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This paper proposed a novel methodology for the quantification of an artificial dye, sunset yellow (SY), in
soft beverages, using image analysis (RGB histograms) and partial least squares regression. The developed
method presented many advantages if compared with alternative methodologies, such as HPLC and UV/
VIS spectrophotometry. It was faster, did not require sample pretreatment steps or any kind of solvents
and reagents, and used a low cost equipment, a commercial flatbed scanner. This method was able to
quantify SY in isotonic drinks and orange sodas, in the range of 7.8–39.7 mg L�1, with relative prediction
errors lower than 10%. A multivariate validation was also performed according to the Brazilian and inter-
national guidelines. Linearity, accuracy, sensitivity, bias, prediction uncertainty and a recently proposed
tool, the b-expectation tolerance intervals, were estimated. The application of digital images in food anal-
ysis is very promising, opening the possibility for automation.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Artificial dyes are constantly present in the modern lifestyle,
being largely used in cosmetics, clothes, drugs and particularly in
foodstuff. They have a great number of advantages if compared
with natural dyes, such as higher stability to oxygen, light and
pH changes, good water solubility and lower production cost
(Ghoreishi, Behpour, & Golestaneh, 2012; Xing et al., 2012). The
azo dyes are the largest group of artificial dyes (60–70% of all arti-
ficial dyes) and their molecular structures are characterized by the
presence of an azo group (AN@NA) placed between aromatic rings.
Although they provide a lot of technological benefits related to aes-
thetic and organoleptic characteristics of a particular foodstuff, a
great number of studies have already confirmed negative effects
of their consumption for human health, especially when in excess,
such as allergic responses, asthma, urticarial and immunosuppres-
sion (Yadav, Kumar, Tripathi, & Das, 2013). Sunset yellow (SY), also
known as evening yellow, E110 or edible yellow 3, is one of the
most used azo dyes. It has an orange color, and is used in a great
number of fruit products, like sodas, juices, candies and ice creams.
Usually, it is the only artificial dye present in orange soft beverages.
SY has also a large use in the pharmaceutical industry and in cos-
metics. Nevertheless, it also causes some side effects in humans
and its consumption has been related to renal failure and hepat-
ocelular damages (Xing et al., 2012).

The great increase in the consumption of artificial dyes, mainly
in products destined for children, creates an urge for methods that
can monitor and quantify these dyes. ANVISA (National Health Sur-
veillance Agency) is the governmental agency responsible for food
regulation in Brazil, and it establishes the limits for artificial dyes
in different products. According to the resolution R05/07, the limit
for SY concentration in nonalcoholic beverages is 100 mg L�1

(ANVISA., 2011), and the official method for azo dyes determina-
tion is based on UV/VIS spectrophotometry, which requires
sequential liquid–liquid extractions with methanol containing
5% hydroxide ammonium (IAL, 2005). Other methods involving
different analytical techniques, such as chromatography (Bonan,
Fedrizzi, Menotta, & Elisabetta, 2013; Vidotti, Costa, & Oliveira,
2006); potenciometry (Ghoreishi et al., 2012), voltametry (Nevado,
Flores, & Llerena, 1997), immunoassays (Xing et al., 2012) and
cloud point extraction with spectrophotometric detection
(El-Shahawi, Hamza, Al-Sibaai, Bashammakh, & Al-Saidi, 2013)
have been reported in the literature. Chemometrics strategies have
also been applied for food dyes determination, mainly with UV/VIS
spectrophotometry and binary and ternary mixture of dyes (Berzas
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Nevado, Rodrı́guez Flores, Guiberteau Cabanillas, et al., 1998; El-
Sheikh & Al-Degs, 2013; Nevado, Flores, Llerena, & Fariñas, 1999).

The main objective of this paper was to develop and validate a
multivariate image analysis (MIA) method based on digital images
obtained by a commercial flatbed scanner coupled with chemo-
metrics for the determination of SY in non-alcoholic orange bever-
ages (isotonic and soft drinks). This strategy has several advantages
compared to the classical methods, such as the rapidity of analysis
(a few seconds), no need for extraction procedures, environmen-
tally friendly and solvent free, with no chemical waste generation,
and the low cost of the equipment (around US$ 100), providing suf-
ficient accuracy and sensitivity with less human intervention. The
proposed method was also validated in accordance with Brazilian
and International guidelines, corroborating that MIA is a reliable
technique, that besides it may be easily automatized or used in
portable equipments, can also fulfill all the statistical requirements
for an official analysis.
2. Materials and methods

2.1. Instruments and software

The images were obtained using a commercial flatbed scanner
CanoScan LiDE 110 (Tokyo, Japan). Data were handled using MAT-
LAB software, version 7.13 (The MathWorks, Natick, MA, USA). The
PLS routine came from the PLS Toolbox, version 6.5 (Eigenvector
Technologies, Manson, WA, USA), images were treated with the
Image Processing Toolbox, version 8.0 (The MathWorks), and a
homemade routine was also employed for the detection of outliers
(Ferreira, Braga, & Sena, 2013).

2.2. Samples

Eighty-three samples of commercial beverages (orange soda
and isotonic drinks) containing SY from different brands (25) and
production batches were purchased in local markets, and stored
under refrigeration at 4 �C until analysis.

2.3. Procedure

The samples were allowed to rest for 30 min for thermal equi-
librium before starting the measurements. 30 mL from each sam-
ple were collected in a 50 mL beaker and degassed using an
ultrasonic bath for 5 min. After degassing, 1 mL was used for chro-
matographic quantification of SY (reference values), and 5 mL were
used for the image acquisition.

The acquisition of images was performed using a small Petri
dish (5.0 cm radius � 1.5 cm height) filled with the sample and
positioned in the corner of the scanner. A white screen was used
to block the light from external sources. All images were digitized
in the 24-bit RGB system, with 16.8 million colors and 300 dpi res-
olution, in ‘‘.tif’’ format. The conversion of the images in RBG histo-
grams was carried out in MatLab environment. Firstly, a 100 � 100
pixel size area was selected from the central area of the dish, in a
homogeneous part of the image. This selected area was then trea-
ted with a digital filter (unsharp) for noise reduction, and decom-
posed in a RGB histogram. After all treatments, a histogram
containing 768 channels (256 for each RGB color) was obtained
for each sample. Each sample was scanned three times and the
average histograms were used for building PLS models.

2.4. Chromatographic analysis

The chromatographic analysis were based on a chromatograph
manufacturer’s method (Pedjie, 2012) and performed in a Finnigan
Surveyor HPLC System (Thermo Fisher Scientific, San Jose, USA)
with diode array detection (HPLC-DAD), using a Shimadzu Shim-
Pack XR-ODS (3.0 mm I.D. � 150 mm L) C-18 column. Gradient elu-
tion was employed with a mobile phase composed of ammonium
acetate 20 mM aqueous phase and acetonitrile/methanol (80:20,
v/v) as organic phase. A flow rate of 1.2 mL min�1 and detection
at 484 nm were used. The chromatographic run lasted 15 min, with
SY retention time around 7.5 min.

2.5. Multivariate image analysis

Digital images have been used as source of analytical informa-
tion since last century. The first published paper describing the
use of digital imaging has employed an early version of a scanner
for converting medical image exams into digital data (Ledley,
1964). More than twenty years later, Geladi and coworkers pub-
lished the first paper concerning exclusively image analysis and
chemometrics (Geladi, Wold, & Esbensen, 1986). Since then,
mainly in the last years, a great variety of papers have been pub-
lished, using different kinds of instruments, like cell phones, webc-
ams, flatbed scanners and ‘‘point-and-shoot’’ digital cameras, for
developing multivariate classification and calibration models ap-
plied to the analysis of food products and other matrices (Acevedo
et al., 2009; Borin et al., 2007; Foca, Masino, Antonelli, & Ulrici,
2011; Godinho, Oliveira, & Sena, 2010; Iqbal & Bjorklund, 2011;
Oliveira et al., 2013; Santos, Wentzell, & Pereira-Filho, 2012).

The most common way to extract the information from digital
images is their decomposition in a color system, such as RGB.
The RGB system is an additive system, which uses the combination
of the colors Red, Green and Blue to form a wide variety of color
tones. Each pixel (basic unity of a digital image) is formed by a
combination of these colors. The intensity of each color in the
RGB system is measured in channels. Channel 0 means complete
absence of a color and channel 255 means the maximum intensity
of a color. The combination of the RGB channels creates the differ-
ent colors (2563 possible combinations). After the decomposition
of all the pixels of the image, the frequency of each channel of each
color is counted, resulting in a frequency histogram. This histo-
gram can be treated as spectral data and used for developing che-
mometric models. Alternatively, RGB variables can be fused with
other color parameters, such as hue, saturation, intensity and light-
ness, resulting in colourgrams. Recently, several papers have devel-
oped multivariate calibration methods based on RGB histograms or
colourgrams (Acevedo et al., 2009; Borin et al., 2007; Oliveira et al.,
2013; Santos et al., 2012). Another strategy, which requires more
complex mathematical handling, is the use of Fourier transform
for obtaining congruent images and generating three-dimensional
data arrays, which can be treated by multi-way methods (Godinho
et al., 2010). This work chose to use the simplest strategy, combin-
ing RGB histograms with partial least squares (PLS) for the deter-
mination of SY in commercial samples of soft beverages.

2.6. Multivariate analytical validation

The analytical validation of multivariate methods is still not a
completely well-established subject. Concerning food analysis, nei-
ther Brazilian nor international validation guidelines even mention
multivariate statistics, completely ignoring its utilization (EC,
2002; MAPA, 2011; Thompson, Ellison, & Wold, 2002). As the
importance and application of these methods have grown very
quickly, it is necessary a harmonization between the validation as-
pects of univariate and multivariate methods. The establishment of
validation procedures for multivariate calibration is very impor-
tant because it is the first step for the recognition of these methods
for official analysis. Further information on the state of the art of
multivariate analytical validation, mainly focused on near infrared
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spectroscopy, can be found elsewhere (Botelho, Mendes, & Sena,
2013; Faber, Song, & Hopke, 2003; Ferreira et al., 2013).

A novel tool for validation of analytical methods is the estimate
of an accuracy profile based on the b-expectation tolerance inter-
vals (b-TI) (Rozet et al., 2007). The b-TI are used as a complemen-
tary visual decision tool to evaluate the models predictive
performances. They give the guarantee that a ratio b (i.e. 95%) of
all the future results will presented an error within the calculated
limits. Therefore, if the b-TI is included within the acceptance lim-
its established by validation guides, the proposed method fulfill all
the requirements needed for validation. The use of b-TI has been
recently extended to multivariate calibration, mainly focused
on the validation of NIR methods in pharmaceutical analysis
(Mantanus et al., 2010).

The b-TI can be estimated using the following equations:

b� TI ¼ REð%Þj � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

pnB2
j

s
RSDð%Þj ð1Þ

where p is the number of series, n is the number of independent
replicates per series, RE(%) is the mean relative error for the n rep-
licates for the jth level, RSD(%) is the relative standard deviation for
the n replicates for the jth level. t is bicaudal t-student critical values
for m degrees of freedom. m is calculated according to the equation
below:
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where Rj is the ratio between within series variance and between
series variance, and Bj is estimated using Rj
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3. Results and discussion

3.1. PLS model

All the analyzed samples were orange soft beverages and con-
tained SY as the only artificial dye. Previously to the construction
of the multivariate model using real samples, an alternative strat-
egy was tried. An attempt to build a multivariate model with stan-
dard solutions of SY for predicting the real samples did not present
good results. Since all the beverages contain some additives, which
make them slightly cloudy, it was not possible to predict these
samples with a model built with standard solutions. In addition,
several samples also contain natural juices and consequently natu-
ral dyes, as interferences that contribute for color, thus justifying
the use of multivariate calibration. So, the PLS model was built
with real samples and the reference values were obtained using
HPLC.

Fig. 1(a) shows the RGB histograms for the 83 samples. It is pos-
sible to note that the channel 513 is the most frequent, followed by
the channel 256, which indicates a predominance of the yellowish
tones in the images (mixture of red and green primary colors). As
these two channels showed the highest frequencies in the histo-
grams, they were used for building individual univariate calibra-
tion models. These models were compared with the multivariate
model using the estimated correlation coefficients between the
reference and predicted values. Reasonable correlations were
found for the univariate models (0.827 for channel 513 and
�0.778 for channel 256), but which have not been considered sat-
isfactory for quantification. The removal of some channel regions
(1–150 and 260–335) without any significant signal was also tried,
but no improvement was observed for the multivariate model.

For building the PLS model, the sample histograms were divided
into two thirds (56) for the calibration set and one third (27) for the
validation set by using the Kennard–Stone algorithm, which as-
sured the presence of the most representative samples in the cali-
bration set through a uniform scanning of the independent
variables data set. No preprocessing other than mean centering
was used. The number of latent variables (LV) was selected based
on the smallest root mean square error of cross validation
(RMSECV), estimated using venetian blinds cross validation (6 data
splits). The best model was obtained with 4 LV. The estimated
regression coefficients for this PLS model are show in Fig. 1(b).
By observing this plot, it was possible to identify the channels that
more contribute to SY prediction. The largest regression coefficient
was observed at the channel 768, which showed strong negative
influence on the SY quantification, indicating the negative contri-
bution of a blue pattern in the sample colors. The largest positive
regression coefficient was at the channel 256, but the regression
coefficient at 513, the most frequent channel in the sample histo-
grams, was not so large, indicating that the most intense signals
were not necessarily the most predictive. A univariate model cor-
relating the frequencies at the channel 768 and the SY reference
concentrations was also tested, but it did not presented good re-
sults (r = �0.539).

The PLS model was optimized through outlier detection and
evaluated through the root mean squared error of prediction
(RMSEP) and the relative prediction deviation (RPD), as shown in
Table 1. Good models present higher RPD values. According to Bra-
zilian and international validation guidelines (MAPA, 2011), outli-
ers can be removed up to 22.2% (two out of nine) from the original
samples. Eleven outliers were removed from the calibration set
(19.6%), nine based on their large Y-residuals and two based on
their high leverages. Five outliers were removed from the valida-
tion set (18.5%), all of them based on large Y-residuals. The final
model was built with 4 LV, accounting for 98.8% of the variance
in X and 97.2% in Y.

3.2. Multivariate analytical validation

Table 2 presents the FOM assessed for the optimized model. The
plot of reference versus predicted values is show in Fig. 2. To con-
firm the method linearity, suitable statistical tests were performed,
verifying the normality (Ryan–Joiner), homocedasticity (Brown–
Forsythe) and absence of autocorrelation (Durbin–Watson) of the
residuals, all at 95% confidence level. The results of these tests as-
sured the randomness of the prediction residuals, especially the
estimated Durbin–Watson value (1.86), which is within the accep-
tance limits (1.5–2.5), confirming the residual independence. Once
the model was considered linear, the parameters for a linear
regression were estimated (Table 2), including a correlation coeffi-
cient (r) of 0.9742.

Trueness was estimated through the absolute error parameters,
such as a RMSEP of 1.3 mg L�1 (Table 1). Individual relative errors of
prediction were also estimated, showing values between�6.2% and
9.0%, which are in accordance with the limits established by the
MAPA (2011) validation guide (�20/+10%). Method precision was
also evaluated at two different levels, repeatability and intermedi-
ary precision (a different analyst in a different day), through the
estimate of the relative standard deviation (RSD). The method
was considered precise, with repeatability RSD values ranging from
0.3% to 2.0%, and intermediary precision RSD values ranging from
2.0% to 4.1%. These values are within the limits defined by the
Brazilian guidelines (MAPA, 2011), which establishes maximum
acceptable RSD values of 4.9% for repeatability and of 7.3% for inter-
mediary precision. Trueness and precision results corroborated that



Fig. 1. (a) RGB histograms for the beverage samples containing SY. (b) Regression coefficients for the developed PLS model.

Table 1
Results for the optimization of the developed PLS model through the detection of
outliers (in bold for the final model).

Model 1st 2nd 3rd 4th

Number of calibration samples 56 51 48 45
Number of validation samples 27 27 27 22
Number of latent variables 4 4 4 4
RMSEC (mg L�1) 2.7 2.1 1.7 1.3
RMSEP (mg L�1) 2.6 2.9 3.1 1.3
RPD calibration 2.3 3.1 3.8 4.6
RPD validation 3.3 3.0 2.8 6.5

Table 2
Parameters for evaluating the main FOM of the developed MIA method for the
determination of SY in beverages.

Figures of merit Parameter Values

Trueness Relative errors (max/min) �6.2/9.0%
Precision RSD repeatabilitya 2.7%

1.0%
0.3%

RSD intermediate precisiona 2.0%
4.1%
3.9%

Linearity Durbin-Watson test 1.86
Slopeb 0.97 ± 0.02
Interceptb 0.80 ± 0.74
Correlation coefficientb 0.9702

Working range 7.8–39.7 mg L�1

Selectivity 0.17
Sensitivity 154.11c

Analytical sensitivity (c) 3.4 L mg�1

c�1 0.3 mg L�1

Bias 0.512 ± 1.210 mg L�1

a Results for six replicates from three samples at three different content levels.
b Values for the line fitted to the calibration samples.
c Values expressed as the ratio between frequency and mg L�1.
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the method can be considered accurate. Considering the accuracy
and linearity studies the analytical working range was defined from
7.8 to 39.7 mg L�1 of SY. It is possible to note in Fig. 2 that the sam-
ples did not show a homogeneous concentration distribution along
the curve, with three clearly distinct groups. The first group, with
the smallest concentrations, is formed only by the isotonic samples.
The second group, in the middle of the curve, is formed by the most
famous brands of orange soft drinks, and the third group is formed
by low-cost orange sodas, which presented the highest levels of SY.

SEN and SEL were also estimated, based on the concept of net
analyte signal (NAS). A requirement of a minimum value of SEL
does not have practical use in multivariate validation, since unlike
for univariate methods low values of SEL can be obtained even for
accurate multivariate models. The SEL estimate indicated that 17%
of the original analytic signal was used in the model for SY predic-
tion. The SEN itself is not a very informative FOM, because it cannot
be used for comparison with other methods. So, the analytical sen-
sitivity (c) was calculated from the estimate of the instrumental
noise (44.7), which was obtained through ten replicates of images
from an empty Petri dish. Its inverse, 0.3 mg L�1, provides an esti-
mate of the minimum concentration difference that the method is
able to distinguish, considering the random instrumental noise as
the only source of errors, and also defines the number of decimal
places that should be used to express the prediction results.

The bias assessment (Table 2), estimated only for the validation
set, shows a t-value (1.98) lower than the t-critical value (2.06,
with 22 degrees of freedom and 95% confidence level), which indi-
cates the absence of systematic errors in the model predictions.



Fig. 2. Plot of the reference versus predicted values for the PLS model. Calibration
(circles) and validation samples (triangles).

Fig. 3. Confidence intervals for the prediction of the validation samples, estimated
based on the SEP. Predicted (triangles) and reference values (circles).

Fig. 4. b-expectation tolerance intervals calculated for the model (solid lines) and
maximum relative errors established by the Brazilian validation guidelines (dashed
line).
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According to the literature (Botelho, Mendes, & Sena, 2013), good
calibration models must have a RPD value higher than 2.4, while
values between 2.4 and 1.5 are considered acceptable. Considering
the values presented in Table 1, RPD estimates were satisfactory
for both calibration and validation.

Standard prediction errors (SPE), calculated with the errors-in-
variables (EIV) equation (Faber et al., 2003), ranged from 3.3 to
3.6 mg/L. Fig. 3 shows the reference and the predicted values with
the respective confidence intervals estimated for each sample. For
these calculations, the reference method uncertainty (0.03 mg L�1)
was obtained from intermediary precision studies. Five pseudo-de-
grees of freedom were used in the confidence interval estimates
(t = 2.77). For all samples, the reference values were within the
estimated confidence interval (agreement of 100%).
3.3. b-expectation tolerance intervals

The b-TI estimated for the model can be seen in Fig. 4 and were
based on three series of triplicates (p = 3 and n = 3). This accuracy
profile shows that their confidence limits are within the limits
established by the Brazilian validation guidelines, �20/+10%
(MAPA,2011). This indicates that it is expected that all the pre-
dicted values obtained using the developed model will present rel-
ative errors within these acceptance limits. For the lowest
concentration (9.6 mg L�1), the b-TI ranges from �15.4% to 9.6%.
For the medium concentration (30.0 mg L�1), b-TI ranges from
�13.7% to 6.0%, and for the highest concentration (38.8 mg L�1),
it ranges from �12.1% to 9.4%.
4. Conclusions

A simple multivariate calibration method based on RGB histo-
grams from digital images was developed and validated for sunset
yellow determination in orange beverages (isotonic and soft
drinks). It uses a very low cost equipment (a commercial flatbed
scanner), does not require sample pretreatment nor use reagents
or solvents, and is also much faster than the reference method (less
than 1 min against a 15 min of a chromatographic run). Addition-
ally, the developed method may be used for online automatization
of industrial processes with a higher sampling frequency, and in
portable equipments. This method was throroughly validated in
accordance with the Brazilian and international guidelines, being
considered linear, accurate, unbiased, and suitable for use as an
official methodology for artificial dyes determination in beverages.
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