t ≤ T . (3.40)

By integration both sides of (3.38) from 0 to x, we obtain

ux(x, t)− ux(0, t) =
∫ x

0
v(x1, t)dx1. (3.41)

Again by integration both sides of (3.38) from 0 to x, we can write

u(x, t)− u(0, t)− ux(0, t)x =
∫ x

0

∫ x2

0
v(x1, t)dx1dx2. (3.42)

Putting x = 1 in (3.42) and using (3.39), we have

ux(0, t) = u(1, t)− g0(t)−
∫ 1

0

∫ x2

0
v(x1, t)dx1dx2. (3.43)

Putting (3.43) in (3.42) and using (3.39) and (3.42), we obtain

u(x, t) = g0(t)+
(
g1(t)− g0(t)−

∫ 1

0

∫ x2

0
v(x1, t)dx1dx2

)
x+

∫ x

0

∫ x2

0
v(x1, t)dx1dx2. (3.44)

All functions on the right-hand side of (3.44) are known, so the unknown function u can be found.

4. Numerical tests

To give a clear overview of the procedure, the following test problems will be investigated.

Example 1. Consider (1.1)–(1.5) with [2]

f (x) = exp
( x
2

)
,

g0(t) =
1+ 2t3

1+ t3
+ sin

(
t
2

)
,

g1(t) =
√
exp(1)(1+ 2t3)
1+ t3

+

√
exp(1) sin

(
t
2

)
,

E(t) =
1.13315(1+ 2t3)

1+ t3
+ 1.13315 sin

(
t
2

)
,

with x∗ = 0.25, for which the exact solution is

u(x, t) =
exp

( x
2

)
(1+ 2t3)

1+ t3
+ exp

( x
2

)
sin
(
t
2

)
,

and

a(t) =
2
[
6t2 + (1+ t3)2 cos

( t
2

)]
(1+ t)3

[
1+ 2t3 + (1+ t3) sin

( t
2

)] .
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Table 1
Absolute values of error for u from Example 1 with T = 1.0.

x Method [2] N = 6,M = 5 N = 4,M = 9 N = 8,M = 8 N = 9,M = 9

0.1 1.9× 10−3 5.9× 10−5 1.8× 10−5 1.6× 10−6 1.0× 10−7

0.2 1.9× 10−3 1.1× 10−4 3.2× 10−5 2.9× 10−6 1.9× 10−7

0.3 1.5× 10−3 1.4× 10−4 4.3× 10−5 3.9× 10−6 2.6× 10−7

0.4 1.8× 10−3 1.6× 10−4 5.0× 10−5 4.5× 10−6 3.0× 10−7

0.5 1.4× 10−3 1.7× 10−4 5.3× 10−5 4.8× 10−6 3.2× 10−7

0.6 1.2× 10−3 1.6× 10−4 5.1× 10−5 4.7× 10−6 3.1× 10−7

0.7 1.6× 10−3 1.4× 10−4 4.6× 10−5 4.2× 10−6 2.7× 10−7

0.8 1.8× 10−3 1.1× 10−4 3.5× 10−5 3.2× 10−6 2.1× 10−7

0.9 1.5× 10−3 6.1× 10−5 2.0× 10−5 1.8× 10−6 1.2× 10−7

1.0 1.7× 10−3 0.0 0.0 0.0 0.0

20

15

10

5

0

0.00.250.50.751.0

t

1.0

0.75

0.5

0.25

0.0

x

10-7

Fig. 1. Plot of error for uwith N = 7,M = 11.

Note that

v(x, t) =
exp

( x
2

)
(1+ 2t3)

4(1+ t3)
+
exp

( x
2

)
sin
( t
2

)
4

.

Table 1 shows the absolute values of Error for T = 1 and different values of M and N , using the method proposed in
Section 3 and compares the result with the result obtained using the technique of [2]. Fig. 1 shows the plot of error for u
with N = 7,M = 11 on the interval x ∈ [0, 1] and t ∈ [0, 1].

Example 2. As the second example, consider (1.1)–(1.5) with [2]

f (x) = 2 exp(x),

g0(t) = 1+
1+ 2t3

1+ t3
,

g1(t) = exp(1)+
exp(1)(1+ 2t3)

1+ t3
,

E(t) = 1.28403+
1.28403(1+ 2t3)

1+ t3
,

with x∗ = 0.25, for which the exact solution is

u(x, t) = exp(x)+
exp(x)(1+ 2t3)

1+ t3
,

and

a(t) =
3t2

2+ 5t3 + 3t6
.

Table 2 shows the absolute values of Error for T = 1 and different values ofM andN , using themethod proposed in Section 3
and compares the result with the result obtained using the scheme introduced in [2]. Fig. 2. shows the plot of error a(t) for
N = 9,M = 9 on the interval t ∈ [0, 1].
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Table 2
Absolute values of error for u from Example 2 with T = 1.0.

x Method [2] N = 5,M = 5 N = 7,M = 7 N = 6,M = 11

0.1 5.1× 10−3 4.8× 10−4 4.6× 10−5 2.8× 10−6

0.2 4.9× 10−3 8.8× 10−4 8.5× 10−5 4.9× 10−6

0.3 4.9× 10−3 1.2× 10−3 1.2× 10−4 6.5× 10−6

0.4 5.1× 10−3 1.4× 10−3 1.4× 10−4 7.6× 10−6

0.5 4.9× 10−3 1.5× 10−3 1.5× 10−4 8.1× 10−6

0.6 5.0× 10−3 1.5× 10−3 1.5× 10−4 8.1× 10−6

0.7 5.0× 10−3 1.4× 10−3 1.3× 10−4 7.4× 10−6

0.8 5.1× 10−3 1.1× 10−3 1.0× 10−4 5.9× 10−6

0.9 5.3× 10−3 6.2× 10−4 6.1× 10−5 3.5× 10−6

1.0 5.3× 10−3 0.0 0.0 0.0

Fig. 2. Plot of error for a(t)with N = 9,M = 9.

Table 3
Absolute values of error for u from Example 3 with T = 1.0.

x N = 4,M = 4 N = 5,M = 5 N = 7,M = 9 N = 8, M = 10

0.1 3.1× 10−3 4.7× 10−4 3.7× 10−7 3.0× 10−8

0.2 5.7× 10−3 8.5× 10−4 6.8× 10−7 5.5× 10−8

0.3 7.7× 10−3 1.2× 10−3 9.2× 10−7 7.4× 10−8

0.4 9.0× 10−3 1.4× 10−3 1.1× 10−6 8.7× 10−8

0.5 9.7× 10−3 1.5× 10−3 1.2× 10−6 9.3× 10−8

0.6 9.6× 10−3 1.5× 10−3 1.1× 10−6 9.2× 10−8

0.7 8.7× 10−3 1.3× 10−3 1.0× 10−6 8.3× 10−8

0.8 6.8× 10−3 1.0× 10−3 8.2× 10−7 6.6× 10−8

0.9 4.0× 10−3 6.0× 10−4 4.8× 10−7 3.8× 10−8
1.0 0.0 0.0 0.0 0.0

Example 3. As another test problem, we use (1.1)–(1.5) with

f (x) = 2 exp(x),
g0(t) = exp(t2),
g1(t) = exp(1+ t2),
E(t) = exp(t2 + 0.25),

with x∗ = 0.25 for which the exact solution is

u(x, t) = exp(x+ t2), and a(t) = 2t.

Table 3 shows the absolute values of Error for T = 1 and different values of M and N , using the method presented in
Section 3.

Example 4. As the last example, we consider (1.1)–(1.5) with

f (x) = cos(π(x− 1/2)),
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Fig. 3. Plot of error for uwith N = 9,M = 9.

Fig. 4. Plot of error for a(t)with N = 9,M = 9.

g0(t) = 0,
g1(t) = 0,
E(t) = cos(0.2π) exp(−t2),

with x∗ = 0.3, which has the following exact solution:

u(x, t) = exp(−t2) cos(π(x− 1/2)), and a(t) = 2t/π2.

Figs. 3 and 4 show the plot of error u(x, t) and a(t) respectively for N = 9,M = 9 on the interval x ∈ [0, 1] and t ∈ [0, 1].

5. Conclusion

The inverse problemsnot only have intrinsicmathematical interests but also have a variety of applications in industry and
engineering sciences [1–3]. This paper focused on the inverse parabolic problem of determination of the leading coefficient
in the heat equation with an extra condition. In this paper we presented a numerical scheme for solving a parabolic partial
differential equation with a time-dependent coefficient subject to an extra measurement. The shifted Chebyshev cardinal
functions on interval [0, 1] and [0, T ] were employed. The new algorithm proposed in the current paper was tested on
several examples from the literature. The obtained results showed that this approach can solve the problem effectively and
needs few computations.
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