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Abstract

The number of minimal partitions of a box into proper boxes is examined.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A non-empty subset A of the cartesian product X := X1 × · · · × Xd of finite sets Xi , i ∈ [d], is called a box if
A=A1 ×· · ·×Ad and Ai ⊆ Xi for each i ∈ [d]. We say that A is proper if Ai �= Xi for each i ∈ [d]. In what follows,
we shall always assume that X contains a proper box, which is equivalent to saying that |Xi |�2 for each i.

Kearnes and Kiss [3] asked whether each partition of X into proper boxes has to contain at least 2d boxes. This
question has been answered affirmatively by Alon et al. [1]. Let us call any partition which consists of exactly 2d proper
boxes minimal. It would be of some interest to determine the number of the minimal partitions of X. At the present stage
of investigations this problem seems to be out of reach, as we know little on the structure of the minimal partitions.
Certain efforts made in order to understand this structure are reported in [2]. The objective of this note is to show the
following

Theorem 1. Let X = X1 × · · · × Xd and let |Xi |�3 for each i ∈ [d]. Then the number �(X) of minimal partitions of
X is congruent to 1 modulo 4, whenever d �2.

2. Proof of the theorem

For a proper box A ⊂ X and ε ∈ Zd
2 let us define a new box Aε := A

ε1
1 × · · · × A

εd

d by the formula

(Aε)i =
{

Ai if εi = 0,

Xi\Ai if εi = 1.

As is easily seen, the family F: ={Aε: ε ∈ Zd
2} is a minimal partition of X. Such a partition is called simple.
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Now, let us suppose that F is a minimal partition of X. For ε ∈ Zd
2 we define

Fε: ={Aε: A ∈ F}.
Fε is again a minimal partition [2, Lemma 3]. It is clear that for every ε and � ∈ Zd

2 we have

(Fε)� = Fε+�,

which means that the group G := Zd
2 acts on the family X of all minimal partitions of X. In particular, each orbit O(F)

has length equal to a certain power of 2.
Let

�k(X): =|{F ∈ X: |O(F)| = 2k}|.
(Further we abbreviate �k(X) to �k .) It should be clear that in order to show our theorem it suffices to calculate two
numbers: �0, �1.

Proposition 2. (i) |O(F)| = 1 if and only if F is a simple partition.
(ii) �0 = (2|X1|−1 − 1) · · · (2|Xd |−1 − 1).

Proof. (i) The part ‘if’ follows immediately from the definition of simple partitions. Suppose now that A ∈ F. Then
the simple partition G := {Aε: ε ∈ G} is contained in F. Since F is a partition, they have to coincide.

(ii) Fix x ∈ X. For each simple partition F, let us pick F ∈ F so that x ∈ F . The mapping F �→ F defines a 1 − 1
correspondence between the simple partitions and the proper boxes containing x. Clearly, the number of such boxes
equals (2|X1|−1 − 1) · · · (2|Xd |−1 − 1). �

Remark 3. The above proposition shows that

�0(X) ≡ 1 (mod 2).

Now, we shall calculate �1. Since saying that the orbit of a minimal partition F is of length 2 is equivalent to
saying that the stabilizer G(F) of F has index 2, it makes sense to begin with the description of all subgroups of
index 2 in G.

Lemma 4. Let H be a subgroup of G. Then |G : H | = 2 if and only if there is a non-empty set I ⊆ [d] such that

H = H(I) :=
{

ε ∈ G :
∑
i∈I

εi = 0

}
.

Lemma 5. If H(I) is the stabilizer of a minimal partition of X, then I is a proper subset of [d].

Proof. If I = [d], then H consists of all elements ε ∈ G such that ε1 + · · · + εd = 0. Suppose that for some minimal
partition F we have H = G(F). Fix any A ∈ F and define G : ={Aε : ε ∈ H }. Clearly, G ⊆ F and |G| = 2d−1.
Let B ∈ F\G. First, we show that there is � ∈ G\H such that B ⊆ A�. If it were not so, then there would exist two
elements �, � ∈ G\H such that B ∩ A� �= ∅ and B ∩ A� �= ∅. Since they are different, there is i for which �i �= �i .
Let � ∈ G be defined by the equations �j = �j for j �= i and �i = �i . We have � ∈ H . Moreover, B ∩ A� �= ∅. Hence,

by the fact that F is a partition we get B = A�, which is a contradiction. Now, since F and E : ={Aε : ε ∈ G} are
both partitions and each element of F is contained in an element of E, we deduce that F = E. Thus, F is a simple
partition and G(F) = G, which is again a contradiction. �

To formulate our next lemma, we need some additional notation.
Let G be a simple partition of X. Boxes A and B that belong to G are said to be of the same parity if there exists

ε ∈ H([d]) such that Aε = B. It is clear that G splits up into two disjoint subfamilies G− and G+ of equal cardinality
that consist of boxes of the same parity.
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If A is a box in X and I : ={i1 < · · · < ik} is a subset of [d], then we define AI : =Ai1 × · · · × Aik . (If I = ∅, then we
let A∅ = {∅}). Let I ′ be the complement of I in [d]. To simplify our notation, we shall always identify AI × AI ′ with
A in an obvious manner.

Lemma 6. If I is a non-empty and proper subset of [d] and |Xi |�3 for each i ∈ [d], then H(I) is the stabilizer of
a minimal partition. Moreover, if F is a minimal partition of X, then G(F) = H(I) if and only if there is a simple
partition G of XI and two different simple partitions K1 and K2 of XI ′ such that each box A belonging to F satisfies
one of the following two relations:

A = C × D where C ∈ G−and D ∈ K1,

A = C × D where C ∈ G+and D ∈ K2.

Each triple G, K1, K2 determines exactly two partitions whose stabilizers are equal to H(I), and to each such a
partition corresponds exactly one such a triple.

Proof. Observe first that if G is any simple partition of XI and K1, K2 are two different simple partitions of XI ′ (they
always exist as I ′ is non-empty and |Xi |�3 for every i ∈ I ′), then F, which is built from these partitions as described
above, has its stabilizer equal to H(I).

Suppose now that we have an F such that G(F) = H(I). By the definition of H(I), it can be decomposed into the
direct sum H1 ⊕ ZI ′

2 , where H1 consists of even elements of ZI
2, that is, ε ∈ H1 if and only if ε ∈ ZI

2 and
∑

i∈I εi = 0.
For each A ∈ F let us consider its orbit O′(A) with respect to the action of ZI ′

2 . Since F is a partition, the family
{⋃ O′(A) : A ∈ F} is also a partition of X. Clearly,

⋃
O′(A) = AI × XI ′ . Thus, {AI × XI ′ : A ∈ F} is a partition of

X. Consequently, G: ={AI : A ∈ F} is a partition of XI . Obviously, H1 is contained in the stabilizer of G. It follows
from Lemma 5 that G(G) = ZI

2. Thus, G is a simple partition of XI . Let us decompose G into the classes of parity G−
and G+. Let us pick B ∈ F so that BI ∈ G−. Let us define

K1: ={EI ′ : E ∈ F, EI = BI }.
Let ε ∈ H(I) be odd on I, that is,

∑
i∈I εi = 1. Define

K2: ={EI ′ : E ∈ F, EI = Bε
I }.

It is easily seen thatG,K1 andK2 as defined above give us the desired decomposition ofF. The proof of the remaining
part of our lemma is rather obvious. �

Lemma 7. If X satisfies the assumptions of the preceding lemma and d �2, then

�1 = �0

∑
∅�=I �=[d]

(�0(XI ) − 1).

Proof. If ∅ �= I �= [d], then by Lemma 6 the number �I of minimal partitions of X whose stabilizers are equal to H(I)

is twice the number of simple partitions of XI times the number of two-element subsets of the family of all simple
partitions of XI ′ . Since �0(XI )�0(XI ′) = �0, we obtain �I = �0 · (�0(XI ′) − 1). Summing up the last equation with
respect to I gives us the expected formula for �1. �

Lemma 8. Let �i , i ∈ [d], be a sequence of reals. Then∑
∅�=I �=[d]

∏
i∈I

(�i − 1) = −1 − (−1)d +
∑

∅�=J �=[d]
(−1)d−|J |−1

∏
j∈J

�j .

For a non-empty set I ⊆ [d], let �1(XI ): =∑
i∈I |Xi |. Moreover, let �1(X∅): =0.

Lemma 9.∑
∅�=I �=[d]

�0(XI ) = −1 +
∑

J �=[d]
(−1)d−|J |−12�1(XJ )−|J |.
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Proof. It suffices to put �i = 2|Xi |−1 in the previous lemma. �

Combining this lemma with Lemma 7 we obtain

Proposition 10.

�1 = �0

⎛
⎝−2d + 1 +

∑
J �=[d]

(−1)d−|J |−12�1(XJ )−|J |
⎞
⎠ .

Proof of the theorem. It follows from Proposition 2 that �0 is congruent to (−1)d modulo 4. By this fact and the
preceding proposition �1 is congruent to (−1)d − 1 modulo 4. Hence

�0 + �1 ≡ 2(−1)d + 3 (mod 4). �
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