
The Tableau Workbench

Pietro Abate 1 and Rajeev Goré 2

Computer Sciences Laboratory
The Australian National University

Canberra ACT 0200, Australia

Abstract

The Tableau Workbench (TWB) is a generic framework for building automated theorem provers for arbitrary
propositional logics. The TWB has a small core that defines its general architecture, some extra machinery
to specify tableau-based provers and an abstraction language for expressing tableau rules. This language
allows users to “cut and paste” tableau rules from textbooks and to specify a search strategy for applying
those rules in a systematic manner. A new logic module defined by a user is translated and compiled with
the proof engine to produce a specialized theorem prover for that logic. The TWB provides various hooks
for implementing blocking techniques using histories and variables, as well as hooks for utilising/defining
optimisation techniques. We describe the latest version of the TWB which has changed substantially since
our system description in TABLEAUX 2003.

Keywords: generic tableau theorem prover, automated deduction, tableaux strategies, system description

1 Introduction

Highly optimised provers like MSPASS [9] and FaCT [8] can test formulae with hun-
dreds of symbols within a few seconds. Generic logical frameworks like Isabelle [11]
allow us to implement almost any logical calculus as a “shallow embedding” with an
automatic search tactic. However researchers often find these tools too complex to
learn, program or modify. In the middle are the LWB [7], LoTReC [6] and LeanTAP [3]
which implement many different logics or which allow users to create their own
prover. The LWB provides a large (but fixed) number of logics while LoTReC requires
the logic to have a binary relational semantics. These efforts to merge efficiency with
generality highlight the mismatch between the high level concepts of the tableau
method and the low level details of a generic implementation of it.

If you have just invented a new tableau calculus for a logic without such seman-
tics, then LoTReC and the LWB are not very useful. Lazy logicians, as opposed to

1 Email: Pietro.Abate@anu.edu.au
2 Email: Rajeev.Gore@anu.edu.au

Electronic Notes in Theoretical Computer Science 231 (2009) 55–67

1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.02.029

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82781076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Pietro.Abate@anu.edu.au
mailto:Rajeev.Gore@anu.edu.au
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

real programmers, usually then extend LeanTAP, but there is no generic LeanTAP
implementation that contains features like loop-checking or further optimisations.

The Tableaux Work Bench (TWB) is a generic framework for building automated
theorem provers for arbitrary (propositional) logics. A logic module defined by the
user is translated by the TWB into OCaml code, which is compiled with the TWB
libraries to produce a tableau prover for that logic. Lazy logicians can encode their
rules easily to implement naive provers for their favourite logics without learning
OCaml. Real programmers can use the numerous optimisation hooks to produce
faster provers and even tailor the system to their own requirements by writing their
own OCaml libraries.

Differences with previous version.
The TWB has been completely re-written since our previous system description

in TABLEAUX 2003 [2]. Despite following the same design principles, we concen-
trated on simplifying the software both from the user and the developer points of
view. The user interface has been completely changed to allow a more natural spec-
ification of logical rules. Ocaml code is no longer visible in the rule specification
section, despite still being available to specify side conditions and functions. The
architecture has also been substantially changed to increase modularity and to re-
duce code complexity. We also abstracted the core routine from the concrete data
types and created a library to manipulate objects such as sets, multi-sets and lists
in a generic way. In details these are the major changes:

• The user interface has been re-designed to allow a more natural specification
of tableau/sequent rules. We removed the functional interface of the previous
version of the TWB, where rules were defined as part of an Ocaml expression, and
defined a new syntax. We also added the sequent interface.

• The connective section, in which the user could specify the concrete syntax of the
connective used to define logical formulae has been replace by a new and more
flexible way for defining the syntax via grammar definitions.

• The previous version of the TWB did not allow the user to define new data struc-
tures without re-compiling the TWB library. The new TWB now features a new
abstract data type architecture that allows to re-use different components to cre-
ate complex data structures at the user level.

• The core algorithm has been re-written and simplified. In the current version it
is possible to specify multiple invertible rules and to chain rules in the strategy
to compose different rules together.

Architecture and Design
The core algorithm visits a tree generated by using a user-defined strategy to

apply a finite collection of user-defined rules to an initial node containing a finite
number of user-defined formulae. The TWB is organised into four main components
which total roughly 4000 lines of OCaml code (loc). The core (∼ 400 loc) con-
tains the visit algorithm, all type definitions and the strategy interpreter. The

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–6756

(∧)
A ∧ B;Z
A;B;Z

(∧inv)
A ∧ B; X

A;B;X
(K)

�P ;�X;Z
P ; X

Fig. 1. Definition of the (∧) and (∧inv) and (K) rule.

data-type library (∼ 700 loc) implements support data structures. The tableau li-
brary (∼ 800 loc) provides the machinery to implement tableau-based provers. The
syntax library (∼ 1700 loc) allows a user to define specific logic modules. Finally
the command line interface (∼ 250 loc) provides a way to compile and execute the
logic modules on input formulae.

2 Basic Notions

In this section we outline some well-known tableau principles which we used to
specify logical rules in the TWB using a familiar notation. We will detail the TWB
code in Section 3.

Tableau rules are of the form
n

d1 . . . dm
where n is the numerator, while

d1 . . . dm is a list of denominators. The numerator contains one or more distin-
guished formula schemas called principal formulae and one or more formulae schema
called side formulae. We use meta-variables A, B, P, Q, · · · to represent principal for-
mulae and X, Y, Z for, possibly empty, set of side formulae. Note that this notation
is just for describing the intended rule semantic clearly. As we shall see later, in
the TWB, principal formulae are specified using an identifier in curly braces, while
meta variables are specified using upper-case identifiers.

Operationally, tableau rules can be seen as functions to transform a node into a
list of nodes during the construction of a graph. We say that a rule is applicable if
we can partition the contents of the current node to instantiate the meta-variables
in the numerator. The denominators of a rule represent actions to expand the graph
by creating new nodes according to these instantiations.

The repeated application of rules gives rise to a tree of nodes, with children
obtained from their parent by instantiating a rule. To capture sequent calculi as
well as tableau calculi, we view this process as a search for a proof where all leaves are
“closed”. But in general, for tableau calculi with cyclic proofs, there are really three
notions: success, failure and undetermined: we stay with the dichotomy “closed”
as success (of proof search) and “open” as failure (of proof search) for now to
simplify the exposition. A numerator pattern like Z is unrestricted since its shape
does not restrict its contents in any way. Conversely, the pattern �X is restricted
to contain only �-formulae. The (∧)-rule in Figure 1 is seen as instructions to
partition the contents of a node N to instantiate A ∧ B to a single ∧-formula from
N and to instantiate Z to all the other formulae so that Z = N − (A ∧ B) where
“−” is the “subtraction” operator appropriate to our containers. In particular, if
N is a set then there are no “hidden contractions”. Similarly, the (K)-rule from
Figure 1 instructs us to partition N into three disjoint parts: a single �-formula

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–67 57

�P ; a container �X of �-formulae; and a container Z of all other formulae. The
intended interpretation of the (K)-rule is invariably that Z should not contain any
�-formulae since this ensures completeness of the rule. We therefore further assume
that the partitions specified by the numerator are maximal.

Currently in the TWB, we forbid “purely structural” numerators like X; Y which
non-deterministically partition the node N into two arbitrary disjoint containers X

and Y (even though such numerators may be useful for linear logic), and numerators
like �X; �Y ;Z since both can lead to an exponential number of possible different
partitions.

2.1 Non-determinism

One of the main challenge when designing a generic tableau/sequent prover is to
identify and to remove the non-determinism implicit in the pen-and-paper formula-
tion of tableau systems. In general, we can identify three forms of non-determinism
associated with three fundamental aspects of a generic tableau-based decision pro-
cedure:

Node-choice: the algorithm determines which leaf becomes the current node;

Rule-choice: the algorithm determines which rule to apply to the current node;

Instance-choice: a heuristic procedure determines the order in which to explore
the different instantiations of the current node created by the chosen rule.

The first form of non-determinism is resolved in the TWB by using a depth first
visit function that deterministically selects the left most node as candidate. The
second source of non-determinism is more complex and it arises from the lack of
guidance when applying logical rules. For example, in classical propositional logic,
where all rules are invertible, the order in which rules are applied is not important.
However specifying a strategy that applies all linear rules and the axiom first, and
then all branching rules, can potentially shorten the proof tree. The problem is
however different in basic modal logic, where not all sequences of rule applications
ensure a solution since the (K)-rule is not invertible. That is, the linear (K)-rule
shown contains some “implicit branching” since we may need to backtrack over the
different choices of principal formulae until we find a closed branch.

The problem is even more complicated in tableau-sequent calculi with more than
one non-invertible rule: for example intuitionistic logic as in [4]. In this situation, at
any given choice point, after all invertible rules are applied, we are forced to guess
which non-invertible rule to apply, and eventually to undo this decision if it does not
lead to the construction of an acceptable proof tree. Consequently, if the proof tree
obtained from the application of the first rule of a sequence of non-invertible rules
does not respect a logic-specific condition, the entire proof tree generated from that
rule application must be discarded. To recover from this wrong choice, the proof
must be re-started using the next non-invertible rule available in the sequence.

In the TWB we address all these issues by coupling tableau rules with a strategy
to control the order in which rules are applied. In particular the strategy we employ

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–6758

(∨)
A ∨ B;Z
A;Z|B; Z

(det-K)
�P1; · · · ; �Pn;�X;W

P1;X|| . . . ||Pn;X
(rec-K)

�P ;�X;�Y ; W

P ; X || �X; �Y

Fig. 2. Universally and Existentially Branching rules.

uses the following operators given current node N :

• The basic strategy is a rule and it is identified by a rule name (eg. Id). A rule
succeeds if it is applicable;

• The strategies Skip and Fail are two basic strategies that respectively, always
succeed or always fail. The strategy Skip is the same as writing a rule that is
always applicable and does nothing. The strategy Fail is the same as writing a
rule that is never applicable.

• Deterministic alternation, written as t1!t2, is the strategy that behaves as t1 if the
first rule of t1 is applicable otherwise behaves as t2. If the strategy t1 is selected,
the operator ! does not backtrack to choose t2.

• Alternation. The strategy t = t1||t2, is the strategy that first tries to apply t1 to
N . If the result of the visit function, using the strategy t1 is successful, then t

behaves as t1. Otherwise t = t2.
• Sequencing. The strategy t = t1; t2 succeeds if both t1 and t2 are applicable. Fails

otherwise. In particular (tN) is equal to (t2(t1N)).
• Star. The strategy t∗ behaves as the expression μX.(t; X|Skip) , that is, the

strategy t is applied as much as is possible, and then returns the result of the
computation when it fails. Intuitively, if the strategy t succeeds m times the
result will be t1(t2(...(tmN)...)) where each incarnation ti is t itself.

The third form of non-determinism is the aforementioned choice of one rule
instance (partition) of the current node from potentially many rule instances (par-
titions) of the current node. As we saw, the different instances are obtained by
choosing different formulae as the principal formulae. This nondeterminism can be
resolved by using optimisation techniques based on logic-specific considerations used
to reduce the size of the search space. For example, if the chosen rule is an (∨)-rule,
heuristics such as MOMS [5] (Maximum number of Occurrences in disjunctions of
Minimum Size) or iMOMS [5] (inverted MOMS) order the disjunctions (formulae)
in the node to always choose the less/more constrained disjunct, which, in principle,
should lead to an earlier clash. By default, the TWB currently uses a lexicographic
ordering of the potential principal formulae and simply chooses the next formula in
this ordering.

2.2 Controlling Backtracking.

The search procedure is an attempt to find a “closed” tableau, so it must recover
from unsuccessful branches that do not close. For rules with “implicit branching”,
the best recovery action depends upon the type of non-determinism embodied in

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–67 59

the different rule instances.
One one hand, the (∧)-rule from Figure 1 is invertible in many tableau calculi:

in that case, it embodies a don’t care non-determinism for formula choice since we
are free to choose any conjunction from the current node as the principal formula
of this rule instance. If the chosen instance does not lead to a closed denominator,
then there is no need to backtrack over the other different conjunctions in the
current node since invertibility guarantees that none of them will lead to a closed
denominator. Operationally, it is currently not feasible to automatically detect
whether a rule is invertible in a given tableau calculus, so one way to declare a rule as
invertible is by writing it as (∧inv) using a double-line separator as shown in Figure 1.

On the other hand, in the (K)-rule, the implicit branching is essential since
different choices may give different results, thus embodying a form of don’t know
non-determinism. For example, consider the different choices of principal �-formula
for a node containing both �p and �⊥: the �p-choice may or may not close, but the
�⊥-choice is guaranteed to close. That is, if one rule instance does not close then we
must backtrack over the other possible rule instances until we find an instance that
gives a closed denominator or all instances are found to be open, before backtracking
further.

Traditional tableau calculi do not envisage any form of communication between
the branches of a tableau, but operationally we wish to allow such communication.
For traditional explicitly branching rules like (∨), it is possible to add decorations
that allow inter-branch communication. But this is not possible with the branches
implicit in the choice of principal formula of the (K) rule. We therefore allow the
denominators of a rule to be separated by a new type of separator || which captures
“existentially branching”: the numerator is closed if some denominator is closed.
This is dual to the “universally branching” separator | used for explicitly branching
rules like (∨): the numerator is closed if all denominators are closed.

Figure 2 shows two ways of “determinising” the implicit backtracking in the
(K)-rule using existential branching. By our maximality constraint on numerator
patterns, the rule (det-K) instructs us to partition the numerator into n principal
�-formulae, a container �X for all the �-formulae, and a container W for all the
other formulae. The horizontal double-lines tells us to commit to this partition and
the || separator tells us that the numerator is closed if some denominator is closed.
This rule is actually difficult to implement since the parameter n is effectively a free
variable which must be instantiated. But we can determinise even this aspect by
using a recursive version called the (rec-K)-rule from Figure 2 instead which can be
read as: choose a principal formula �P , put all other �-formulae in �Y , put all
�-formulae in �X, put all non-boxed and non-diamond formulae in W , commit to
this partition, and close the numerator if some denominator closes. By repeatedly
applying (rec-K) to the right denominator, we can step through the same partitions
as the (det-K) rule, without having to worry about the value of n since the (rec-K)
rule will fail to apply when the right denominator contains no �-formulae because
�P cannot be empty. We need a strategy to ensure that no other rules are applied
between these consecutive applications of (rec-K) but it is easy to capture such a

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–6760

Instance Branching Linear

choice Universal “|” Existential “||” Conditional “|||”
Backtrack “--” (∨) - - (K) (∧)

Commit “==” (∨inv) (rec-K) - (∧inv)

Table 1
Rule Classification

strategy using the strategy language.
¿From a general perspective, the two types of branching can be characterised

as conditionally branching: “explore different denominators until some user-defined
condition becomes true”, with both universal and existential branching as instances.

Our resulting rule classification is shown in Table 1. Linear rules have one de-
nominator, while branching rules have two or more which are universal or existential
related. Each rule can either commit or not commit to the partition (instantiation)
selected first by the formula-choice heuristic (by being invertible or non-invertible).
If the rule commits then only this first partition is considered while expanding the
denominator(s). If the rule does not commit then the denominator(s) will be re-
instantiated for each partition generated by the application of the rule numerator
to the current node until an instantiation is found that closes the numerator. With
this rule classification it is easier to mechanize tableau rules as specified in the lit-
erature whilst removing non-determinism. Rules for classical modal logic can be
characterized as shown. In Table 1 we indicate with the symbol “-” combinations
that cannot be expressed in the TWB using a single rule. Nonetheless these can be
expressed by using two rules “chained” in the strategy with the sequence operator.

3 Defining the Calculus for a Logic

In this section we detail the TWB syntax using as a running example a tableau
calculus for S4 from [10] and we will assume the reader is familiar with it. A logical
module in the TWB is composed of three main parts: the grammar definition, the
logical rules and the strategy.

3.1 Defining the grammar

The keyword CONNECTIVES in the TWB introduces a list of strings separated with
a semicolon “;”. Each string can be used as a connective in the grammar definition
(below) and it will become a reserved keyword in the module. Connectives can be
of variable length, can be composed by a mix of numbers, symbols and characters.

CONNECTIVES ["~";"&";"v";"->";"<->";"<>";"[]"]

The keyword GRAMMAR introduces the specification of the grammar used in the
module to write formula expressions and formula schemas. A grammar is composed
of a sequence of productions separated by a double semicolon “;;”. Two mandatory

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–67 61

productions are formula and expr. A third pre-defined production that can be
omitted is node.

• node: this production defines the shape of a tableau/sequent node. By default,
a tableau node is composed of a set of formulae. It also possible to specify other
shapes such as set => singleton where the node is a sequent with a set on the
left and a singleton element on the right.

• expr: this production defines the outer most expressions used in the definition
of tableau rules. Generally an expression is just a formula but it can also be
decorated with a label or with another arbitrary data structures.

• formula : this production defines the shape of the formula definition to be used
in the tableau rules.

GRAMMAR
formula :=

ATOM | Verum | Falsum
| formula & formula | formula v formula
| formula -> formula | formula <-> formula
| [] formula | <> formula
| ~ formula

;;
expr := formula ;;
END

The grammar accepted by the TWB is a loose LL(1) grammar. Conflicts are
not handled automatically and the definition of ambiguous grammars can lead to
unspecified results. In the grammar definition we use these three conventions: lower-
case identifiers in a production are interpreted as grammar identifiers for a produc-
tion; upper-case identifiers are interpreted as constants (eg. Verum and Falsum);
and the keyword ATOM identifies an anonymous atom in the grammar.

3.2 Defining histories and variables

The TWB has the infrastructure to add histories and variables to tableau/sequent
rules. Histories are used to pass information top-down from numerator to denomi-
nators and are typically used to implement blocking techniques. Variables are used
to pass information bottom-up from already explored sub-trees to parents. The
traditional notion of a branch being “Open” or “Closed” is carried implicitly from
the leaves to the root by a default variable called status.

Operationally, a history or a variable is an object that must be instantiated by
the user when defining a logic module. The TWB library defines the interface for
such objects in terms of an Ocaml functor. The TWB data types library defines
three generic data structures that can be assembled by the user to define complex
histories or variables. A functor is a function that given a module of type Element-
TYPE returns a module of type TwbSet.S . The ElementTYPE type module has
the following signature:

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–6762

module type ValType =
sig

type t
val to_string : t -> string
val copy : t -> t

end

Similarly, a set of set of formulae is declared by instantiating the type t as
FormulaSet.set, the function to string s as s#to string and the function copy
s as s#copy (where # is just the OCaml syntax to invoke an object method). The
three basic functors to build such data structures are: TwbSet.Make (defines a set
of elements), TwbMSet.Make (defines a multi set of elements) and TwbList.Make
(defines a list of elements). To add a history of type “set of formulae” we need to
define a module FormulaSet by using the functor TwbSet.Make and pass to it the
type formula as ElementTYPE as shown below.

module FormulaSet = TwbSet.Make(
struct

type t = formula
let to_string = formula_printer
let copy s = s

end
)

Once the module is defined, we add it to the tableau/sequent node using the fol-
lowing syntax. The keyword HISTORIES expects a sequence of history declarations.
Each such declaration consists of three elements. The first element is an upper-case
identifier (e.g. UBXS) naming the history used in the tableau rules, followed by a
colon. The second element is the type of the history (e.g FormulaSet.set), followed
by an := operator. The third element is the default value for the history (e.g. a
new empty object of type FormulaSet.set).

HISTORIES
UBXS : FormulaSet.set := new FormulaSet.set ;
DIAS : FormulaSet.set := new FormulaSet.set

END

Variables are declared similarly with the following syntax. The only difference
is that the identifier used for variables is always lower-case.

VARIABLES
status : String := "Open"

END

3.3 Defining tableau rules

The collection of rules are enclosed within keywords TABLEAU and END. Rules are
specified via the RULE and END keywords with principal formulae enclosed in braces.
For conciseness, rules can be written on one line by omitting line-breaks before and

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–67 63

after the horizontal line.
The simplest tableau rule has a name Id and a numerator pattern which partitions
the current node into three disjoint parts: an atom a; its negation ∼ a; and an (un-
restricted) container Z. Note that atoms are specified using a lower case identifier
like a, while sets of formulae using an upper-case identifier like Z.

Since any such clash is sufficient to close the branch, we instruct this rule to
commit to the first partition that matches by using a horizontal line of at least two
“==” symbols. The directives Close or Open or Stop set the value of the default
variable status, stopping the visit procedure and triggering backtracking. Thus
the Id rule closes the current branch. The rule False closes the current branch if
one occurrence of constant Falsum is found and does not require an unrestricted
container like Z.

TABLEAU

RULE Id { a } ; { ~ a } ; Z === Close END
RULE False Falsum === Close END
RULE And { A & B } === A ; B END
RULE Or { A v B } === A | B END

RULE T
{ [] P }
=============

P
COND notin(P, UBXS)
ACTION [

UBXS := add(P,UBXS);
DIAS := emptyset(DIAS)]

END

RULE S4
{ <> P } ; Z

P ; UBXS

COND notin(<> P, DIAS)
ACTION [DIAS := add(<> P,DIAS)]
END

END

The And rule is written to highlight the omission of unrestricted meta-variables like
Z containing “all other formulae” to capture simple rewriting. It has a single (non-
empty) principal formula A&B, with no accompanying unrestricted container like Z.
This is a signal to replace (rewrite) A&B with A and B and carry all other formulae
from the numerator into the denominator. A more traditional way to write this rule
would use Z (say) in both the numerator and the denominator.

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–6764

The Or rule also uses rewriting but uses universal branching to create a left child
containing A and a right child containing B.
The T rule rewrites �P to P but only if the side-condition declared using the
COND construct is true. This condition checks whether P �∈ UBXS using a function
notin(.,.). Its ACTION directive constructs the histories of its child by adding P to
the current history UBXS and setting the history DIAS to be the empty set (because
it has seen a �-formula new to DIAS as explained in [10]).
The S4 rule chooses a principal formula � P from the numerator and creates a child
containing both P and the set contained in the history UBXS but only if the side-
condition � P /∈ DIAS specified via COND is true. Its ACTION directive constructs
its child’s history DIAS by adding � P to the current history DIAS but leaves UBXS
intact. It does not commit to the choice of principal formula since it uses a horizontal
line consisting of at least two “--” symbols, which means that if this child does not
close, then this rule will backtrack over the different principal �-formula choices.

The same rule can also being specified by making the backtracking explicit
(below). The body of the rule is composed of a principal formula, a possibly empty
set of diamond formulae �Y and an anonymous set Z. Note that now because of the
presence of the schema �Y , the set Z is diamond-formula free. The denominator has
two branches: A ; UBXS encodes the modal jump while �Y encodes a recursion
step to consider all other diamonds if the first branch does not close.

RULE S4H
{ <> P } ; <> Y ; Z
======================
A ; UBXS || <> Y

COND notin(<> P, DIAS)
ACTION [[DIAS := add(<> A,DIAS)] ; []]
END

The numerator of the S4H rule is composed of a principal formula, a possibly
empty set of diamond formulae �Y and an unrestricted set Z. Note that now
because of the presence of the schema �Y , the set Z is diamond-formula free. The
denominator has two branches: A ; UBXS encodes the modal jump while �Y

encodes a recursion step to consider all other diamonds if the first branch does not
close.

Note also that we now use the horizontal double line “==” as the rule has been
determinised and no backtracking is needed to recover from a wrong choice. More-
over the double bar separator “||” sets up existential branching which closes the
numerator if some denominator closes. Thus, the second branch is explored if and
only if the result of the tableau rooted with the node A;UBXS is open. The
functions to manipulate histories and side conditions are explained below.

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–67 65

Auxiliary Functions
In the TWB we can use arbitrary OCaml functions to manipulate histories,

variables and to set side conditions. In our example we use three functions to
handle histories defined as follows:

let add (l,h) = h#addlist l
let notin (l,h) = not(h#mem (List.hd l))
let emptyset h = h#empty

• add(formula list, history): accepts a list of formulae and a history object and
returns the history object with the formula list added to it.

• notin(formula list, history): accepts a list of formulae and a history, and returns
a boolean indicating if the list of formulae is in the history.

• emptyset(history): returns an empty history object.

Thus, each of the patterns like �P , �Y and Z are lists of formulae. The
function call add(�P,DIAS) instantiates l to a list that contains the principal
formula pattern-matched by �P and instantiates h to the history object identified
by DIAS.

The TWB implementation of sets provides a method addlist which implements
code to add every member of l to the history object h and a method mem which
checks whether its argument is a member of the set DIAS.

3.4 Defining the Strategy

The strategy specifies the order in which rules are applied during proof search. In
our example, for completeness, we need to apply all classical rules first and then
the S4-rule. The bang ! operator applies the first rule that is applicable. The star ∗
iterates until no rule is applicable. Since the S4 rule is the last rule, this means that
all the other rules are not applicable. In other words, the strategy says “repeatedly
apply the first applicable rule from the left until none are applicable, and then apply
the S4 rule, and repeat this process until no rules are applicable”. This strategy is
applied to every branch of the proof tree according to the visit algorithm.

STRATEGY :=
let sat = tactic ((False ! Id ! And ! T ! Or))
in tactic ((sat ! S4)*)

3.5 Compiling and Running the TWB

Each file in the TWB are translated in an Ocaml compilation unit. We assume
that the logic rules for the modal logic S4 shown before are saved in a file s4.ml
and the negation normal form function in a file s4lib.ml . To compile the logic
module we use the utility twbcompile that is shipped with the TWB. The result
of the compilation is the file s4.twb that is the object prover for modal logic S4.
To run the file s4.twb we can either give it a file of formulae to prove as argument
or passing a formula on the stdin channel. We refer to the TWB website for more

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–6766

usage examples.

4 Conclusion and further work

In this paper we presented a new version of the Tableau WorkBench. Both the ar-
chitecture and the user interface have been substantially changed from the previous
version presented at TABLEAU 2003. An intermediate version of the TWB can
be found in [1] where we also presented an array of benchmarks that compare the
TWB with the LWB[7] showing that the TWB can compete with the LWB only if
well known optimisations (such as simplification or back-jumping) are incorporated
in the tableau calculus. As further work, we are working to re-implement such
optimisations with the new version and to reproduce up-to-date benchmarks. The
TWB can be downloaded from the website http://twb.rsise.anu.edu.au

References

[1] Pietro Abate. The Tableau Workbench: a framework for building automated tableau-based theorem
provers. PhD thesis, Australian National University, 2007.

[2] Pietro Abate and Rajeev Goré. System description: The tableaux workbench (TWB). In
TABLEAUX, Lecture Notes in Artificial Intelligence. Springer, 2003.

[3] Bernhard Beckert and Joachim Posegga. leanTAP : Lean tableau-based deduction. Journal of
Automated Reasoning, 15(3):339–358, 1995.

[4] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal of Symbolic
Logic, 57(3):795–807, sep 1992.

[5] Jon W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD thesis,
University of Philadelphia, 1995.

[6] Olivier Gasquet, Andreas Herzig, Dominique Longin, and Mohamad Sahade. Lotrec: Logical
tableaux research engineering companion. In TABLEAUX, pages 318–322, 2005.

[7] A Heuerding. LWBtheory: information about some propositional logics via the WWW. Logic
Journal of the IGPL, 4:169–174, 1996.

[8] Ian Horrocks and Peter F. Patel-Schneider. Optimising propositional modal satisfiability for
description logic subsumption. Lecture Notes in Computer Science, 1476, 1998.

[9] U. Hustadt and R. A. Schmidt. MSPASS: Modal reasoning by translation and first-order resolution.
In Automated Reasoning with Analytic Tableaux and Related Methods, International Conference,
volume 1847 of LNAI, pages 67–71. Springer, 2000.

[10] Alain Heuerding, Michael Seyfried, and Heinrich Zimmermann. Efficient loop-check for backward
proof search in some non-classical propositional logics. In Analytic Tableaux and Related Methods,
pages 210–225, 1996.

[11] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. ArXiv Computer Science e-prints, October
1993.

P. Abate, R. Goré / Electronic Notes in Theoretical Computer Science 231 (2009) 55–67 67

http://twb.rsise.anu.edu.au

	Introduction
	Basic Notions
	Non-determinism
	Controlling Backtracking.

	Defining the Calculus for a Logic
	Defining the grammar
	Defining histories and variables
	Defining tableau rules
	Defining the Strategy
	Compiling and Running the TWB

	Conclusion and further work
	References

