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Abstract

It is now well known that the K-theory of a Waldhausen category depends on more than just its (trian-
gulated) homotopy category (Invent. Math. 150 (2002) 111). The purpose of this note is to show that the
K-theory spectrum of a (good) Waldhausen category is completely determined by its Dwyer–Kan simplicial
localization, without any additional structure. As the simplicial localization is a re7ned version of the homo-
topy category which also determines the triangulated structure, our result is a possible answer to the general
question: “To which extent K-theory is not an invariant of triangulated derived categories? ”
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1. Introduction

As recently shown by Schlichting [19], the K-theory spectrum (actually the K-theory groups) of a
stable model category depends on strictly more than just its triangulated homotopy category; indeed,
he exhibits two Waldhausen categories having equivalent (triangulated) homotopy categories and
non-weakly equivalent associated K-theory spectra. Because of this there is no longer any hope of
de7ning a reasonable K-theory functor on the level of triangulated categories (see [19, Proposition
2.2]). In this paper we show that, if one replaces in the above statement the homotopy category (i.e.
the Gabriel–Zisman localization with respect to weak equivalences), with the more re7ned simplicial
localization of Dwyer and Kan, then one actually gets an invariance statement; more precisely, we
prove that the K-theory spectrum of a good Waldhausen category (see De7nition 2.1) is an invariant
of its simplicial localization without any additional structure. As the simplicial localization is a
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re7ned version of the homotopy category, that is a simplicially enriched category lying in between
the category itself and its homotopy category, we like to consider this result as a possible answer
to the general question: “To which extend K-theory is not an invariant of triangulated derived
categories? ”. In a sense, our result explains exactly what “structure” is lacking in the derived (or
homotopy) category of a good Waldhausen category, in order to reconstruct its K-theory.

Our approach consists 7rst in de7ning a K-theory functor on the level of S-categories (i.e. of
simplicially enriched categories) satisfying some natural properties, and then in proving that, when
applied to the simplicial localization of a good Waldhausen category C, this construction yields a
spectrum which is weakly equivalent to the Waldhausen’s K-theory spectrum of C.

Good Waldhausen categories. Let us brieKy describe the class of Waldhausen categories for
which our result holds (see De7nition 2.1 for details and the last paragraph of the Introduction for
our conventions and notations on Waldhausen categories). Roughly speaking, a good Waldhausen
category is a Waldhausen category that can be embedded in the category of 7brant objects of a
pointed model category, and whose Waldhausen structure is induced by the ambient model structure
(De7nition 2.1). Good Waldhausen categories behave particularly well with respect to simplicial
localization as they possess a nice homotopy calculus of fractions (in the sense of [5]). The main
property of good Waldhausen categories is the following form of the approximation theorem.

Proposition 1.1 (see Proposition 3.2). Let f:C → D be an exact functor between good Wald-
hausen categories. If the induced morphism LHC → LHD between the simplicial localizations is an
equivalence of S-categories, then the induced morphism

K(f):K(C)→ K(D)

is a weak equivalence of spectra.

Though there surely exist non-good Waldhausen categories (see Example 2.2), in practice it turns
out that given a Waldhausen category there is always a good Waldhausen model, i.e. a good Wald-
hausen category with the same K-theory space up to homotopy. For example, the category of perfect
complexes on a scheme and the category of spaces having a given space as a retract, both have good
Waldhausen models (see Example 2.4); this shows that the class of good Waldhausen categories
contains interesting examples. 1

K-Theory of S-categories. For an S-category T , which is pointed and has Bbered products (see
De7nitions 4.1 and 4.2 for details), we de7ne an associated good Waldhausen category M (T ), by
embedding T in the model category of simplicial presheaves on T . The K-theory spectrum K(T ) is
then de7ned to be the Waldhausen K-theory spectrum of M (T )

K(T ) := K(M (T )):

Proposition 1.1 immediately implies that K(T ) is invariant, up to weak equivalences of spectra,
under equivalences in the argument T (see the end of Section 3).

1 Actually, we do not know any reasonable example for which there is no good Waldhausen model.
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If C is a good Waldhausen category, then its simplicial localization LHC is pointed and has
7bered products (Proposition 4.4). One can therefore consider its K-theory spectrum K(LHC). The
main theorem of this paper is the following

Theorem 1.2 (See Theorem 6.1). If C is a good Waldhausen category, there exists a weak equiv-
alence

K(C) � K(LHC):

As a main corollary, we get the following result that actually motivated this paper.

Corollary 1.3 (See Corollary 6.6). Let C and D be two good Waldhausen categories. If the two
S-categories LHC and LHD are equivalent, then the K-theory spectra K(C) and K(D) are isomor-
phic in the homotopy category of spectra.

Another interesting consequence is the following.

Corollary 1.4 (See Corollary 7.1): Let M1 := mM(Z=p2) and M2 := mM(Z=p[�]) be the two stable
model categories considered in [19]. Then, the two S-categories LHM1 and LHM2 are not equivalent.

This last corollary implies the existence of two stable S-categories (see Section 7), namely LHM1

and LHM2, with equivalent triangulated homotopy categories, but which are not equivalent.

What we have not done. To close this introduction let us mention that we did not investigate the
full functoriality of the construction T �→ K(T ) from S-categories to spectra, and more generally we
did not try to fully develop the K-theory of S-categories, though we think that this deserves to be
done in the future. In a similar vein, we think that the equivalence of our main theorem (Theorem
1.2) is in a way functorial in C, at least up to homotopy, but we did not try to prove this. Thus,
the results of this paper de7nitely do not pretend to be optimal, as our 7rst motivation was only to
give a proof of Corollary 6.6. However, the interested reader might consult the last section in which
we present some ideas towards more intrinsic constructions and results, independent of the notion
of Waldhausen category.

Organization of the paper. In Section 2, we introduce the class of Waldhausen categories (good
Waldhausen categories) for which our main result holds; for such categories C, we prove that
the geometric realization of the subcategory W of weak equivalences is equivalent to the geomet-
ric realization of the S-category of homotopy equivalences in the hammock localization LH(C) of
C along W . We also list some examples of good Waldhausen categories. In Section 3, we de-
7ne DK-equivalences and prove Proposition 1.1, a strong form of the approximation theorem for
good Waldhausen categories. In Section 4, we de7ne when an S-category is pointed and has 7bered
products, and prove that the hammock localization of a good Waldhausen category along weak equiv-
alences is an S-category of this kind. In Section 5, we de7ne the K-theory of pointed S-categories
with 7bered products and study its functoriality with respect to equivalences. Section 6 contains
the main theorem showing that the K-theory of a good Waldhausen category is equivalent to the
K-theory of its hammock localization along weak equivalences. As a corollary we get that the ham-
mock localization completely determines the K-theory of a good Waldhausen category. Finally, in
Section 7, we discuss possible future directions and relations with other works.
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Conventions and review of Waldhausen categories, S-categories and simplicial localization.
Throughout this paper, a Waldausen category will be the dual of a usual Waldhausen category,
i.e. our Waldhausen categories we will always be categories with Bbrations and weak equivalences
satisfying the axioms duals to Cof1, Cof2, Cof3 [25, 1.1], Weq1 and Weq2 [25, 1.2]. The reason
for such a choice is only stylistic, in order to avoid having to dualize too many times in the text.

Explicitly, in this paper a Waldhausen category will be a triple (C; 7b(C);w(C)) consisting of
category C with subcategories w(C) ,→ C and 7b(C) ,→ C whose morphisms will be called (weak)
equivalences and 7brations, respectively, satisfying the following axioms:

• C has a zero object ∗.
• (Cof1)op: The subcategory 7b(C) contains all isomorphisms in C.
• (Cof2)op: For any x∈C, the morphism x → ∗ is in 7b(C).
• (Cof3)op: If x → y is a 7bration, then, for any morphism y′ → y in C, the pullback x×y y′ exists
in C and the canonical morphism x ×y y′ → y′ is again a 7bration.

• (Weq1)op: The subcategory w(C) contains all isomorphisms in C.
• (Weq2)op: If in the commutative diagram

y
p−−−−−→ x ←−−−−− z

�

�

�

y′ −−−−−→
p′

x′ ←−−−−− z′

in C; p and p′ are 7brations and the vertical arrows are equivalences, then the induced morphism
y ×x z → y′ ×x′ z′ is again an equivalence.

To any usual Waldhausen category there is an associated K-theory spectrum (or space) as de7ned
in [25, Section 1.3] using Waldhausen S•-construction. If C is a Waldhausen category according
to our de7nition above, then there is a dual S•-construction, denoted by Sop

• , formally obtained by
replacing co7brations with 7brations (with opposed arrows) and pushouts with pullbacks in the usual
S•-construction. The dual S•-construction applied to our C, produce a K-theory spectrum

n �→ |wSop
• · · · Sop

• C|

denoted by K(C). Note that K(C) obviously coincides with the usual Waldhausen K-theory spectrum
(as de7ned in [25, Section 1.3, p. 330]) of the dual category Cop, considered as a usual Waldhausen
category (i.e. a category with equivalences and co7brations satisfying the dual of the above axioms).

For model categories we refer to [13,11] which are standard references on the subject. We will
often use a basic link between model categories and Waldhausen categories, namely the fact that
if M is a pointed model category (i.e. a model category in which the initial object ∅ and the
7nal object ∗ are isomorphic), then its subcategory M f of 7brant objects together with the induced
subcategories of equivalences and 7brations is in fact a Waldhausen category (according to our
convention). This follows from [11, Theorem 19.4.2(2), Proposition 19.4.4(2)], and can also be
checked more elementarily.
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By an S-category, we will mean a category enriched over the category of simplicial sets. If T is
an S-category, we will denote by �0T the category with the same objects as T and with morphisms
given by Hom�0T (x; y) := �0(HomT (x; y)), where HomT (x; y) is the simplicial set of morphisms
between x and y in T . Recall the following fundamental de7nition.

De�nition 1.5. Let f:T → T ′ be a morphism of S-categories.

1. The morphism f is essentially surjective if the induced functor �0f: �0T → �0T ′ is an essentially
surjective functor of categories.

2. The morphism is fully faithful if for any pair of objects (x; y) in T , the induced morphism
fx;y: HomT (x; y)→ HomT ′(f(x); f(y)) is an equivalence of simplicial sets.

3. The morphism f is an equivalence if it is essentially surjective and fully faithful.

Given a category C and a subcategory W , Dwyer and Kan have de7ned in [5] an S-category
LH(C; S), called the hammock localization, which is an enhanced version of the localized category
W−1C. LH(C; W ) (often denoted simply by LH(C) when W is clear from the context) is a model for
the Dwyer–Kan simplicial localization of C along W [4,5]. LH(C; W ) has the advantage, with respect
to the simplicial localization of [4], that there is a natural morphism (called localization morphism)
of S-categories L:C → LH(C; W ). With the same notations, we will write Ho(C) for the standard
localization W−1C and call it the homotopy category of C. In such a context, we will say that two
objects in C are equivalent if they are linked by a string of morphisms in W . Equivalent objects in
C goes to isomorphic objects in Ho(C), but the contrary is not correct in general (though it will be
true in most of our context, e.g. when C is a model category or a good Waldhausen category).

The construction (C; W ) �→ LH(C; W ) is functorial in the pair (C; W ) and it also extends naturally
to the case where W is a sub-S-category of an S-category C (see [4, Section 6]). Two fundamental
properties of the functor LH: (C; W ) �→ LH(C; W ) are the following:

• The localization morphism L identi7es �0(LH(C; W )) with the (usual, Gabriel–Zisman) localization
W−1C.
• If M is a simplicial model category, and W ⊂ M is its subcategory of equivalences, then the full

sub-S-category M cf of M , consisting of objects which are co7brant and 7brant, is equivalent to
LH(M; W ).

We will neglect all kind of considerations about universes in our set-theoretic and categorical
setup, leaving to the reader to keep track of the various choices of universes one needs in order the
diOerent constructions to make sense.

2. Good Waldhausen categories

In this section, we introduce the class of Waldhausen categories (good Waldhausen categories) we
are going to work with and for which our main theorem (Theorem 6.1) holds. Regarding the choice
of this class, it turns out in practice that, though some usual Waldhausen categories might not be
good in our sense, to our knowledge there always exists a good Waldhausen model for them, i.e.
a good Waldhausen category with the same K-theory space (up to homotopy). In other words, we
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do not know any relevant example which, for K-theoretical purposes, could require using non-good
Waldhausen categories.

We would also like to stress that the class of good Waldhausen categories is not the most general
one for which our results hold. As the reader will notice, our main results should still be correct
for any Waldhausen category having a good enough homotopy calculus of fractions (in the sense
of [5, Section 6]).

If M is a model category, we denote by M f its full subcategory of 7brant objects. When the
model category M is pointed, the category M f will be considered as a Waldhausen category in
which weak equivalences and 7brations are induced by the model structure of M .

De�nition 2.1. A good Waldhausen category is a Waldhausen category C for which there exists a
pointed model category M and a fully faithful functor i:C → M f satisfying the following conditions:

1. The functor i commutes with 7nite limits (in particular i(∗) = ∗).
2. The essential image i(C) ⊂ M f is stable by weak equivalences (i.e., if x∈M f is weakly equivalent

to an object of i(C), then x∈ i(C)).
3. A morphism in C is a 7bration (resp. a weak equivalence) if and only if its image is a 7bration

(resp. a weak equivalence) in M .

Most of the time we will identify C with its essential image i(C) in M and forget about the
functor i. However, the model category M and the embedding i are not part of the data.

Example 2.2. Let k be a ring and Ch(k) be the category of (unbounded) chain complexes of
k-modules. The category Ch(k) is a model category with weak equivalences (resp. 7brations) given
by the quasi-isomorphisms (resp. by the epimorphisms). The subcategory V of bounded complexes
of 7nitely generated projective k-modules is a Waldhausen category, where 7brations and weak
equivalences are induced by Ch(k). However, V might not be a good Waldhausen category because
it is not closed under quasi-isomorphisms in Ch(k): its closure is the category Perf (k) of perfect
complexes in Ch(k), which is indeed a good Waldhausen category (for the induced structure). Never-
theless, the K-theory spectra of V and of Perf (k) are naturally equivalent. This is a typical situation
of a Waldhausen category that might not be good but which admits a good Waldhausen model.

It is clear from De7nition 2.1 that any morphism f: x → y in a good Waldhausen category C
possesses a (functorial) factorization

f: x
j−−−−−→ x′ p−−−−−→y;

where j is a co7bration and p a 7bration, and one of them is a weak equivalence. Here, by co7bration
in C we mean a morphism that has the left lifting property with respect to all 7brations in C that
are also weak equivalences. Using [5, 8.2] (with W1 being the class of trivial co7brations in C, and
W2 the class of trivial 7brations), one sees that the existence of such factorizations implies that the
category C has a two sided homotopy calculus of fractions with respect to the weak equivalences W .
In particular, the simplicial sets of morphisms in LHC can be computed using hammocks of types
W−1CW−1 [6, Proposition 6.2(i)]. As an immediate consequence, we get the following important
fact.
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Proposition 2.3. Let C be a good Waldhausen category, and W its sub-category of weak equiv-
alences. Let wLHC be the sub-S-category of LHC consisting of homotopy equivalences (i.e. of
morphisms projecting to isomorphisms in �0(LHC)). Then, the natural morphism induced on the
geometric realizations

|W | → |wLHC|
is a weak equivalence of simplicial sets.

Proof. Indeed, as C has a two sided homotopy calculus of fractions, then [6, 6.2(i)] implies that the
natural morphism |LHW | → |wLHC| is a weak equivalence. As [4, 4.2; 6, Proposition 2.2] implies
that the natural morphism |W | → |LHW | is also a weak equivalence, so is the composition

|W | → |LHW | → |wLHC|:

Let C be a good Waldhausen category, and i:C ,→ M f an embedding as in De7nition 2.1.
Condition (2) of De7nition 2.1, and the de7nition of the hammock localization of [5, 2.1], implies
immediately that the induced morphism of S-categories

LHC → LHM f

is fully faithful (in the sense of De7nition 1.5). This implies that the (homotopy type of the)
simplicial sets of morphisms of LHC can actually be computed in the model category M by using
the standard simplicial and co-simplicial resolutions techniques available in model categories
(see [6]).

The induced functor Ho(C) → Ho(M) being fully faithful, one sees that any morphism a → b
in the homotopy category of a good Waldhausen category C can be represented by a diagram
a u←a′ → b in C, where u is a weak equivalence (recall that any object in C is 7brant in M). From
a general point of view, homotopy categories of good Waldhausen categories behave very much
like categories of 7brant objects in a model categories. For example, the set of morphisms in the
homotopy category can be computed using homotopy classes of morphisms from co7brant to 7brant
objects (as explained in [13]). In this work we will often use implicitly all these properties.

Example 2.4. 1. The 7rst standard example of a good Waldhausen category is the category Perf (k)
of perfect complexes over a ring k. Recall that the 7brations are the epimorphisms and the quasi-
isomorphisms are the weak equivalences. The category Perf (k) is clearly a full subcategory of Ch(k),
the category of all chain complexes of k-modules. If we endow Ch(k) with its projective model
structure of [13, Theorem 2.3.11] (for which the weak equivalences are the quasi-isomorphisms
and the 7brations are the epimorphisms) then one checks immediately that the conditions of the
De7nition 2.1 are satis7ed.
2. The previous example can be generalized in order to construct a good Waldhausen category

that computes the K-theory of schemes in the sense of [20]. One possible way to do this, is by
using the model category ChQCoh(X ) of complexes of quasi-coherent OX -Modules on a quasi-compact
and quasi-separated scheme X de7ned in [14, Corollary 2.3(b)]. Recall that in this injective model
structure the co7brations are the monomorphisms and weak equivalences are the quasi-isomorphisms.
Inside ChQCoh(X ) we have the full subcategory of perfect complexes Perf (X ) ⊂ ChQCoh(X ), which
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is a Waldhausen category for which weak equivalences are the quasi-isomorphisms and the 7brations
are the epimorphisms, and that computes the K-theory of the scheme X . This Waldhausen category
does not seem to be good in the sense of De7nition 2.1, however its full subcategory of 7brant
objects Perf (X )f ⊂ Perf (X ) is good if we endow it with the induced structure of Waldhausen
category coming from ChQCoh(X )f . Now, the inclusion functor Perf (X )f ,→ Perf (X ) is an exact
functor of Waldhausen categories (as 7brations in ChQCoh(X ) are in particular epimorphisms, [14,
Proposition 2.12]), and the approximation theorem [25, Theorem 1.6.7] tells us that it induces a
weak equivalence on the corresponding K-theory spectra. Therefore, the K-theory of the scheme X
can be computed using the good Waldhausen category Perf (X )f .

3. More generally, for any ringed site (C;O), there exists a good Waldhausen category that
computes the K-theory of the Waldhausen category of perfect complexes of O-modules on C. This
requires a model category structure on the category of complexes of O-modules that we will not
describe in this work.

4. For a topological space X , one can use the model category of spaces under-and-over X
(retractive spaces over X ), X=Top=X , in order to de7ne a good Waldhausen category computing
the Waldhausen K-theory of X [25, 2.1].

3. DK -equivalences and the approximation theorem

If C is any Waldhausen category we will simply denote by LHC its hammock localization along
the sub-category of weak equivalences as de7ned in [5, 2.1]. LHC is an S-category that comes
together with a localization functor

l:C → LHC:

If f:C → D is an exact functor between Waldhausen categories, then it induces a well-de7ned
morphism of S-categories Lf:LHC → LHD, such that the following diagram is commutative:

C l−−−−−→ LHC

f

�

� Lf

D l−−−−−→ LHD:

De�nition 3.1. An exact functor f:C → D between Waldhausen categories is a DK-equivalence
if the induced morphism Lf :LHC → LHD is an equivalence of S-categories (in the sense of [7,
1.3(ii)]).

Obviously, the expression DK-equivalence refers to Dwyer and Kan.
The following proposition is a strong form of the approximation theorem for good Waldhausen

categories. It is probably false for more general Waldhausen categories.
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Proposition 3.2. If f:C → D is a DK-equivalence between good Waldhausen categories then the
induced morphism on the K-theory spectra

K(f):K(C)→ K(D)

is a weak equivalence.

Proof. Let SnC and SnD denote the dual versions (with co7bration replaced by 7brations) of the
categories with weak equivalences de7ned and denoted in the same way in [25, 1.3]. We will prove
the following more precise claim.

Claim. For any n¿ 0, the induced functor

Snf: SnC → SnD

induces a weak equivalence on the classifying spaces of weak equivalences

wSnf : |wSnC| � |wSnD|:

Note that the category wSnC is equivalent to the category of strings of 7brations in C

xn → xn−1 → · · · → x1

and levelwise weak equivalences between them. As nerves of categories are preserved (up to a
weak equivalence) by equivalences of categories, we can assume that SnC (resp. SnD) actually is
the category of strings of 7brations in C (resp., in D); the fact that SnC is a bit more complicated
than just the category of strings of 7brations is only used to have a strict simplicial diagram of
categories [n] �→ SnC (see [25, 1.3, p. 329]).

Lemma 3.3. Let f:C → D be a DK-equivalence between good Waldhausen categories. Then the
induced morphism on the classifying spaces

|f|: |wC| → |wD|
is a weak equivalence.

Proof. This follows immediately from Proposition 2.3.

Note that the previous lemma already implies the Claim above for n=1. For general n, it is then
enough to prove that the categories SnC and SnD are again good Waldhausen categories and that
the induced exact functor

Snf: SnC → SnD

is again a DK-equivalence, and then apply Lemma 3.3 to get the Claim.
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We need to recall here the Waldhausen structure on the category SnC. The 7brations (resp. weak
equivalences) are the morphisms

xn −−−−−→ xn−1 −−−−−→ · · · −−−−−→ x1�

�

�

yn −−−−−→ yn−1 −−−−−→ · · · −−−−−→ y1

such that each induced morphism

xi → xi−1 ×yi−1 yi

is a 7bration in C (resp., such that each morphism xi → yi is a weak equivalence in C). With this
de7nition we have

Lemma 3.4. If C is a good Waldhausen category then so is SnC.

Proof. Let us consider an embedding C ⊂ M f , of C in the category of 7brant objects in a pointed
model category M (and satisfying the conditions of De7nition 2.1). We consider the category SnM :=
MI(n−1), of strings of (n− 1) composable morphisms in M . Here we have denoted by I(n− 1) the
free category with n composable morphism

I(n− 1) := {n→ n− 1→ · · · → 1}:
The objects of SnM are therefore diagrams in M

xn → xn−1 → · · · → x1:

We endow the category SnM with the model structure for which weak equivalences are de7ned
levelwise. The 7brations are morphisms

xn −−−−−→ xn−1 −−−−−→ · · · −−−−−→ x1�

�

�

yn −−−−−→ yn−1 −−−−−→ · · · −−−−−→ y1

such that each induced morphism

xi → xi−1 ×yi−1 yi

is a 7bration in M . Note that in particular 7brant objects in SnM are strings of 7brations in M

xn → xn−1 → · · · → x1:

This model structure is known as the Reedy model structure described, e.g. in [13, Theorem 5.2.5],
when the category I(n−1) is considered as a Reedy category in the obvious way. Now, the category
SnC has an induced natural embedding into (SnM)f , which satis7es the conditions of De7nition 2.1.
This concludes the proof of Lemma 3.4.
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Lemma 3.5. The induced exact functor

Snf: SnC → SnD

is a DK-equivalence.

Proof. Let us 7rst show that the induced morphism

LHSnf:LHSnC → LHSnD

is fully faithful. To see this, let C ,→ M f be an embedding of C in a pointed model category as in
De7nition 2.1. Then, the simplicial sets of morphisms in LHC are equivalent to the corresponding
mapping spaces computed in the model category M . Applying this argument to the embedding
SnC ,→ SnM , we deduce that the simplicial sets of morphisms of LHSnC are equivalent to the
corresponding mapping spaces computed in the model category SnM . Finally, it is quite easy to
compute the mapping spaces in SnM in terms of the mapping spaces of M . The reader will check
that the simplicial set of morphisms from x := (xn → xn−1 → · · · → x1) to y := (yn → yn−1 →
· · · → y1) in LHSnC is given by the following iterated homotopy 7ber product

HomLHC(xn; yn)×h
HomLHC (xn;yn−1) HomLHC(xn−1; yn−1)×h · · · ×h

HomLHC (x2 ;y1) HomLHC(x1; y1):

This description of the simplicial sets of morphisms in LHSnC is of course also valid for LHSnD. It
shows in particular that if LHf:LHC → LHD is fully faithful, then so is LHSnf:LHSnC → LHSnD
for any n.

It remains to show that the morphism

LHSnf:LHSnC → LHSnD

is essentially surjective. It is enough to prove that for any object

y := (yn → yn−1 → · · · → y1)

in SnD, there exists an object

x := (xn → xn−1 → · · · → x1)

in SnC, an object

z := (zn → zn−1 → · · · → z1)

in SnD and a diagram of weak equivalences in SnD

f(x)← z → y:

For this, we let z → y be a co7brant replacement of y in the good Waldhausen category SnD
(recall that co7brations in a Waldhausen category are de7ned to be morphisms having the left lifting
property with respect to 7brations which are weak equivalences; by de7nition of a good Waldhausen
category, a co7brant replacement functor always exists). By induction, we may assume that there
exists x6n−1 := (xn−1 → xn−2 → · · · → x1)∈ Sn−1D, and a weak equivalence z6n−1 → f(x6n−1)
in Sn−1D, where z6n−1 := (zn−1 → zn−2 → · · · → z1)∈ Sn−1D. And it remains to show that there
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exists a 7bration xn → xn−1 in C, and a weak equivalence zn → f(xn) in D, such that the following
diagram in D commutes:

zn −−−−−→ zn−1�

�

f(xn) −−−−−→ f(xn−1):

As f induces an equivalence Ho(C) � Ho(D) on the homotopy categories and the zi are co7brant
objects in D, it is clear that one can 7nd a 7bration xn → xn−1 in C, and a weak equivalence
zn → f(xn) in D such that the above diagram is commutative in Ho(D). But, as zn is co7brant and
f(xn)→ f(xn−1) is a 7bration between 7brant objects, we can always choose the weak equivalence
zn → f(xn) in such a way that the above diagram commutes in D (the argument is the same as in
the case of model categories, therefore we leave the details to the reader).

This construction gives the required diagram in D

f(x)← z → y;

and concludes the proof of the lemma.

Lemmas 3.4 and 3.5 show that Snf: SnC → SnD is also a DK-equivalence between good Wald-
hausen categories for any n, and therefore Lemma 3.3 7nishes the proof of the Claim and therefore
of Proposition 3.2.

4. Simplicial localization of good Waldhausen categories

Given 7brant simplicial sets X; Y and Z , and a diagram X → Z ← Y , we denote by X ×h
Z Y the

corresponding standard homotopy 7bered product. Explicitly, it is de7ned by

X ×h
Z Y := (X × Y )×Z×Z Z$1

:

Note that for any simplicial set A, there is a natural isomorphism of simplicial sets

Hom(A; X ×h
Z Y ) � Hom(A; X )×h

Hom(A;Z) Hom(A; Y ):

De�nition 4.1. Let T be an S-category. We say that T is pointed if there exists an object ∗∈T such
that for any other object x∈T , the simplicial sets HomT (x; ∗) and HomT (∗; x) are weakly equivalent
to ∗.

For the next de7nition, recall that an S-category is said to be Bbrant if all its simplicial sets of
morphisms are 7brant simplicial sets. The existence of a model structure on S-categories with a
7xed set of objects (see for example [4]) implies that for any S-category T , there exists a 7brant
S-category T ′ and an equivalence of S-categories T → T ′ (this equivalence is furthermore the
identity on the set of objects). Such a T ′ will be called a Bbrant model of T .
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De�nition 4.2. 1. Let T be a 7brant S-category. We say that T has Bbered products if for any
diagram of morphisms in T

x u−−−−−→ z v←−−−−−y

there exists an object t ∈T , two morphisms

x
p←−−−−− t

q−−−−−→y

and a homotopy h∈HomT (t; z)
$1

such that

@0h = u ◦ p; @1h = v ◦ q

and which satis7es the following universal property:
“for any object w∈T , the natural morphism induced by (p; q; h)

HomT (w; t)→ HomT (w; x)×h
HomT (w; z) HomT (w; y)

is a weak equivalence.”
Such an object t together with the data (p; q; h) is called a Bbered product of the diagram

x → z ← y.
2. For a general S-category T , we say that T has Bbered products if one of its 7brant model has.

The fact that most of the time the hammock localization of a category is not a 7brant S-category
might be annoying. There exists however a more intrinsic version of the above de7nition that we
now describe.

For an S-category T , one can consider the category of simplicial functors from its opposite
S-category T op to the category SSet, of simplicial sets. This category is a model category for which
the weak equivalences and the 7brations are de7ned levelwise; we will denote it by SPr(T ). There
exists a simplicially enriched Yoneda functor

h :T → SPr(T )

that sends an object x∈T to the diagram

hx : T op → SSet

y �→ HomT (y; x):

We will say that an object of SPr(T ) is representable if it is weakly equivalent in SPr(T ) to some
hx for some x∈T . With these notions the reader will check the following fact as an exercise.

Lemma 4.3. An S-category T has Bbered products if and only if the full subcategory of SPr(T )
consisting of representable objects is stable under homotopy pull-backs.

Note that one can then assume the property after the “iO” in the previous lemma as an equivalent
de7nition of S-category with 7ber products. The following proposition is well known when C is a
model category (see for example [12, 8.4]).

Proposition 4.4. Let C be a good Waldhausen category. Then the S-category LHC is pointed and
has Bbered products.
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Proof. Let C ,→ M be an embedding of C as a full subcategory of a pointed model category as in
De7nition 2.1. The conditions of 2.1 imply that the induced morphism of S-categories

LHC → LHM

is fully faithful (i.e. induces a weak equivalence on the corresponding simplicial sets of morphisms).
Therefore, LHC is equivalent to the full sub-S-category of LHM consisting of objects belonging to
C. Now, it is well known that the S-category LHM has 7bered products and furthermore that the
7bered products in LHM can be identi7ed with the homotopy 7bered products in the model category
M (see [12, 8.4]). By De7nition 2.1, the full sub-S-category of LHM of objects belonging to C is
therefore stable by 7bered products. This formally implies that LHC has 7bered products (the details
are left to the reader).

In the same way, as M is a pointed model category, the object ∗ in M , viewed as an object in
LHM , satis7es the condition of De7nition 4.1, so LHM is a pointed S-category. But, by condition
(1) of De7nition 2.1, this ∗ belongs to the image of LHC in LHM . As LHC → LHM is fully faithful,
this shows that LHC is a pointed S-category.

5. K -theory of S-categories

In this section, we de7ne for any pointed S-category T with 7bered products a K-theory spec-
trum K(T ). We will show that K(T ) is invariant, up to weak equivalences, under equivalences of
S-categories in T . The construction T �→ K(T ) is also functorial in T , but we will not investigate
this in this work, as it is more technical to prove and is not really needed for our main purpose.

We 7x T a pointed S-category with Bbered products. We consider the model category SPr(T ) of
simplicial diagrams on T op, and its associated Yoneda embedding

h : T → SPr(T )

x �→ HomT (−; x):

Recall the following homotopy version of the simplicially enriched Yoneda lemma (e.g. [22,
Proposition 2.4.2]).

Lemma 5.1. Let T ′ be any S-category. For any object F ∈SPr(T ′) and any object x∈T ′, there is
a natural isomorphism in the homotopy category of simplicial sets

RHom(hx; F) � F(x):

In particular, the induced functor h: �0T ′ → Ho(SPr(T ′)) is fully faithful.

Recall that any object in SPr(T ) which is weakly equivalent to some hx is called representable.
If ∗ denotes the 7nal object in SPr(T ), let us consider the model category

T̂ ∗ := ∗=SPr(T );
of pointed objects in the model category SPr(T ) (see [13, Chapter 6, p. 4]). Clearly, T̂ ∗ is a pointed
model category. We now consider its full subcategory of 7brant objects, denoted by T̂ f∗, and de7ne
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the category M (T ) to be the full subcategory consisting of objects in T̂ f∗ whose underlying objects
in SPr(T ) are representable.

As we supposed that T has 7bered products, one checks immediately that M (T ) is a full subcat-
egory of T̂ f∗ which is stable under weak equivalences and homotopy pull-backs (see Lemma 4.3).
Moreover, M (T ) contains the 7nal object of T̂ ∗ since this is weakly equivalent to h∗ for any object
∗∈T as in De7nition 4.2. Therefore, endowed with the induced Waldhausen structure coming from
T̂ f∗; M (T ) clearly becomes a good Waldhausen category.

De�nition 5.2. The K-theory spectrum of the S-category T is de7ned to be the K-theory spectrum
of the Waldhausen category M (T ). It is denoted by

K(T ) := K(M (T )):

We will now show that the construction T �→ K(T ) is functorial with respect to. equivalences of
S-categories. Though T �→ K(T ) actually satis7es a more general functoriality property, its functo-
riality with respect to equivalences of S-categories will be enough for our present purpose which is
to deduce that K(T ) only depends (up to weak equivalences) on the S-equivalence class of T .
Let f : T → T ′ be an equivalence of pointed S-categories with 7bered products. We deduce a

pull-back functor

f∗ : SPr(T ′)→ SPr(T );

as well as its pointed version

f∗ : T̂ ′
∗ → T̂ ∗:

This functor is in fact a right Quillen functor whose left adjoint is denoted by

f! : T̂ ∗ → T̂ ′
∗:

As the morphism f is an equivalence of S-categories, this Quillen adjunction is actually known to
be a Quillen equivalence (see [7]). The functor f∗ (pointed-version) being right Quillen, it induces
a functor on the subcategories of 7brant objects

f∗ : T̂
′f
∗ → T̂ f

∗:

Proposition 5.3. The functor above sends the subcategory M (T ′) ⊂ (T̂ ′∗)f into the subcategory
M (T ) ⊂ (T̂ ∗)f .

Proof. By de7nition of M (−), it is enough to show that the right derived functor

Rf∗ � f∗ : Ho(SPr(T ′))→ Ho(SPr(T ))

preserves the property of being a representable object. But, this functor is an equivalence of categories
whose inverse is the functor

Lf! : Ho(SPr(T ))→ Ho(SPr(T ′)):

The reader will check that, by adjunction, one has for any object x∈T a natural isomorphism in
Ho(SPr(T ′))

Lf!(hx) � hf(x):
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As f is an equivalence of S-categories, for any object y∈T ′ there exists x∈T and a morphism
u : f(x)→ y in T ′ inducing an isomorphism in �0T ′. Clearly hu : hf(x) → hy is an equivalence in
SPr(T ). Therefore, one has

f∗(hy) � f∗(hf(x)) � f∗ ◦ Lf!(hx) � hx:

This implies that f∗ � Rf∗ preserves representable objects.

The above proposition implies that any equivalence of S-categories f : T → T ′ induces a
well-de7ned exact functor of good Waldhausen categories

f∗ : M (T ′)→ M (T ):

The rule f �→ f∗ is clearly controvariantly functorial in f (i.e. one has a natural isomorphism
(g ◦ f)∗ � f∗ ◦ g∗, satisfying the usual co-cycle condition). Therefore, we get a controvariant (lax)
functor from the category of pointed S-categories with 7bered products and S-equivalences to the
category of Waldhausen categories and exact functors. 2

Proposition 5.4. Let f : T → T ′ be an equivalence of pointed S-categories with Bbered products.
Then the induced exact functor

f∗ : M (T ′)→ M (T )

is a DK-equivalence (see DeBnition 3.1).

Proof. By construction, there is a commutative diagram on the level of hammock localizations

LH(T̂
′f
∗ )

LHf∗
−−−−−→ LH(T̂ f

∗)�

�

LHM (T ′) −−−−−→ LHM (T )

The functor f∗ being a Quillen equivalence it is well known that the top horizontal arrow is an
equivalence of S-categories [5]. But, as the vertical morphisms of S-categories are fully faithful this
implies that the morphism

LHf∗ : LHM (T ′)→ LHM (T )

is fully faithful. But the isomorphism in Ho(SPr(T ))

f∗(hf(x)) � hx

shows that the induced functor

�0LHf∗ : �0LHM (T ′)→ �0LHM (T )

is also essentially surjective, and we conclude.

2 By applying the standard stricti7cation procedure we will assume that M �→ M (T ) is a genuine functor from
S-categories towards Waldhausen categories.
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Using Propositions 3.2, 5.3 and 5.4, we obtain the following conclusion. Let us denote by S−Catex∗
the category of S-categories which are pointed and have 7bered products. Restricting the morphisms
to equivalences of S-categories, we get a subcategory wS − Catex∗ . Moreover, we denote by Sp the
category of spectra, and by wSp its subcategory of weak equivalences. The previous constructions
yield a well-de7ned functor

K : wS − Catex∗ → wSpop

T �→ K(T ): = K(M (T ))

f �→ K(f∗):

We can geometrically realize this functor to get a morphism on the corresponding classifying
spaces

K : |wS − Catex∗ | → |wSpop| � |wSp|;
which has to be understood as our K-theory functor from the moduli space of pointed S-categories
with 7bered products to the moduli space of spectra.

The fundamental groupoids of the spaces |wS − Catex∗ | and |wSp| have the following description.
Let us denote by Ho(S−Cat) (resp. by Ho(Sp)) the homotopy category of S-categories obtained by
formally inverting the S-equivalences (resp., the homotopy category of spectra). Then, the fundamen-
tal groupoid ,1(|wS−Catex∗ |) is naturally equivalent to the sub-groupoid of Ho(S−Cat) consisting of
pointed S-categories with 7bered products and isomorphisms between them (in Ho(S−Cat)). In the
same way, the fundamental groupoid ,1(|wSp|) is naturally equivalent to the maximal sub-groupoid
of Ho(Sp) consisting of spectra and isomorphisms (in Ho(Sp)). The K-theory morphism

K : |wS − Catex∗ | → |wSpop| � |wSp|
de7ned above, induces a well-de7ned functor between the corresponding fundamental groupoids

K : ,1(|wS − Catex∗ |)→ ,1(|wSp|)op:
In other words, for any pair of pointed S-categories with 7bered products T and T ′, and any
isomorphism f : T � T ′ in Ho(S − Cat), we have an isomorphism

Kf: = K(f∗)−1 : K(T ) � K(T ′)

which is functorial in f.
Note however that the morphism K : |wS − Catex∗ | → |wSp| contains more information as for

example it encodes the various morphisms on the simplicial monoids of self-equivalences

Aut(T )→ Aut(K(T )):

Remark 5.5. In closing this section, we would like to mention that the above construction of the
K-theory spectrum K(T ) of an S-category T can actually be made functorial enough in order to
produce a well-de7ned functor at the level of the underlying homotopy categories

K : Ho(S − Catex∗ )→ Ho(Sp):

Moreover, one can actually show that this can also be lifted to a morphism of S-categories

K : LH(S − Catex∗ )→ LHSp
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between the corresponding hammock localizations, which is the best possible functoriality one could
ever need in general.

6. Comparison

In this section, we prove that the K-theory spectrum of a good Waldhausen category (De7nition
5.2) can be reconstructed from its simplicial localization. The main result is the following.

Theorem 6.1. Let C be a good Waldhausen category and LHC its hammock localization. Then,
there exists an isomorphism in the homotopy category of spectra

K(C) � K(LHC);

where the left-hand side is the Waldhausen construction and the right-hand side is deBned in
DeBnition 5.2.

Proof. We will explicitly produce a natural string of exact functors between good Waldhausen
categories, all of which are DK-equivalences, that links C to M (LHC). Then, Proposition 3.2 will
imply the theorem.

We start by choosing a pointed model category M and an embedding C ,→ M f as in De7nition
2.1. Let - be a co7brant replacement functor in M , in the sense of [11, De7nition 17.1.8]. Recall
that this means that - is a functor from M to the category of co-simplicial objects in M , together
with a natural transformation -→ c, where c is the constant co-simplicial diagram in M ; moreover,
for any x∈M , the natural morphism

-(x)→ c(x)

is a Reedy co7brant replacement of the constant co-simplicial diagram c(x) (i.e. it is a Reedy trivial
7bration and -(x) is co7brant in the Reedy model category [13, 5.2] of co-simplicial objects in M).
One should notice that if x∈C, since all the objects -(x)n are 7brant objects in M which are

weakly equivalent to x, then -(x) is actually a co-simplicial object in C.
Let us denote by Ĉ the category of simplicial presheaves on C, and by Ĉ∗ the category of pointed

objects in Ĉ (i.e. the category of presheaves of pointed simplicial sets). Both these categories will
be endowed with their projective model structures for which 7brations and weak equivalences are
de7ned objectwise.

For x∈C, we de7ne a pointed simplicial presheaf

hx : Cop → SSet∗

y �→ hx(y): = Hom(-(y); x):

Note that hx is a pointed simplicial presheaf because C is pointed (and therefore the 7nal object
in Ĉ can be identi7ed with h∗, where ∗ is the 7nal and the initial object in C). The construction
x �→ hx then gives rise to a functor

h : C → Ĉ∗

x �→ hx: = Hom(-(−); x):
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As all objects in C are 7brant in M , the standard properties of mapping spaces tell us that for any
x∈C the pointed simplicial presheaf hx is a 7brant object in Ĉ∗ (see [11, Corollary 17.5.3 (1)]).
What we actually get is, therefore, a functor

h : C → Ĉf
∗:

If we endow the category Ĉf∗ with the induced Waldhausen structure coming from the projective
model structure on Ĉ∗, the properties of mapping spaces also imply that the functor h is an exact
functor between good Waldhausen categories (see [11, Corollaries 17.5.4(2), 17.5.5(2)]).

We denote by R(C) the full subcategory of Ĉf∗ consisting of objects weakly equivalent (in Ĉ∗) to
hx, for some x∈C. Objects in R(C) will simply be called representable objects. As the functor h
commutes with 7nite limits, this subcategory is clearly a good Waldhausen category when endowed
with the induced Waldhausen structure.

Lemma 6.2. The exact functor between good Waldhausen categories h : C → R(C) is a DK-
equivalence.

Proof. By construction the functor is essentially surjective up to weak equivalence, which implies
that LHh : LHC → LHR(C) is indeed essentially surjective. It remains to show that it is also fully
faithful. Let us consider the composition

LHC → LHR(C)→ LHĈf
∗:

The second morphism being fully faithful (as R(C) is closed by weak equivalences in Ĉf∗), it is
enough to show that the composite morphism LHC → LHĈ∗ is fully faithful. This essentially follows
from the Yoneda lemma for pseudo-model categories of [22, Lemma 4.2.2], with the small diOerence
that C is not exactly a pseudo-model category [22, De7nition 4.1.1], but only the subcategory of
7brant objects in a pseudo-model category.

To 7x this, we proceed as follows. Let C ′ be the full subcategory of M of objects weakly equiv-
alent to some object in C. Then, clearly C ′ is a pseudo-model category [22, De7nition 4.1.1], there
is an obvious embedding C ,→ C ′ and (identifying C with its essential image in M) its subcategory
of 7brant objects (C ′)f coincides with C. Moreover, if we denote by R a 7brant replacement functor
in M , the functor

hR : C ′ → Ĉ∗

sending x∈C ′ to hR(x) preserves weak equivalences ([11, Corollary 17.5.4 (2)]) and one has, by
de7nition, a commutative diagram
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giving rise to a corresponding commutative diagram of S-categories

Applying LH to the inclusion C ,→ C ′, one sees that the morphism LHR : LHC ′ → LHC is an
equivalence of S-categories. Finally, the morphism LHhR : LHC ′ → LHĈ∗ is fully faithful by the
following application of the Yoneda lemma for pseudo-model categories [22, Lemma 4.2.2]. For any
x and y in C ′, we have a chain of weak equivalences of simplicial sets

HomLH(C′)(x; y) � MapM (x; y) � MapM (Rx; Ry) � hRy(Rx);

where Map(−;−) denotes the mapping space. But, by the standard simplicially enriched Yoneda
lemma, the simplicial set hRy(Rx) is isomorphic to HomĈ′(hRx; hRy), where hRx denotes presheaf of
constant simplicial sets z �→ HomM (z; Rx); moreover, if we let W ′ denote the weak equivalences in
C ′; hRx is co7brant (C ′; W ′)∧ (de7ned in [22, De7nition 4.1.4]) and hRy is 7brant in (C ′; W ′)∧. Hence
hRy(Rx) is weakly equivalent to Map(C′ ;W ′)∧(hRx; hRy) and then, by To&en and Vezzosi [22, Lemma
4.2.2], to Map(C′ ;W ′)∧(hRx; hRy) which in turn is weakly equivalent to HomLH((C′ ;W ′)∧)(hRx; hRy). This
shows that the morphism of S-categories LHhR : LHC ′ → LH((C ′; W ′)∧) is fully faithful. To infer
from this that the morphism LHC ′ → LHĈ is likewise fully faithful, it is enough to observe that we
have a commutative diagram of S-categories

LH((C ′; W ′)∧) −−−−−→ LHĈ ′
�

�

LH((C; W )∧) −−−−−→ LHĈ

in which the horizontal arrows are fully faithful (as (C ′; W ′)∧ is a left Bous7eld localization of Ĉ ′
and (C; W )∧ is a left Bous7eld localization of Ĉ) and the left vertical arrow is an S-equivalence
because (C ′)f equals C [22, Proposition 4.1.6].

This shows that the morphism LHC ′ → LHĈ is fully faithful. One checks easily that as LHC ′ is a
pointed S-category, this also implies that the morphism LHC ′ → LHĈ∗ is also fully faithful.

For the second half of the proof of Theorem 6.1, let us consider the localization
morphism l : C → LHC and the induced functor on the model categories of pointed simplicial
presheaves

l∗ : L̂HC∗ → Ĉ∗:
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Recall that, by de7nition, the good Waldhausen category M (LHC) is the full subcategory of (L̂HC∗)f
consisting of representable objects. 3

The Yoneda lemmas for pseudo-model categories (see [22, Lemma 4.2.2]) and for S-categories
[22, Proposition 2.4.2]) imply that an object F ∈Ho(Ĉ∗) (resp. F ′ ∈Ho(L̂HC∗)) is representable if
and only if there exists an object x∈C such that for any G ∈Ho(Ĉ∗) that sends weak equivalences
in C to equivalences of simplicial sets (resp. for any G′ ∈Ho(L̂HC∗)), one has a natural isomorphism

HomHo(Ĉ∗)(F; G) � �0(G(x)∗) (resp: Hom
Ho(L̂HC∗)

(F ′; G′) � �0(G(x)∗)):

Here, we have denoted by G(x)∗ the homotopy 7ber of G(x) → G(∗) at the distinguished point
∗∈G(∗) via the natural morphism ∗ → x (note that in LHC the natural morphism ∗ → x is only
uniquely de7ned up to homotopy, which is however enough for our purposes).

Lemma 6.3. Let l∗ : L̂HC∗ → Ĉ∗ be the functor deBned above. Then, an object F ∈ L̂HC∗ is
representable if and only if its image l∗F is representable in Ĉ∗.

Proof. We consider the induced functor on the level of homotopy categories

l∗ : Ho(L̂HC∗)→ Ho(Ĉ∗):

By To&en and Vezzosi [22, Theorem 2.3.5] and standard properties of the left Bous7eld localization
(e.g. see the discussion at the end of [22, p. 19]), this functor is fully faithful and its essential
image consists precisely of those functor Cop → SSet∗ sending weak equivalences in C to weak
equivalences of simplicial sets.

Now, let x∈C and let us show that there exists an isomorphism in Ho(Ĉ∗); l∗(hx) � hx: this
will show the only if part of the lemma. The standard properties of mapping spaces imply that
hx ∈Ho(Ĉ∗) belongs to the essential image of the functor l∗. Therefore, as l∗ is fully faithful, to
prove that l∗(hx) � hx, it will be enough to show that, for any G ∈Ho(L̂HC∗), there exists a natural
isomorphism

HomHo(Ĉ∗)(l
∗(hx); l∗(G)) � HomHo(Ĉ∗)(hx; l∗(G)):

But, again by full-faithfulness of l∗, the Yoneda lemma for S-categories [22, Proposition 2.4.2]
implies that the left-hand side is naturally isomorphic to

Hom
Ho(L̂HC∗)

(hx; G) � �0(G(x)∗):

On the other hand, the Yoneda of pseudo-model categories [22, Lemma 4.2.2] implies for the
right-hand side an isomorphism

HomHo(Ĉ∗)(hx; l∗(G)) � �0(l∗(G)(x)∗):

3 We warn the reader that we are dealing here with two diOerent notions of representable objects, one in Ĉ∗ and the
other one in L̂HC∗. In the same way, we will not make any diOerence between hx as an object in Ĉ∗ or as an object
in L̂HC∗ (this might be a bit confusing as C and LHC have the same set of objects). Note however, that this abuse is
justi7ed by the fact that the standard properties of mapping spaces imply that the “simplicial” hx de7ned in Section 4
coincides, up to equivalence, with the model (or good Waldhausen, involving the choice of a cosimplicial resolution -)
hx de7ned in Section 6.
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As the simplicial sets G(x)∗ and l∗(G)(x)∗ are clearly functorially equivalent, this shows the 7rst
part of the lemma.

It remains to prove that if F ∈Ho(L̂HC∗) is such that l∗(F) is representable, then F is itself
representable. For this, we use what we have just proved before, i.e. that l∗(hx) � hx. So, if one
has l∗(F) � hx, the fact that l∗ is fully faithful implies that F � hx.

The previous lemma implies in particular that the functor l∗ restricts to an exact functor

l∗ : M (LHC)→ R(C):

Lemma 6.4. The above exact functor l∗ : M (LHC)→ R(C) is a DK-equivalence.

Proof. By Dwyer and Kan [7] (see also [22, Theorem 2.3.5]), we know that the induced morphism
of S-categories

LHl∗ : LHL̂HC∗ → LHĈ∗
is fully faithful. As the natural morphisms

LHR(C)→ LHĈ∗ LHM (LHC)→ LHL̂HC∗
are also fully faithful, we get, in particular, that the induced morphism of S-categories

LHl∗ : LHM (LHC)→ LHR(C)

is fully faithful. Furthermore, the “if” part of Lemma 6.3 implies that this morphism is also essentially
surjective. This proves that the exact functor of good Waldhausen categories

l∗ : M (LHC)→ R(C)

is a DK-equivalence.

To summarize, we have de7ned (Lemmas 6.2 and 6.4) a diagram of DK-equivalences between good
Waldhausen categories

C
h−−−−−→R(C) l∗←−−−−−M (LHC):

By Proposition 3.2, this induces a diagram of weak equivalences on the K-theory spectra

K(C)
K(h)−−−−−→K(R(C))

K(l∗)←−−−−−K(M (LHC)) = K(LHC):

This concludes the proof of Theorem 6.1.

Remark 6.5. With some work, one might be able to check that the isomorphism K(C) � K(LHC) in
the homotopy category of spectra is functorial with respect to DK-equivalences of good Waldhausen
categories. It is actually functorial with respect to exact functors, but this would require the strong
functoriality property of the construction T �→ K(T ), for S-categories T , that we choosed not to
discuss in this paper.

The most important corollary of Theorem 6.1 is the following one, which was our original goal.
It states that the K-theory spectrum of a good Waldhausen category is completely determined, up
to weak equivalences, by its simplicial (or hammock) localization.
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Corollary 6.6. If C and D are good Waldhausen categories, and if the S-categories LHC and LHD
are equivalent (i.e. are isomorphic in the homotopy category Ho(S–Cat)) then the K-theory spectra
K(C) and K(D) are isomorphic in the homotopy category of spectra.

7. Final comments

K-Theory of Segal categories. The de7nition we gave of the K-theory spectrum of a pointed
S-category with 7bered products (De7nition 5.2) makes use of Waldhausen categories and the Wald-
hausen construction. In a way this is not very satisfactory as one would like to have a de7nition
purely in terms of S-categories. Such a construction surely exists but might not be so easy to de-
scribe. A major problem is that, by mimicking Waldhausen construction, one would like to de7ne,
for an S-category T , a new S-category SnT classifying strings of (n− 1) composable morphisms in
T , or, in other words, an object like T I(n−1). However, it is well known that the naive version of
T I(n−1) does not give the correct answer, as for example it might not be invariant under equivalences
of S-categories in T . One way to solve this problem would be to use weak simplicial functors and
weak natural transformations as de7ned in [2]. Another, completely equivalent, solution is to use
the theory of Segal categories of [12,18].

As shown in [12,18] (for an overview of results, see also [22, Appendix]) Segal categories behave
very much like categories, and many of the standard categorical constructions are known to have
reasonable analogs. There exists for example a notion of Segal categories of functors between Segal
categories, a notion of limit and colimit and more generally of adjunctions in Segal categories,
a Yoneda lemma: : : . These constructions could probably be used in order to de7ne the K-theory
spectrum of any pointed Segal category with 7nite limits in a very intrinsic way and without referring
to Waldhausen construction. Roughly speaking, the construction should proceed as follows. We start
from any such Segal category A, and consider the simplicial Segal category

S∗A : $op → Segal Cat

[n] �→ SnA : = AI(n−1);

where the transitions morphisms are given by various 7bered products as in Waldhausen original
construction (this diagram is probably not really a simplicial Segal category, but only a weak form
of it. In other words the functor S∗A has itself to be understood as a morphism from $op to the
2-Segal category of Segal categories, see [12]). Then we consider the simplicial diagram of maximal
sub-Segal groupoids (called interiors in [12, Section 2])

wS∗A : $op → Segal Groupoids

[n] �→ wSnA : = (AI(n−1))int

and de7ne the K-theory spectrum of A to be the geometric realization of this diagram of Segal
groupoids, or in other words, to be the colimit of the functor wS∗A computed in the 2-Segal category
of Segal groupoids.

This construction would then give a well-de7ned morphism

K : (Segal Cat)ex∗ → Sp;
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from the 2-Segal category (Segal Cat)ex∗ of pointed Segal categories with 7nite limits, exact functors
and equivalences between them, to the Segal category of spectra.

This theory can also be pushed further, by introducing monoidal structures. Indeed, there exists
a notion of monoidal Segal categories, as well as symmetric monoidal Segal categories (see [21]).
The previously sketched construction could then be extended to obtain E∞-ring spectra from pointed
Segal categories with 7nite limits and with an exact symmetric monoidal structure.

Though there are practical reasons for having a K-theory functor de7ned on the level of Segal
categories (e.g., to develop the algebraic K-theory of derived geometric stacks in the sense of [23]),
there is also a conceptual reason for it. Indeed, Segal categories are models for ∞-categories for
which i-morphisms are invertible for all i ¿ 1, and therefore the K-theory spectrum of a Segal
category can be viewed as the K-theory of an ∞-category. Now, the simplicial localization LH(C; S)
of a category C with respect to a subcategory S is identi7ed in [12, Section 8] as the universal
Segal category obtained from C by formally inverting the arrows in S. From a higher categorical
point of view this means that LH(C; S) is a model for the ∞-category formally obtained from C
by inverting all morphisms in S. In other words, LH(C; S) is a model for the ∞-categorical version
of the usual homotopy category S−1C, and is therefore a kind of ∞-homotopy category in a very
precise sense.

Thinking in these terms, Theorem 6.1 says that the K-theory of a good Waldhausen category,
while not an invariant of its usual (0-truncated) homotopy category, is indeed an invariant of its
∞-homotopy category.
Triangulated structures. The reader will notice that we did not consider at all triangulated struc-

tures. This might look surprising as in several recent works around the theme K-theory and derived
categories the main point was to see whether one could reconstruct or not the K-theory from the tri-
angulated derived categories (see [17,19,3]). From the point of view adopted in this paper, Theorem
6.1 tells us that, in order to reconstruct the K-theory space of C, one only needs the S-category LHC
and nothing more. The reason for this is that the triangulated structure on the homotopy category
Ho(C), when it exists, is completely determined by the S-category LHC. Indeed, both 7ber and
co7ber sequences can be reconstructed from LHC, as well as the suspension functor.
The observation that the triangulated structure can be reconstructed from the simplicial structure

has lead to a notion of stable S-category (this notion was introduced by A. Hirschowitz, C. Simpson
and the 7rst author in order to replace the old notion of triangulated category). Very similar notions
already exist in homotopy theory, as the notion of stable model category of [13, Section 7], of
enhanced triangulated category of [1] (see also [12, Section 7]), and of stable homotopy theory of
[10]. To be a bit more precise, a stable S-category is an S-category T satisfying the following three
conditions:

1. The S-category T is pointed.
2. The S-category T has 7bered products and 7bered co-products (i.e. T and T op satisfy the condi-

tions of De7nition 4.2).
3. The loop space functor

3 : �0T → �0T

x �→ ∗ ×h
x ∗

is an equivalence of categories.
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Here, the object ∗ ×h
x ∗ is a 7bered product of the diagram ∗ → x ← ∗ in T , in the sense of

De7nition 4.2.
Clearly, the simplicial localization LHM of any stable model category M is a stable S-category.

Conversely, one can show that a stable S-category T always embeds nicely in some LHM , for M
a stable model category. The homotopy category �0T will then be equivalent to a full sub-category
of Ho(M) which is stable by taking homotopy 7bers. In particular, the general framework of [13,
Section 7] will imply that the category �0T possesses a natural triangulated structure.

Our Corollary 6.6 implies the following result.

Corollary 7.1. There exist two non-equivalent stable S-categories T and T ′, whose associated tri-
angulated categories �0T and �0T ′ are equivalent.

Proof. Let M1:=mM(Z=p2) and M2:=mM(Z=p[�]) be the two stable model categories considered
in [19]. The two simplicial localizations LHM1 and LHM2 are stable S-categories, which by Corollary
7.1 and [19] cannot be equivalent. However, it is shown in [19] that the corresponding triangulated
categories �0LHM1 � Ho(M1) and �0LHM2 � Ho(M2) are indeed equivalent.

We conclude in particular that a stable S-category T contains strictly more information than its
triangulated homotopy category �0T .

S-Categories and “d�erivateurs de Grothendieck”. In this work, we have used the construction
M �→ LHM , sending a model category M to its simplicial localization LHM as a substitute to
the construction of the homotopy category. There exists another natural construction associated to
a model category M , the d�erivateur D(M) of M , which was introduced by Heller [9] and by
Grothendieck in [8] (see [15] for more detailed references). The object D(M) consists essentially of
the datum of the 2-functor sending a category I to the homotopy category Ho(MI), of I -diagrams
in M .
It seems very likely that the stricti7cation theorem [12, Theorem 18.5] (see also [22, Theorem

A.3.3] or [24, Theorem 4.2.1]) together with the results of [5] imply that both objects LHM and
D(M) determine more or less each others 4 and therefore should capture roughly the same kind
of homotopical information from M . One should be able to check for example that for two model
categories M and M ′; LHM and LHM ′ are equivalent if and only if D(M) and D(M ′) are equivalent.
Therefore, our reconstruction theorem 6.1 suggests that the K-theory of a reasonable Waldhausen
category is more or less an invariant of its associated dUerivateur, and there have already been some
conjectures in this direction by Maltsiniotis [16].

However, we would like to mention that the obvious generalization of Conjecture 1 of [16] to
all Waldhausen categories cannot be true for obvious functoriality reasons. Indeed, if true for all
Waldhausen categories, Maltsiniotis [16, Conjecture 1] would imply that the Waldhausen K-theory of
spaces X �→ K(X ) would factor, up to a natural equivalence, through the category of prUe-dUerivateurs
(the category of 2-functors from Catop to Cat). This would imply that the natural morphism induced

4 This has to be understood in a very weak sense. To be a bit more precise the S-category LHM seems to reconstruct
completely D(M), but D(M) only determines LHM as an object in the homotopy category of S-categories Ho(S − Cat).
In particular some higher homotopical information is lost when passing from LHM to D(M). For example the simplicial
monoid of self-equivalences of LHM seems out of reach from D(M).
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on the simplicial monoids of self-equivalences

Aut(X )→ Aut(K(X ))

would factor through the simplicial monoid of self-equivalences of some object in the category of
prUe-dUerivateurs, which is easily seen to be 1-truncated (it is equivalent to the nerve of the category of
self-natural equivalences and isomorphisms between them). Therefore, Maltsiniotis [16, Conjecture
1] would imply that the morphism

Aut(X )→ Aut(K(X ))

factors through the 1-truncation of Aut(X ). But, this is clearly false as K(X ) contains the stabiliza-
tion 3∞S∞(X ) as a direct factor, and the action of Aut(X ) on 3∞S∞(X ) is not 1-truncated for a
general X .

We think that this observation, though not strictly speaking a counter-example to the original
Conjecture 1 on [16], suggests that there is no reasonable way to de7ne a K-theory functor directly
on the level of Grothendieck dUerivateurs, in the same way as there is no reasonable K-theory functor
de7ned on the level of triangulated categories.

S-Categories and derived equivalences. Recently, Dugger and Shipley have shown that if two rings
k and k ′ have equivalent triangulated derived categories then their K-theory spectra K(k) and K(k ′)
are equivalent (see [3]). We would like to mention here that our reconstruction theorem 6.1 and its
main Corollary 6.6 are results of diOerent nature and cannot be recovered by the techniques of [3].
Indeed, in [3] the authors only deal with very particular type of Waldhausen categories, the categories
of complexes over some rings, which from a homotopical point of view behave in a very particular
way (see [3, Remarks 2.5, 6.8]). For example, our results allows one to reconstruct the K-theory
spectra of some ring spectrum R, whereas the techniques of [3] do not apply in this case (in fact,
there are examples of two ring spectra with equivalent triangulated homotopy categories of modules
but with non-equivalent S-categories of modules). In some sense the results of the present paper
explain [3, Remarks 2.5, 6.8], and show that the only missing information in order to reconstruct the
K-theory spectrum of some Waldhausen category from its triangulated homotopy category is encoded
the mapping spaces and their composition. From our point of view, the triangulated structure is a
way to catch a bit of this information, but in general it does not see all of it.
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