Planar Graphs with Circular Chromatic Numbers between 3 and 4

Xuding Zhu
Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
E-mail: zhu@math.nsysu.edu.tw

Received April 15, 1997

This naner nroves that for everv rational number r between 3 and 4. there exists
(iew metadata, citation and similar papers at core.ac.uk
(C) 1999 Academic Press

1. INTRODUCTION

The circular chromatic number (also known as the star chromatic number) $\chi_{c}(G)$ of a graph G is a natural generalization of the chromatic number of a graph introduced by Vince in 1988 [14]. For a pair of positive integers k, d with $k \geqslant d$, a (k, d)-colouring of a graph G is a mapping c of $V(G)$ to the set $\{0,1, \ldots, k-1\}$ such that for any adjacent vertices x, y of $G, d \leqslant|c(x)-c(y)| \leqslant k-d$. The circular chromatic number $\chi_{c}(G)$ of a graph G is the infimum of the ratios k / d for which there exists a (k, d)-colouring of G. It was proved in $[1,14]$ that for finite graphs the infimum in the definition is always attained and hence can be replaced by the minimum. This also implies that the circular chromatic number of a finite graph is always a rational number. Some other basic properties of the circular chromatic number of a graph can be found in $[1,14,16]$. The proof in [14] use the continuous methods, while a simple combinatorial treatment of the concept was given in [1]. An alternate definition of the circular chromatic number was given in [16].

It is easy to see that a $(k, 1)$-colouring of a graph G is just an ordinary k-colouring of G. Therefore $\chi_{c}(G) \leqslant \chi(G)$ for any G. On the other hand, it is proved in [14] that $\chi_{c}(G)>\chi(G)-1$. Thus if we know the circular chromatic number of a graph G then $\chi(G)$ is just the ceiling of $\chi_{c}(G)$.

However, two graphs of the same chromatic number may have different circular chromatic numbers. In this sense, $\chi_{c}(G)$ is a refinement of $\chi(G)$, and it contains more information about the structure of the graph than $\chi(G)$ does.

The concept of circular chromatic number has attracted considerable attention in the past ten years, see [21] for a survey. Questions concerning circular chromatic number of planar graphs were asked by Vince when he introduced the concept, and have been studied by many authors [4, 7, 10, 13, 15-18]. It is natural to ask for which rational number r there is a planar graph G with $\chi_{C}(G)=r$? By the Four Colour Theorem, for any planar graph G we have $\chi_{c}(G) \leqslant \chi(G) \leqslant 4$. On the other hand, any nontrivial graph has circular chromatic number at least 2 . Therefore $2 \leqslant \chi_{c}(G)$ $\leqslant 4$ for any non-trivial planar graph G. For a long time there was little progress on this problem except that $\chi_{c}(G)$ was determined for some special classes of planar graphs. In particular, it was unknown whether or not there are planar graphs whose circular chromatic numbers are less than 3 , but arbitrarily close to 3 , and planar graphs whose circular chromatic numbers are less than 4 , but arbitrarily close to 4 . This led to the suspicion that there might be some gaps between rational numbers which are the circular chromatic numbers of planar graphs. Recently, however, Moser [10] proved the somewhat surprising result that every rational number r between 2 and 3 is the circular chromatic number of a planar graph. This result changed our expectation, and Moser [10] asked whether or not every rational number between 3 and 4 is the circular chromatic number of a planar graph. We shall answer this question in affirmative. We shall prove the following:

Theorem 1.1. For any rational number r between 3 and 4 , there exists a planar graph G such that $\chi_{c}(G)=r$.

Together with Moser's result, we arrive at the conclusion that every rational number between 2 and 4 is indeed the circular chromatic number of a planar graph. The basic idea of the construction in this paper is as in that of Moser's construction in [10], but the techniques are more complicated. The proof is similar to the proof of [17], but again more complicated.

2. AN OVERVIEW

This section gives an overview of the construction and the proof.
Since K_{3} and K_{4} are planar graphs with circular chromatic numbers 3 and 4 respectively, we only need to consider those rational numbers which
are strictly between 3 and 4 . Given a rational number p / q such that $3<$ $p / q<4$ and $(p, q)=1$, let

$$
\frac{3}{1}=\frac{p_{0}}{q_{0}}<\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}<\cdots<\frac{p_{n}}{q_{n}}=\frac{p}{q}
$$

be the Farey sequence of p / q. This means that for $0 \leqslant i \leqslant n-1$, any rational number k / d strictly between p_{i} / q_{i} and p_{i+1} / q_{i+1} has numerator $k>p_{i+1}$ (see Section 3 for the precise definition).

In order to construct a planar graph G with circular chromatic number equal to p / q, we recursively construct planar graphs G_{i}, for $i=1,2, \ldots, n$, such that G_{i} has circular chromatic number p_{i} / q_{i}. The graph G_{i} is constructed by "hooking" two parts F_{i} and H_{i} together. The parts F_{i} and H_{i} are not only the building blocks for G_{i}, they are also the building blocks for F_{i+2} and H_{i+1}. This is how the structure of G_{i} is weaved into that of G_{i+1}, allowing us to use induction in our proof. Indeed, the graph G_{i+1} contains many (at least two) copies of G_{i}, and these copies of G_{i} are intertwined, i.e. two copies of G_{i} in G_{i+1} may share many vertices. The graph G_{i} will usually have exactly p_{i} vertices. In the exceptional case, the graph G_{i} has more than p_{i} vertices, but not many more.

After the construction, we prove by induction on i that each graph G_{i} has circular chromatic number p_{i} / q_{i}. It is relatively easy to prove that $\chi_{c}\left(G_{i}\right) \leqslant p_{i} / q_{i}$. We simply give a $\left(p_{i}, q_{i}\right)$-colouring of G_{i}. It is more difficult to prove that $\chi_{c}\left(G_{i}\right)$ is not less than p_{i} / q_{i}. For the purpose of using induction, we shall prove a stronger result. Namely we shall prove that G_{i} not only has circular chromatic number p_{i} / q_{i}, but also the (p_{i}, q_{i})-colouring of G_{i} is more or less unique. Then we show that the "unique" $\left(p_{i}, q_{i}\right)$-colouring of G_{i} cannot be extended to a $\left(p_{i}, q_{i}\right)$-colouring of G_{i+1}. Therefore $\chi_{c}\left(G_{i+1}\right)>p_{i} / q_{i}$. It is well-known (cf. Corollary 5.1) that if a graph G has circular chromatic number k / d, where $(k, d)=1$, then $k \leqslant|V(G)|$. Because G_{i+1} has p_{i+1} vertices (in general), and any rational number k / d strictly between p_{i} / q_{i} and p_{i+1} / q_{i+1} has $k>p_{i+1}$, we conclude that $\chi_{c}\left(G_{i+1}\right) \geqslant$ p_{i+1} / q_{i+1} and hence $\chi_{c}\left(G_{i+1}\right)=p_{i+1} / q_{i+1}$.

3. THE FAREY SEQUENCE

Given any rational number p / q such that $3<p / q<4$ and $(p, q)=1$, let p^{\prime}, q^{\prime} be the unique positive integers such that $p^{\prime}<p, q^{\prime}<q$ and $p q^{\prime}-q p^{\prime}=1$. Then it is straightforward to verify that $p^{\prime} / q^{\prime}<p / q$ and that p^{\prime} / q^{\prime} is the largest fraction with the property that $p^{\prime} / q^{\prime}<p / q$ and $p^{\prime} \leqslant p$. Similarly, let $p^{\prime \prime}, q^{\prime \prime}$ be positive integers such that $p^{\prime \prime}<p^{\prime}, q^{\prime \prime}<q^{\prime}$ and $p^{\prime} q^{\prime \prime}-p^{\prime \prime} q^{\prime}=1$. Then $p^{\prime \prime} / q^{\prime \prime}$ is the largest fraction with the property that $p^{\prime \prime} / q^{\prime \prime}<p^{\prime} / q^{\prime}$ and that $p^{\prime \prime} \leqslant p^{\prime}$. Repeat this process of finding smaller and
smaller fractions, we shall stop at the fraction $3 / 1$ in a finite number of steps. Thus to each rational number p / q between 3 and 4 , there corresponds a unique sequence of fractions.

$$
\frac{3}{1}=\frac{p_{0}}{q_{0}}<\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}<\cdots<\frac{p_{n}}{q_{n}}=\frac{p}{q} .
$$

The sequence $\left(p_{i} / q_{i}: i=0,1, \ldots, n\right)$ is called the Farey sequence of p / q (This definition of Farey sequence was given in [10] and is slightly different from the Farey sequence found in number theory book such as in [11].)

For convenience, we let $p_{-1}=-1$ and $q_{-1}=0$. As $p_{i} q_{i-1}-p_{i-1} q_{i}=1$ and $p_{i-1} q_{i-2}-p_{i-2} q_{i-1}=1$ for all $1 \leqslant i \leqslant n$, it follows that

$$
p_{i-1}\left(q_{i}+q_{i-2}\right)=q_{i-1}\left(p_{i}+p_{i-2}\right) .
$$

As p_{i-1}, q_{i-1} are co-prime,

$$
\alpha_{i}=\frac{p_{i}+p_{i-2}}{p_{i-1}}=\frac{q_{i}+q_{i-2}}{q_{i-1}}
$$

is an integer which is greater than 1 , and hence is at least 2 . The sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is called the alpha sequence of p / q [10], and is obviously uniquely determined by p / q. The process of deducing the alpha sequence from the rational number p / q can also be reversed. In other words, each sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with $\alpha_{i} \geqslant 2$ determines a rational number p / q between 3 and 4 . Indeed, given the alpha sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, the fractions p_{i} / q_{i} can be easily determined by solving the difference equations

$$
\begin{equation*}
p_{i}=\alpha_{i} p_{i-1}-p_{i-2}, \quad q_{i}=\alpha_{i} q_{i-1}-q_{i-2}, \tag{*}
\end{equation*}
$$

with the initial condition $\left(p_{-1}, q_{-1}\right)=(-1,0)$ and $\left(p_{0}, q_{0}\right)=(3,1)$.
By repeatedly applying Eq. (*), we may express p_{i} (respectively q_{i}) in terms of p_{j} and p_{j-1} (respectively q_{j} and q_{j-1}) for any $0 \leqslant j \leqslant i-2$. Lemma 3.1 below gives the explicit expressions.

For $1 \leqslant r \leqslant s \leqslant n$, let

$$
\Lambda_{r, s}=\operatorname{det}\left(\begin{array}{cccccc}
\alpha_{1} & 1 & 0 & \cdots & 0 & 0 \\
1 & \alpha_{r+1} & 1 & \cdots & 0 & 0 \\
0 & 1 & \alpha_{r+2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \alpha_{s-1} & 1 \\
0 & 0 & 0 & \cdots & 1 & \alpha_{s}
\end{array}\right) .
$$

Lemma 3.1. For $0 \leqslant j \leqslant i-2$, we have

$$
p_{i}=p_{j} \Lambda_{j+1, i}-p_{j-1} \Lambda_{j+2, i}, \quad q_{i}=q_{j} \Lambda_{j+1, i}-q_{j-1} \Lambda_{j+2, i} . \quad
$$

Proof. It suffices to prove the first equality. We shall prove it by induction on i. When $i=j+2$, by applying ($*$) twice, we obtain ($* *$). Suppose that $i \geqslant j+3$ and that $(* *)$ is true for any $i^{\prime}<i$. Then by cofactor expansion,

$$
\begin{aligned}
p_{j} \Lambda_{j+1, i}-p_{j-1} \Lambda_{j+2, i}= & \alpha_{i}\left(p_{j} \Lambda_{j+1, i-1}-p_{j-1} \Lambda_{j+2, i-1}\right) \\
& -\left(p_{j} \Lambda_{j+1, i-2}-p_{j-1} \Lambda_{j+2, i-2}\right) \\
= & \alpha_{i} p_{i-1}-p_{i-2}=p .
\end{aligned}
$$

The second equality uses the induction hypothesis.
By letting $j=0$ in (**), and by using the initial condition, we have

$$
\begin{equation*}
p_{i}=3 \Lambda_{1, i}+\Lambda_{2, i}, \quad q_{i}=\Lambda_{1, i} . \tag{***}
\end{equation*}
$$

Lemma 3.2. For $0 \leqslant j \leqslant i-2, p_{j} q_{i}=p_{i} q_{j}-\Lambda_{j+2, i}$.
Proof. By applying Lemma 3.1, we have

$$
\begin{aligned}
p_{i} q_{j}-p_{j} q_{i} & =\left(p_{j} \Lambda_{j+1, i}-p_{j-1} \Lambda_{j+2, i}\right) q_{j}-p_{j}\left(q_{j} \Lambda_{j+1, i}-q_{j-1} \Lambda_{j+2, i}\right) \\
& =\Lambda_{j+2, i}\left(p_{j} q_{j-1}-p_{j-1} q_{j}\right) \\
& =\Lambda_{j+2, i} .
\end{aligned}
$$

Noting that $\alpha_{j} \geqslant 2$, we leave the easy induction proof of the following lemma to the reader.

Lemma 3.3. For any $2<t<i, \Lambda_{t, i}<\Lambda_{t-1, i}$.

4. THE CONSTRUCTION

Let $r=p / q$ be any rational number strictly between 3 and 4 , where $(p, q)=1$, let $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be the alpha sequence of p / q, and let $\left(p_{i} / q_{i}\right.$: $i=1,2, \ldots, n)$ be the Farey sequence of p / q. We shall use the alpha sequence to construct, by induction, a sequence of planar graphs G_{i} such that $\chi_{c}\left(G_{i}\right)=p_{i} / q_{i}$. It turns out that the construction for $\alpha_{1}=2$ and for $\alpha_{1} \geqslant 3$ are quite different. In this section, we shall construct the graphs G_{i} for $\alpha_{1} \geqslant 3$. The case $\alpha_{1}=2$ will be dealt with in Section 6.

Before constructing the graphs G_{i} we need to construct ordered graphs F_{i} and H_{i}. We construct these graphs, together with liner orderings of their vertices, recursively. If we set $f_{i}=\left|V\left(F_{i}\right)\right|$ and $h_{i}=\left|V\left(H_{i}\right)\right|$, we can put
$V\left(F_{i}\right)=\left\{x_{i, 1}, x_{i, 2}, \ldots, x_{i, f_{i}}\right\}$ and $V\left(H_{i}\right)=\left\{y_{i, 1}, y_{i, 2}, \ldots, y_{i, k_{i}}\right\}$ and consider the vertices of each in the order indicated.

First, let F_{1} be the edgeless graph on $\left\{x_{1,1}\right\}$. Let H_{1} be the square of the path $y_{1,1}, y_{1,2}, \ldots, y_{1,3 \alpha_{1}}$, that is, let $y_{1, i} y_{1, j}$ be an edge of H_{1} if and only if $1 \leqslant|i-j| \leqslant 2$. Similarly, let F_{2} be the square of the path $x_{2,1}$, $x_{2,2}, \ldots, x_{2,3 x_{1}-3}$.

For $i \geqslant 2$, the graph H_{i} is constructed from copies of F_{i-1} and H_{i-1} by adding some connecting edges; for $i \geqslant 3, F_{i}$ is constructed from copies of F_{i-2} and H_{i-2} by adding some connecting edges.

In order to describe the connecting edges, we define four types of hooks as follows:

Definition 4.1. Suppose X and Y are disjoint ordered graphs whose vertex orderings are $\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{t}\right)$, respectively. To say hook X to Y with

- Type 1 hook means to add the following set of edges connecting X to Y :

$$
x_{1} y_{1}, \quad x_{1} y_{2}, \quad x_{s} y_{t}, \quad x_{s-4} y_{t} .
$$

- Type 2 hook means to add the following set of edges connecting X to Y :

$$
x_{1} y_{1}, \quad x_{2} y_{1}, \quad x_{s} y_{t}, \quad x_{s} y_{t-4} .
$$

- Type 3 hook means to add the following set of edges connecting X to Y :

$$
x_{1} y_{1}, \quad x_{1} y_{2}, \quad x_{s} y_{t}, \quad x_{s-1} y_{t} .
$$

- Type 4 hook means to add the following set of edges connecting X to Y :

$$
x_{1} y_{1}, \quad x_{2} y_{1}, \quad x_{s} y_{t}, \quad x_{s} y_{t-1}
$$

In the definition above, if X is a singleton, then set $x_{j}=x_{1}$ for all j.
Figure 1 illustrates the four types of hooks defined above.
To construct H_{i+1} for $i \geqslant 1$, we take α_{i+1} copies of F_{i} and $\alpha_{i+1}-1$ copies of H_{i}, and hook them together in the order $F_{i}^{1}, H_{i}^{1}, F_{i}^{2}, H_{i}^{2}, \ldots$, $H_{i}^{\alpha_{i+1}-1}, F_{i}^{\alpha_{i+1}}$. Here F_{i}^{j} denotes the j th copy of F_{i}, and H_{i}^{j} denotes the j th copy of H_{i}. The type of hooks used are as follows:

- if α_{1} is odd and $i=1$, then for $j=1,2, \ldots, \alpha_{i+1}-1, F_{i}^{j}$ is hooked to H_{i}^{j} with a type 1 hook, and F_{i}^{j+1} is hooked to H_{i}^{j} with a type 2 hook;

FIG. 1. The four types of hooks.

- if α_{1} is odd and $i \geqslant 2$, then for $j=1,2, \ldots, \alpha_{i+1}-1, F_{i}^{j}$ is hooked to H_{i}^{j} with a type 3 hook, and F_{i}^{j+1} is hooked to H_{i}^{j} with a type 4 hook;
- if α_{1} is even and $i=1$, then for $j=1,2, \ldots, \alpha_{i+1}-1, F_{i}^{j}$ is hooked to H_{i}^{j} with a type 3 hook, and F_{i}^{j+1} is hooked to H_{i}^{j} with a type 4 hook;
- if α_{1} is even and i is even, then for $j=1,2, \ldots, \alpha_{i+1}-1, F_{i}^{j}$ is hooked to H_{i}^{j} with a type 1 hook, and F_{i}^{j+1} is hooked to H_{i}^{j} with a type 4 hook;
- if α_{1} is even and $i \geqslant 3$ is odd, then for $j=1,2, \ldots, \alpha_{i+1}-1, F_{i}^{j}$ is hooked to H_{i}^{j} with a type 3 hook, and F_{i}^{j+1} is hooked to H_{i}^{j} with a type 2 hook.

The linear order of the vertices of H_{i+1} is as follows: the vertices of F_{i}^{1} in order, followed by the vertices of H_{i}^{1} in the reverse order, followed by the vertices of F_{i}^{2} in order, followed by the vertices of H_{i}^{2} in the reverse order, etc.. To be precise, let the vertices of F_{i}^{j} be $x_{i, 1}^{j}, x_{i, 2}^{j}, \ldots, x_{i, f_{i}}^{j}$ in that order, and let the vertices of H_{i}^{j} be $y_{i, 1}^{j}, y_{i, 2}^{j}, \ldots, y_{i, h_{i}}^{j}$ in that order. Then the linear order of the vertices of H_{i+1} is

$$
\begin{aligned}
& x_{i, 1}^{1}, x_{i, 2}^{1}, \ldots, x_{i, f_{i}}^{1}, y_{i, h_{i}}^{1}, y_{i, h_{i}-1}^{1}, \ldots, y_{i, 1}^{1}, \\
& \quad x_{i, 1}^{2}, x_{i, 2}^{2}, \ldots, x_{i, f_{i}}^{2}, y_{i, h_{i}}^{2}, \ldots, y_{i, 1}^{2}, \ldots, x_{i, 1}^{\alpha_{i+1}}, \ldots, x_{i, f_{i}}^{\alpha_{i+1}} .
\end{aligned}
$$

The graph $F_{i+2}(i \geqslant 1)$ is constructed in the same way as H_{i+1}, except that for F_{i+2} we only take $\alpha_{i+1}-1$ copies of F_{i} and $\alpha_{i+1}-2$ copies of H_{i}. The linear order of its vertex set is also defined in the same way.

Note that by assuming that $\alpha_{1} \geqslant 3$, the graph F_{i} is either a singleton or has at least 6 vertices, and that each of the graphs H_{i} has at least 9 vertices.

Finally we construct graphs G_{i} and G_{i}^{\prime} from a copy of F_{i} and a copy of H_{i} by hooking them using appropriate hooks so that G_{i} is isomorphic to the subgraph of H_{i+1} induced by the set $F_{i}^{1} \cup H_{i}^{1}$, and G_{i}^{\prime} is isomorphic to the subgraph of H_{i+1} induced by the set $H_{i}^{1} \cup F_{i}^{2}$.

To be precise, we define G_{i} and G_{i}^{\prime} as follows:

- if α_{1} is odd and $i=1$, then G_{1} is obtained by hooking F_{1} to H_{1} with a type 1 hook; G_{1}^{\prime} is obtained by hooking F_{1} to H_{1} with a type 2 hook;
- if α_{1} is odd and $i \geqslant 2$, then G_{i} is obtained by hooking F_{i} to H_{i} with a type 3 hook; G_{i}^{\prime} is obtained by hooking F_{i} to H_{i} with a type 4 hook;
- if α_{1} is even and $i=1$, then G_{1} is obtained by hooking F_{1} to H_{1} with a type 3 hook; G_{1}^{\prime} is obtained by hooking F_{1} to H_{1} with a type 4 hook;
- if α_{1} is even and i is even, then G_{i} is obtained by hooking F_{i} to H_{i} with a type 1 hook; G_{i}^{\prime} is obtained by hooking F_{i} to H_{i} with a type 4 hook;
- if α_{1} is even and $i \geqslant 3$ is odd, then G_{i} is obtained by hooking F_{i} to H_{i} with a type 3 hook; G_{i}^{\prime} is obtained by hooking F_{i} to H_{i} with a type 2 hook.

Figure 2 illustrates the construction of F_{i}, H_{i} for the alpha sequence $(3,2,3)$. The graphs $G_{1}, G_{1}^{\prime}, G_{2}, G_{2}^{\prime}$ are contained in H_{3} as subgraphs. The graph G_{3} can be easily obtained from H_{3} and F_{3}.

Note that each of the graphs F_{i} and H_{i} is an ordered graph. We shall also regard the graph G_{i} (as well as G_{i}^{\prime}) as an ordered graph, the order of the vertices being inherited from the graph H_{i+1}, i.e., the vertices of F_{i} in order, followed by the vertices of H_{i} in the reverse order.

FIG. 2. $\quad F_{i}$ and H_{i} for the alpha sequences $(3,2,3)$.

5. THE PROOF

In this section, we shall prove that for each $i \leqslant n$, the graphs G_{i} and G_{i}^{\prime} are planar graphs, and that $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=p_{i} / q_{i}$.

Theorem 5.1. For each i, both graphs G_{i}, G_{i}^{\prime} are planar graphs.
Proof. It suffices to show that for each i, the graph H_{i} is planer (as H_{i} contains $G_{i-1}, G_{i-1}^{\prime}$ as subgraphs). We shall only consider the case that α_{1} is even. The case that α_{1} is odd is different, but can be proved similarly.

The following observations are straightforward from the construction:

- H_{1} has an embedding in the plane such that the outer face contains the vertices $y_{1,1}, y_{1,2}, y_{1, h_{1}}, y_{1, h_{1}-1}$ in that cyclic order.
- F_{2} has an embedding in the plane such that the outer face contains the vertices $x_{2,1}, x_{2,2}, x_{2, f_{2}}, x_{2, f_{2}-4}$ in that cyclic order.
- H_{2} has an embedding in the plane such that the outer face contains the vertices $y_{2,1}, y_{2,2}, y_{2, h_{2}}, y_{2, h_{2}-1}$ in that cyclic order.
- F_{3} has an embedding in the plane such that the outer face contains the vertices $x_{3,1}, x_{3,2}, x_{3, f_{3}}, x_{3, f_{3}-1}$ in that cyclic order. (Note that since $\alpha_{1} \geqslant 3, F_{3}$ has more than $3 \alpha_{1}$ vertices.)

We shall prove by induction that for each $i \geqslant 2$, if i is even then the graph H_{i} has an embedding on the plane such that the outer face contains

$$
y_{i, 1}, y_{i, 2}, y_{i, h_{i}}, y_{i, h_{i}-1}
$$

in that cyclic order; and that F_{i} has an embedding on the plane such that the outer face contains

$$
x_{i, 1}, x_{i, 2}, x_{i, f_{i}}, x_{i, f_{i}-4}
$$

in that cyclic order. If i is odd then the graph H_{i} has an embedding on the plane such that the outer face contains

$$
y_{i, 1}, y_{i, 2}, y_{i, h_{i}}, y_{i, h_{i}-4}
$$

in that cyclic order; and that F_{i} has an embedding on the plane such that the outer face contains

$$
x_{i, 1}, x_{i, 2}, x_{i, f_{i}}, x_{i, f_{i}-1}
$$

in that cyclic order.
This is straightforward, as the embedding of H_{i} is simply obtained from the embeddings of those copies of H_{i-1} and F_{i-1} by adding the hooking
edges. The induction hypothesis and the types of hooks we have chosen ensure that these added edges can be embedded on the plane.

Now we proceed to prove that $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=p_{i} / q_{i}$. We shall prove the conclusion for G_{i} only since the arguments used are easily carried over to G_{i}^{\prime}. We will simply assume the statements true for both G_{i} and G_{i}^{\prime}.

Lemma 5.1 and Corollary 5.1 below will be used extensively in our proof. Lemma 5.1 was proved in [6] and also implicitly used in [14, 16]. Given a (k, d)-colouring c of a graph G, define a directed graph $D_{c}(G)$ on the vertex set of G by putting a directed edge from x to y if and only if (x, y) is an edge of G and $c(x)-c(y)=d(\bmod k)$.

Lemma 5.1. For any $G, \chi_{c}(G)=k / d$ if and only if G is (k, d)-colourable and for any (k, d)-colouring c of G, the directed graph $D_{c}(G)$ contains a directed cycle.

A simple calculation shows that the length of the directed cycle in $D_{c}(G)$ is a multiple of k, and hence is at least k (under the assumption that $(k, d)=1$. Thus we have the following corollary $[1,6,14,16]$:

Corollary 5.1. For any graph G, if $\chi_{c}(G)=k / d$ where $(k, d)=1$, then G has a cycle of length at least k. In particular $k \leqslant|V(G)|$.

Thus if we know the number of vertices of a graph G, then by using Corollary 5.1, we can restrict the possible values of the circular chromatic number of G to finitely many rational numbers. If, in addition, we know sharp upper and lower bounds for the circular chromatic number of G, then we might be able to determine the circular chromatic number of G by using Corollary 5.1.

Lemma 5.2. The graph G_{i} has p_{i} vertices.
Proof. From the construction of G_{i}, we know that G_{i} has $g_{i}=f_{i}+h_{i}$ vertices. From the construction of F_{i}, H_{i}, we know that

$$
f_{1}=1, \quad f_{2}=3 \alpha_{1}-3, \quad h_{1}=3 \alpha_{1},
$$

and for $i \geqslant 2$,

$$
h_{i}=\alpha_{i} f_{i-1}+\left(\alpha_{i}-1\right) h_{i-1},
$$

for $i \geqslant 3$,

$$
f_{i}=\left(\alpha_{i-1}-1\right) f_{i-2}+\left(\alpha_{i-1}-2\right) h_{i-2} .
$$

Simple algebraic calculation shows that

$$
h_{i}=\alpha_{i} g_{i-1}-h_{i-1}, \quad f_{i}=\left(\alpha_{i-1}-1\right) g_{i-2}-h_{i-2}=h_{i-1}-g_{i-2} .
$$

Hence

$$
g_{i}=\alpha_{i} g_{i-1}-g_{i-2} .
$$

It is straightforward to verify that $g_{1}=p_{1}, g_{2}=p_{2}$. Thus g_{i}, p_{i} satisfy the same difference equation and the same initial condition. Hence $\left|G_{i}\right|=$ $g_{i}=p_{i}$.

Definition 5.1. Suppose X is an ordered graph with vertices ordered as $\left(x_{1}, x_{2}, \ldots, x_{\beta}\right)$. For an edge $e=x_{k} x_{s}$ of X, we call $\ell(e)=|k-s|$ the order length of e.

Lemma 5.3. Let $L_{i}=\{1,2,5\} \cup\left\{p_{t}-1, p_{t}-2, p_{t}-5: 1 \leqslant t \leqslant i-1\right\}$. Then for any $i \geqslant 1$ and for any edge e of H_{i} or F_{i}, we have $\ell(e) \in L_{i}$.

Proof. We shall prove it by induction. When $i=1$, this is true from the definition. Suppose $i \geqslant 2$ and the lemma is true for all $1 \leqslant j<i$. We shall prove that it is true for i. Note that when we construct the graph H_{i} from copies of F_{i-1} and H_{i-1}, the edges of H_{i} are either those carried over from F_{i-1} and H_{i-1}, or are the edges of the hooks. For those edges of the copies of F_{i-1} and H_{i-1}, their order lengths remain unchanged in H_{i}. For the edges of the hooks, it is straightforward to verify that their order lengths belong to the set $\left\{1,2,5, p_{i-1}-1, p_{i-1}-2, p_{i-1}-5\right\}$. The proof for the edges of F_{i} is similar.

Corollary 5.2. For any i and for any edge e of G_{i} or G_{i}^{\prime}, we have $\ell(e) \in L_{i+1}$.

Theorem 5.2. For each $i, \chi_{c}\left(G_{i}\right) \leqslant p_{i} / q_{i}$.
Proof. Let $\left(c_{1}, c_{2}, \ldots, c_{p_{i}}\right)$ be the vertices of G_{i}, in that order. Let $\Delta\left(c_{k}\right)=k q_{i}\left(\bmod p_{i}\right)$. We claim that Δ is a $\left(p_{i}, q_{i}\right)$-colouring of G_{i}, i.e., for any edge $e=c_{k} c_{s}$, we have $q_{i} \leqslant\left|\Delta\left(c_{k}\right)-\Delta\left(c_{s}\right)\right| \leqslant p_{i}-q_{i}$.

Note that $\left|\Delta\left(c_{k}\right)-\Delta\left(c_{s}\right)\right|=\ell(e) q_{i}\left(\bmod p_{i}\right)$ or $p_{i}-\ell(e) q_{i}\left(\bmod p_{i}\right)$. Therefore, it suffices to prove that for any edge e of G_{i}, we have

$$
q_{i} \leqslant \ell(e) q_{i} \quad\left(\bmod p_{i}\right) \leqslant p_{i}-q_{i} .
$$

By Corollary 5.2, we know that $\ell(e) \in L_{i+1}$. If $\ell(e)=1,2$, then obviously we have $q_{i} \leqslant \ell(e) q_{i} \leqslant p_{i}-q_{i}$ (recall that $\left.p_{i} / q_{i}>3\right)$. If $\ell(e)=5$, then $\ell(e) q_{i}$ $\left(\bmod p_{i}\right)=5 q_{i}-p_{i}$. Since $3<p_{i} / q_{i}<4$, we have $q_{i}<5 q_{i}-p_{i}<2 q_{i}<p_{i}-q_{i}$.

If $\ell(e)=p_{i}-1, p_{i}-2$ or $p_{i}-5$, then it is also straightforward to verify that $q_{i} \leqslant \ell(e) q_{i}\left(\bmod p_{i}\right) \leqslant p_{i}-q_{i}$.

Next we consider the case that $\ell(e)=p_{t}-1, p_{t}-2$ or $p_{t}-5$ for some $t \leqslant i-1$. If $t=i-1$ then since $p_{i} q_{i-1}-p_{i-1} q_{i}=1$, we have

$$
p_{t} q_{i} \quad\left(\bmod p_{i}\right)=p_{i}-1
$$

It follows that

$$
\begin{array}{ll}
\left(p_{t}-1\right) q_{i} & \left(\bmod p_{i}\right)=p_{i}-q_{i}-1, \\
\left(p_{t}-2\right) q_{i} & \left(\bmod p_{i}\right)=p_{i}-2 q_{i}-1,
\end{array}
$$

and

$$
\left(p_{t}-5\right) q_{i} \quad\left(\bmod p_{i}\right)=2 p_{i}-5 q_{i}-1=\left(p_{i}-q_{i}\right)-\left(4 q_{i}+1-p_{i}\right) .
$$

Since $3 q_{i}<p_{i}<4 q_{i}$, we conclude that $q_{i} \leqslant \ell(e) q_{i}\left(\bmod p_{i}\right) \leqslant p_{i}-q_{i}$. If $1 \leqslant t \leqslant i-2$, then by Lemma 3.2,

$$
p_{t} q_{i} \quad\left(\bmod p_{i}\right)=p_{i}-\Lambda_{t+2, i}
$$

By (***) and Lemma 3.3, we have

$$
p_{i}-3 q_{i}=\Lambda_{2, i}
$$

and

$$
2 \leqslant \alpha_{i}=\Lambda_{i, i} \leqslant \Lambda_{t+2, i}<\Lambda_{2, i} .
$$

It follows that

$$
\begin{array}{ll}
\left(p_{t}-1\right) q_{i} & \left(\bmod p_{i}\right)=p_{i}-q_{i}-\Lambda_{t+2, i} \\
\left(p_{t}-2\right) q_{i} & \left(\bmod p_{i}\right)=p_{i}-2 q_{i}-\Lambda_{t+2, i}
\end{array}
$$

and

$$
\begin{aligned}
\left(p_{t}-5\right) q_{i}\left(\bmod p_{i}\right) & =2 p_{i}-5 q_{i}-\Lambda_{t+2, i} \\
& =\left(p_{i}-q_{i}\right)-\left(4 q_{i}+\Lambda_{t+2, i}-p_{i}\right)
\end{aligned}
$$

By using the inequality $2 \leqslant \Lambda_{t+2, i}<p_{i}-3 q_{i}$, we conclude that $q_{i} \leqslant \ell(e) q_{i}$ $\left(\bmod p_{i}\right) \leqslant p_{i}-q_{i}$. Therefore Δ is a $\left(p_{i}, q_{i}\right)$-colouring of G_{i}.

Suppose $\chi_{c}\left(G_{i}\right)=p_{i} / q_{i}$ and Δ is an $\left(p_{i}, q_{i}\right)$-colouring of G_{i}. It follows from Lemma 5.1 that there is a directed cycle of $D_{\Delta}\left(G_{i}\right)$ of length at least p_{i}. Since $\left|G_{i}\right|=p_{i}$, we conclude that there is a Hamilton cycle, say $\left(c_{1}, c_{2}, \ldots, c_{p_{i}}\right)$, of G_{i} such that $\Delta\left(c_{j}\right)-\Delta\left(c_{j-1}\right)=q_{i}\left(\bmod p_{i}\right)$.

Suppose $X=\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ is a cycle (resp. a path) of a graph Q. Let p_{i} / q_{i} be a rational number between 3 and 4 with Farey sequence $3 / 1=$ $p_{0} / q_{0}<p_{1} / q_{1}<\cdots<p_{i} / q_{i}$. We call X a good cycle (resp. a good path), with respect to p_{i} / q_{i}, if for any edge $e=x_{k} x_{s}$ of Q and for any $0 \leqslant t \leqslant i-1$, we have $|s-k| \neq p_{t}, p_{t}+1, p_{t}-3, p_{t}-4$.

Lemma 5.4. Suppose $\chi_{c}\left(G_{i}\right)=p_{i} / q_{i}$ and Δ is an $\left(p_{i}, q_{i}\right)$-colouring of G_{i}. Let $X=\left(x_{1}, x_{2}, \ldots, x_{p_{i}}, x_{1}\right)$ be the Hamilton cycle of G_{i} such that $\Delta\left(c_{j}\right)-$ $\Delta\left(c_{j-1}\right)=q_{i}\left(\bmod p_{i}\right)$. Then X is a good Hamilton cycle of G_{i} with respect to p_{i} / q_{i}.

Proof. Let $C_{i}=\left\{q_{i}, q_{i}+1, \ldots, p_{i}-q_{i}\right\}$. Since Δ is a $\left(p_{i}, q_{i}\right)$-colouring of G_{i}, it follows that for any edge $e=c_{s} c_{k}$ of G_{i}, we have $|s-k| q_{i}\left(\bmod p_{i}\right) \in$ C_{i}. Therefore to prove Lemma 5.4, it suffices to show that for any $0 \leqslant t \leqslant$ $i-1$,

$$
\begin{array}{rlll}
p_{t} q_{i} & \left(\bmod p_{i}\right) \notin C_{i}, \\
\left(p_{t}-3\right) q_{i} & \left(\bmod p_{i}\right) \notin C_{i},
\end{array} \quad \text { and } \quad\left(p_{t}+1\right) q_{i} \quad\left(\bmod p_{i}\right) \notin C_{i}, ~\left(p_{t}-4\right) q_{i} \quad\left(\bmod p_{i}\right) \notin C_{i} .
$$

If $t=i-1$, then $p_{t} q_{i}=p_{i} q_{t}-1$. The required inequalities follow easily. (Note that when $i \geqslant 2$, we have $p_{i}-3 q_{i} \geqslant 2$.) If $1 \leqslant t \leqslant i-2$, then $p_{t} q_{i}=$ $p_{i} q_{t}-\Lambda_{t+2, i}$, by Lemma 3.2. Hence

$$
p_{t} q_{i} \quad\left(\bmod p_{i}\right)=p_{i}-\Lambda_{t+2, i}
$$

As

$$
2 \leqslant \alpha_{i} \leqslant \Lambda_{t+2, i}<\Lambda_{2, i}=p_{i}-3 q_{i},
$$

straightforward calculations give the required inequalities. For $t=0$, we only need to show that $3 q_{i} \notin C_{i}$ and that $4 q_{i}\left(\bmod p_{i}\right)=4 q_{i}-p_{i} \notin C_{i}$, and these simply follow from the condition that $3<p_{i} / q_{i}<4$.

Lemma 5.5. For a positive integer t, let Q_{t} be the square of the path $12 \cdots t$ on the t vertices $1,2, \ldots, t$ (so the edge set of Q_{t} is $\{x y: 1 \leqslant|x-y|$ $\leqslant 2\}$). For any $t \geqslant 1$, the graph Q_{t} has a unique good Hamilton path (with respect to any $3<p / q<4$), up to an automorphism of Q_{t}.

Proof. It is straightforward to verify that $X=(1,2, \ldots, t)$ is a good Hamilton path of Q_{t}. We shall prove that this is the unique good Hamilton path of Q_{t}, up to an automorphism of Q_{t}. If $t \leqslant 3$, then Q_{t} is a complete graph, and hence the lemma is true. Suppose $t \geqslant 4$ and $P=\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is a good Hamilton path of Q_{t}. Then for any $i \leqslant t-3, x_{i} x_{i+3}$ is not an edge of Q_{t}, i.e., $\left|x_{i}-x_{i+3}\right| \geqslant 3$. Assume that $x_{1}<x_{4}$ (the case that $x_{1}>x_{4}$ is symmetric, and can be treated similarly). Then $x_{1} \leqslant x_{4}-3$.

Since $x_{2} \leqslant x_{1}+2$ and $x_{5} \geqslant x_{4}-2$ (because $x_{1} x_{2}$ and $x_{4} x_{5}$ are edges of Q_{t}), we conclude that $x_{2} \leqslant x_{5}+1$. However, $\left|x_{2}-x_{5}\right| \geqslant 3$. Therefore $x_{2} \leqslant x_{5}-3$. Repeating this argument, we can prove that $x_{i} \leqslant x_{i+3}-3$ for all $i \leqslant t-3$. This implies that $\{1,2,3\}=\left\{x_{1}, x_{2}, x_{3}\right\}$, for otherwise there exist $j \leqslant 3$ and an $i \geqslant 1$ such that $x_{i+3}=j$. But then $1 \leqslant x_{i} \leqslant x_{i+3}-3=j-3 \leqslant 0$, an obvious contradiction.

Suppose $x_{i}=4$. Then $i \geqslant 4$, and $x_{i-3} \leqslant x_{i}-3=1$. Hence $x_{i-3}=1$. If $x_{j}=5$, then $x_{j-3} \leqslant 2$ and hence $x_{j-3}=2$. Repeating this argument, it can be proved that $x_{k-3}=x_{k}-3$ for all $4 \leqslant k \leqslant t$. Now we shall show that $x_{i}<x_{i+1}$ for all $i \leqslant t-4$. Assume to the contrary that $x_{i}>x_{i+1}$. Then $0<x_{i+4}-x_{i}=x_{i+1}+3-x_{i}<3$, and hence $x_{i} x_{i+4}$ is an edge of Q_{t}, contrary to the assumption that P is a good Hamilton path. For $i \geqslant t-3$, we also have $x_{i}<x_{i+1}$, because $x_{j}=x_{j-3}+3$. In case $t \geqslant 5$, this implies that $P=(1,2, \ldots, t)$. In case $t=4$, this implies that $P=(1, x, y, 4)$, where $\{x, y\}=\{2,3\}$. Since in Q_{4} the two vertices 2 and 3 are symmetric, there is an automorphism of Q_{t} which maps the path P to the path (1,2,3,4). This completes the proof.

We observe that the first vertex of F_{i} and the last vertex of H_{i} form a 2-vertex cut of G_{i}. It follows that any good Hamilton cycle of G_{i} must be the union of a good Hamilton path, say P, of F_{i} and a good Hamilton path, say P^{\prime}, of H_{i}. Moreover, the initial vertex of P (resp. P^{\prime}) must be the first (resp. last) vertex of $F_{i}\left(\right.$ resp. $\left.H_{i}\right)$.

Lemma 5.6. Suppose $P\left(\right.$ resp. $\left.P^{\prime}\right)$ is a good Hamilton path of F_{i} (resp. H_{i}) which can be extended to a good Hamilton cycle of G_{i}. If $i=1$, then the paths P and P^{\prime} are unique. If $i \geqslant 2$, then the first and the last 5 vertices of $P\left(\right.$ resp. $\left.P^{\prime}\right)$ are the first and the last 5 vertices of $F_{i}\left(r e s p . H_{i}\right)$, in that order.

Proof. We shall prove it by induction on i. When $i=1$, then the conclusion follows from Lemma 5.5. If $i=2$, then P is unique by Lemma 5.5.
The graph H_{2} is constructed by hooking copies of F_{1} (which is a singleton) to copies of H_{1}. By the observation above (previous to the statement of Lemma 5.6), P^{\prime} is a concatenation of the good Hamilton paths of these copies of F_{1} and H_{1}. By Lemma 5.5, F_{1} and H_{1} have unique good Hamilton paths. However, there is a possibility that after the concatenation, the path is not unique any more, because of the asymmetry of the hook edges. Indeed, when the good Hamilton path of the first copy of F_{1} (which is a singleton) is concatenated with the good Hamilton path of the first copy of H_{1}, we could have started from the first vertex of the good Hamilton path of H_{1}, instead of the last vertex of H_{1}. Because of the asymmetry of the hook, different choices of the starting vertex of H_{1} will result in non-isomorphic paths. However, we observe here that in order that the good Hamilton path P^{\prime} be extendable to a good Hamilton cycle of G_{2},
the second vertex of P^{\prime} must be the last vertex of the first copy of H_{1} in the concatenation. This is because the first vertex of F_{2} is adjacent to the second vertex of H_{2} (which is the last vertex of the first copy of H_{1} in H_{2}). If the path P^{\prime} is concatenated in the wrong way, i.e., if the second vertex of P^{\prime} is the first vertex of the first copy of H_{1}, then when P^{\prime} is extended to a Hamilton cycle, say X, of G_{2}, the edge $x_{2,1} y_{2,2}$ would have distance p_{1} along X, contrary to the definition of a good Hamilton cycle.

Therefore the second vertex of P^{\prime} must be the second vertex of H_{2}, and this implies that the first 5 vertices of P^{\prime} must be the first 5 vertices of H_{2} (indeed the first $3 \alpha_{1}+2$ vertices must be the first $3 \alpha_{1}+2$ vertices of H_{2}), in the same order.

Similarly we can prove that the last 5 vertices of P^{\prime} must be the last 5 vertices of H_{2}, in the same order.

The same argument applies to F_{3}.
For $i \geqslant 3$, the graph H_{i} is obtained from copies of F_{i-1} and H_{i-1} by appropriately hooking them together. Any good Hamilton path of H_{i} must be the concatenation of the good Hamilton paths of these copies of F_{i-1} and H_{i-1}. Unlike the case for $i=2$, none of the graphs F_{i-1} and H_{i-1} is a singleton (because $\alpha_{1} \geqslant 3$). Hence once the good Hamilton paths of the copies of F_{i-1} and H_{i-1} are chosen, there is a unique way of concatenating these paths together. Now the conclusion of the lemma follows easily from the induction hypothesis.

Lemma 5.7. Suppose $\chi_{c}\left(G_{i}\right)=p_{i} / q_{i}$ for some i. Let Δ be any $\left(p_{i}, q_{i}\right)$ colouring of G_{i}. If $i=1$, then the colour of the single vertex of F_{1} is determined by the colours of the first and the last vertex of H_{1}. If $i \geqslant 2$, then the colours of the first and last vertex of F_{i} uniquely determine the colours of the first and the last 5 vertices of H_{i}. Conversely, the colours of the first and the last vertex of H_{i} uniquely determine the colours of the first and the last 5 vertices of F_{i}.

Proof. The case that $i=1$ is trivial. Assume now that $i \geqslant 2$. Let C be the good Hamilton cycle determined by Δ (cf. Lemma 5.4). Then the colours of a vertex is determined by the position of that vertex in the Hamilton cycle. The Hamilton cycle C is the union of a good Hamilton path P of F_{i} and a good Hamilton path P^{\prime} of H_{i}. By Lemma 5.6, the first and the last 5 vertices of P are the first and the last 5 vertices of F_{i}. In other words, the position of the first and the last 5 vertices of F_{i} is determined by the position of the first and the last vertex of H_{i}, and hence their colours are determined by the colours of the first and the last vertex of H_{i}. The same is true for the first and the last 5 vertices of H_{i}. This completes the proof of Lemma 5.6.

To prove that $\chi_{c}\left(G_{i}\right) \geqslant p_{i} / q_{i}$ (and hence $\left.\chi_{c}\left(G_{i}\right)=p_{i} / q_{i}\right)$, we need another gadget. For $2 \leqslant i \leqslant n$, let $T_{i}, S_{i}, T_{i}^{\prime}$ and S_{i}^{\prime} be graphs defined as follows:

- if α_{1} is odd, then T_{i} is obtained by hooking F_{i} to F_{i-1} with a type 3 hook; S_{i} is obtained by hooking F_{i-1} to F_{i} with a type 3 hook; T_{i}^{\prime} is obtained by hooking F_{i} to F_{i-1} with a type 4 hook; S_{i}^{\prime} is obtained by hooking F_{i-1} to F_{i} with a type 4 hook;
- if α_{1} is even and i is even, then T_{i} is obtained by hooking F_{i} to F_{i-1} with a type 1 hook; S_{i} is obtained by hooking F_{i-1} to F_{i} with a type 3 hook; T_{i}^{\prime} is obtained by hooking F_{i} to F_{i-1} with a type 4 hook; S_{i}^{\prime} is obtained by hooking F_{i-1} to F_{i} with a type 2 hook;
- if α_{1} is even and i is odd, then T_{i} is obtained by hooking F_{i} to F_{i-1} with a type 3 hook; S_{i} is obtained by hooking F_{i-1} to F_{i} with a type 1 hook; T_{i}^{\prime} is obtained by hooking F_{i} to F_{i-1} with a type 2 hook; S_{i}^{\prime} is obtained by hooking F_{i-1} to F_{i} with a type 4 hook.

An alternate way of defining T_{i} and T_{i}^{\prime} is as follows.
The graph $G_{i}\left(\right.$ resp. $\left.G_{i}^{\prime}\right)$ contains H_{i} as a subgraph, and H_{i} consists of copies of F_{i-1} and H_{i-1}. We identify the vertices of the first copy of F_{i-1} with the corresponding vertices of the last copy of F_{i-1}, and delete all the other vertices of H_{i}. The resulting graph is T_{i} (resp. T_{i}^{\prime}).

An alternate way of defining S_{i} and S_{i}^{\prime} is as follows.
The graph T_{i+1} (resp. T_{i+1}^{\prime}) contains F_{i+1} as a subgraph, and F_{i+1} consists of copies of F_{i-1} and copies of H_{i-1}. We identify the vertices of the first copy of F_{i-1} with the corresponding vertices of the last copy of F_{i-1}, and delete all the other vertices of F_{i+1}. The resulting graph is S_{i} (resp. S_{i}^{\prime}). Note that in case F_{i+1} consists of a single copy of F_{i-1} and no copy of H_{i-1}, then $S_{i}=T_{i+1}\left(\right.$ resp. $\left.S_{i}^{\prime}=T_{i+1}^{\prime}\right)$.

Similarly, the graph T_{i} (resp. T_{i}^{\prime}) can also be obtained from S_{i+1} (resp. $\left.S_{i+1}^{\prime}\right)$ in the same way.

Theorem 5.3. For $i \geqslant 1$, we have $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=p_{i} / q_{i}$. For each $i \geqslant 2$, each of the graphs $T_{i}, S_{i}, T_{i}^{\prime}, S_{i}^{\prime}$ has circular chromatic number greater than p_{i-1} / q_{i-1}.

Proof. First we show that $\chi_{c}\left(G_{1}\right)=p_{1} / q_{1}$. It is easy to verify that $\chi\left(G_{1}\right)=\chi\left(G_{1}^{\prime}\right)=4$. Hence $\chi_{c}\left(G_{1}\right)>3$. Suppose $\chi_{c}\left(G_{1}\right)=k / d$. Then $k \leqslant$ $\left|V\left(G_{1}\right)\right|=p_{1}$, which implies that $k / d \geqslant p_{1} / q_{1}$, as any fraction strictly between 3 and p_{1} / q_{1} has its numerator greater than p_{1} (cf. the definition of the Farey sequence.) By Lemma 5.2, we have $\chi\left(G_{1}\right) \leqslant p_{1} / q_{1}$. Therefore $\chi_{c}\left(G_{1}\right)=p_{1} / q_{1}$.

Now we show that $\chi_{c}\left(T_{2}\right)>p_{1} / q_{1}$. As before, we can verify that $\chi\left(T_{2}\right)=4$, and hence $\chi_{c}\left(T_{2}\right)>3$. Suppose that $\chi_{c}\left(T_{2}\right)=k / d$. Then $k \leqslant$ $\left|V\left(T_{2}\right)\right|<p_{1}$ (note that $\left|V\left(T_{i}\right)\right|<\left|V\left(G_{i}\right)\right|$ for all i, because $\left|V\left(F_{i-1}\right)\right|<$ $\left.\left|V\left(H_{i}\right)\right|\right)$. This implies that $k / d>p_{1} / q_{1}$, by the construction of the Farey
sequence. Similarly, we can show that $\chi_{c}\left(S_{2}\right)>p_{1} / q_{1}, \chi_{c}\left(T_{2}^{\prime}\right)>p_{1} / q_{1}$ and $\chi_{c}\left(S_{2}^{\prime}\right)>p_{1} / q_{1}$.

Suppose that for some $i \geqslant 1$ we have $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=p_{i} / q_{i}$, and that each of the graphs $T_{i+1}, S_{i+1}, T_{i+1}^{\prime}, S_{i+1}^{\prime}$ has circular chromatic number greater than p_{i} / q_{i}. We shall prove that $\chi_{c}\left(G_{i+1}\right)=p_{i+1} / q_{i+1}$ and that $\chi_{c}\left(G_{i+1}^{\prime}\right)=p_{i+1} / q_{i+1}$.

Assume to the contrary that $\chi_{c}\left(G_{i+1}\right)<p_{i+1} / q_{i+1}$. Since p_{i} / q_{i} is the largest fraction with the property that $p_{i} / q_{i}<p_{i+1} / q_{i+1}$ and $p_{i} \leqslant p_{i+1}=$ $\left|V\left(G_{i+1}\right)\right|$, we conclude that $\chi_{c}\left(G_{i+1}\right) \leqslant p_{i} / q_{i}$
Recall that H_{i+1} contains α_{i+1} copies of F_{i}, say $F_{i}^{1}, \ldots, F_{i}^{\alpha_{i+1}}$, and $\alpha_{i+1}-1$ copies of H_{i}, say $H_{i}^{1}, \ldots, H_{i}^{\alpha_{i+1}-1}$. For each $1 \leqslant j \leqslant \alpha_{i+1}-1$, each of the subgraphs induced by the sets $F_{i}^{j} \cup H_{i}^{j}$ is isomorphic to G_{i}, and each of the subgraphs induced by the set $H_{i}^{j} \cup F_{i}^{j+1}$ is a isomorphic to G_{i}^{\prime}. By the induction hypothesis, $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=p_{i} / q_{i}$. Therefore $\chi_{c}\left(G_{i+1}\right)=p_{i} / q_{i}$.

Let ϕ be a $\left(p_{i}, q_{i}\right)$-colouring of G_{i+1}. The restriction of ϕ to $F_{i}^{j} \cup H_{i}^{j}$ and $H_{i}^{j} \cup F_{i}^{j+1}$ are $\left(p_{i}, q_{i}\right)$-colourings of G_{i} and G_{i}^{\prime}. By Lemma 5.7, the colours of the first and the last vertex of H_{i}^{1} uniquely determine the colours of the first and the last 5 vertices of F_{i}^{1}, as well as the first and the last 5 vertices of F_{i}^{2}. Therefore, the first and the last 5 vertices of F_{i}^{1} are coloured the same way as the first and the last 5 vertices of F_{i}^{2}. Repeating this argument, we can prove that the first and the last 5 vertices of the first copy of F_{i} are coloured the same way as the first and the last 5 vertices of the last copy of F_{i}.

Since in hooking F_{i+1} to F_{i} in the process of constructing T_{i+1}, the only vertices of F_{i} that become adjacent to any vertices of F_{i+1} are among the first and the last 5 vertices of F_{i}, we conclude that the restriction of the colouring ϕ to $F_{i}^{1} \cup F_{i+1}$ is indeed a (p_{i}, q_{i})-colouring of T_{i+1}, contrary to the assumption that $\chi_{c}\left(T_{i+1}\right)>p_{i} / q_{i}$.

The proof of $\chi_{c}\left(G_{i+1}^{\prime}\right)=p_{i+1} / q_{i+1}$ is similar.
Now assume that for some $i \geqslant 2$, we have $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=p_{i} / q_{i}, \chi_{c}\left(T_{i}\right)$ $>p_{i-1} / q_{i-1}, \chi_{c}\left(S_{i}\right)>p_{i-1} / q_{i-1} \chi_{c}\left(T_{i}\right)>p_{i-1} / q_{i-1}$ and $\chi_{c}\left(S_{i}^{\prime}\right)>p_{i-1} / q_{i-1}$. We shall prove that each of the graphs $T_{i+1}, S_{i+1}, T_{i+1}^{\prime}$ and S_{i+1}^{\prime} has circular chromatic number greater than p_{i} / q_{i}.

Assume to the contrary that $\chi_{c}\left(T_{i+1}\right) \leqslant p_{i} / q_{i}$. Since $\left|F_{i+1}\right|<\left|H_{i}\right|$, hence $\left|T_{i+1}\right|<\left|G_{i}\right|=p_{i}$. It follows from Corollary 5.1 that $\chi_{c}\left(T_{i+1}\right)=k / d \leqslant p_{i} / q_{i}$ for some integers k, d with $k<p_{i}$. As p_{i-1} / q_{i-1} is the largest fraction satisfying the property that $p_{i-1}<p_{i}$ and $p_{i-1} / q_{i-1} \leqslant p_{i} / q_{i}$, we conclude that $\chi_{c}\left(T_{i}\right) \leqslant p_{i-1} / q_{i-1}$.

We consider two cases:

Case 1. $\alpha_{i}=2$. In this case $F_{i+1}=F_{i-1}$, and hence $T_{i+1}=S_{i}$, contrary to our assumption that $\chi_{c}\left(S_{i}\right)>p_{i-1} / q_{i-1}$.

Case 2. $\alpha_{i}>2$. In this case F_{i+1} consists of $\alpha_{i}-1$ copies of F_{i-1}, say $F_{i-1}^{1}, \ldots, F_{i-1}^{\alpha_{i}-1}$, and $\alpha_{i}-2$ copies of H_{i-1}, say $H_{i-1}^{1}, \ldots, H_{i-1}^{\alpha_{i}-2}$. For each $1 \leqslant j \leqslant \alpha_{i}-2$, each of the subgraphs induced by the sets $F_{i-1}^{j} \cup H_{i-1}^{j}$ is isomorphic to G_{i-1}, and each of the subgraphs induced by the set $H_{i-1}^{j} \cup F_{i-1}^{j+1}$ is a isomorphic to G_{i-1}^{\prime}. By the induction hypothesis, $\chi_{c}\left(G_{i-1}\right)=p_{i-1} / q_{i-1}$. Therefore $\chi_{c}\left(T_{i}\right)=p_{i-1} / q_{i-1}$.

Let ϕ be a (p_{i-1}, q_{i-1})-colouring of T_{i+1}. Using the same argument as in the previous paragraphs, we can conclude that the first and the last 5 vertices of the first copy of F_{i-1} are coloured the same way as the first and the last 5 vertices of the last copy of F_{i-1} (provided that F_{i-1} is not a singleton, and in case F_{i-1} is a singleton, the colour of that single vertex of each copy of F_{i-1} is coloured the same colour). Hence the restriction of the colouring ϕ to $F_{i-1}^{1} \cup F_{i}$ is indeed a $\left(p_{i-1}, q_{i-1}\right)$-colouring of S_{i}, contrary to our assumption.

The proofs for $\chi_{c}\left(S_{i+1}\right)>p_{i} / q_{i}, \chi_{c}\left(T_{i+1}^{\prime}\right)>p_{i} / q_{i}$ and $\chi_{c}\left(S_{i+1}^{\prime}\right)>p_{i} / q_{i}$ are similar.

6. THE CASE $\alpha_{1}=2$

In this section, we consider the case that $\alpha_{1}=2$. We shall define two types of special hooks, which will be applied to the case where F_{i} is a triangle.

Definition 6.1. Suppose X and Y are disjoint ordered graphs, where X has three vertices x_{1}, x_{2}, x_{3} in that order, and the vertex ordering of Y is $\left(y_{1}, y_{2}, \ldots, y_{t}\right)$. To say hook X to Y with

- Type 1 special hook means to add the following set of edges connecting X to Y :

$$
x_{1} y_{1}, \quad x_{3} y_{t}, \quad x_{3} y_{t-1} .
$$

- Type 2 special hook means to add the following set of edges connecting X to Y :

$$
x_{1} y_{1}, \quad x_{2} y_{1}, \quad x_{2} y_{t}, \quad x_{3} y_{t}
$$

We shall construct the graphs $F_{i}, H_{i}, G_{i}, G_{i}^{\prime}$ in the case that $\alpha_{1}=2$ as follows:

As before, F_{1} is a singleton., H_{1} is a squared path with $3 \alpha_{1}=6$ vertices, and F_{2} is a squared path with $3 \alpha_{1}-3=3$ vertices, i.e., F_{2} is a triangle.

Let t be the smallest odd integer (if it exists) such that $\alpha_{t} \geqslant 3$. First we shall construct graphs F_{i+1}, H_{i} and G_{i}, G_{i}^{\prime} for $i \leqslant t-1$. The construction is similar to the construction in Section 4.

Suppose $i \leqslant t-2$. The graph H_{i+1} is obtained by taking α_{i+1} copies of F_{i} and $\alpha_{i+1}-1$ copies of H_{i}. For $j=1,2, \ldots, \alpha_{i-1}-1$, the j th copy of F_{i} is hooked to the j th copy of H_{i} with a type 3 hook, the $(j+1)$ th copy of F_{i} to the j th copy of H_{i} with a type 4 hook. The linear order of the vertices of H_{i+1} is also defined in the same way, i.e., the vertices of F_{i}^{1} in order, followed by the vertices of H_{i}^{1} in the reverse order, etc.. The graph F_{i+2} is constructed the same way as H_{i+1}, just with one fewer copy of F_{i} and H_{i}. In particular, for even $i \leqslant t, F_{i}$ is a triangle.

For $1 \leqslant i \leqslant t-1$, let G_{i} be obtained by hooking F_{i} to H_{i} with a type 3 hook, and let G_{i}^{\prime} be obtained by hooking F_{i} to H_{i} with type 4 hook. Moreover, for even $i \leqslant t-1$. We also define another graph $G_{i}^{\prime \prime}$ which is obtained by hooking F_{i} to H_{i} with a type 2 special hook. (Note that if $i \leqslant t-1$ is even, then F_{i} is a triangle.)

Next, we define graphs $T_{i}, S_{i}, T_{i}^{\prime}, S_{i}^{\prime}$ (for $2 \leqslant i \leqslant t$) as before, i.e., T_{i} is obtained by hooking F_{i} to F_{i-1} with a type 3 hook; S_{i} is obtained by hooking F_{i-1} to F_{i} with a type 3 hook; T_{i}^{\prime} is obtained by hooking F_{i} to F_{i-1} with a type 4 hook; S_{i}^{\prime} is obtained by hooking F_{i-1} to F_{i} with a type 4 hook; For $2 \leqslant i \leqslant t$, we shall define another graph $T_{i}^{\prime \prime}$ as follows: when i is even, $T_{i}^{\prime \prime}$ is obtained by hooking F_{i} to F_{i-1} with a type 2 special hook; when i is odd, $T_{i}^{\prime \prime}$ is obtained by hooking F_{i-1} to F_{i} with a type 2 special hook.

Lemma 6.1. For $1 \leqslant i \leqslant t-1$, the graphs G_{i}, G_{i}^{\prime} and $G_{i}^{\prime \prime}$ are planar graphs, and have circular chromatic number p_{i} / q_{i}. For $2 \leqslant i \leqslant t$, each of the graphs $T_{i}, S_{i}, T_{i}^{\prime}, S_{i}^{\prime}$ and $T_{i}^{\prime \prime}$ has circular chromatic number greater than p_{i-1} / q_{i-1}.

The proof of Lemma 6.1 is similar to the proofs of Theorems 5.1 and 5.3. It makes use of the following lemma, which is proved in the same way as Lemma 5.6.

Lemma 6.2. Suppose that $1 \leqslant i \leqslant t-1$, and that C is a good Hamilton cycle of $G_{i}\left(\right.$ resp. $\left.G_{i}^{\prime \prime}, G_{i}^{\prime \prime}\right)$. Then C is the union of a good Hamilton path P of F_{i} and a good Hamilton path P^{\prime} of H_{i}. Moreover, the first and the last vertex of P^{\prime} are the first and the last vertex of H_{i} respectively; and in case F_{i} is not a singleton, the first and the last two vertices of P are the first and the last two vertices of F_{i}, respectively, in that order.

We shall omit the details of the proofs of Lemmas 6.1 and 6.2
Now we shall construct the graphs H_{t}, F_{t+1}, G_{t} and G_{t}^{\prime}. In order to construct H_{t}, we first construct another ordered graph H_{t}^{\prime}. Take α_{t} copies
of F_{t-1} (which are triangles), denoted by $F_{t-1}^{1}, F_{t-1}^{2}, \ldots, F_{t-1}^{\alpha_{t}}$, and $\alpha_{t}-1$ copies of H_{t-1}, denoted by $H_{t-1}^{1}, H_{t-1}^{2}, \ldots, H_{t-1}^{\alpha_{t}-1}$. Then hook them as follows:

- hook F_{t-1}^{1} to H_{t-1}^{1} with a type 3 hook;
- for $j=2, \ldots, \alpha_{t}-1$, hook F_{t-1}^{j} to H_{t-1}^{j} with a type 2 special hook;
- hook $F_{t-1}^{\alpha_{t}}$ to $H_{t-1}^{\alpha_{t}-1}$ with a type 4 hook;
- for $j=1,2, \ldots, \alpha_{t}-2$, hook F_{t-1}^{j+1} to H_{t-1}^{j} with a type 1 special hook.

The linear order of the vertices of H_{t}^{\prime} is defined similarly, i.e., the vertices of F_{t-1}^{1} in order, followed by the vertices of H_{t-1}^{1} in the reverse order, followed by the vertices of F_{t-1}^{2} in order, etc.

Lemma 6.3. The graph H_{t}^{\prime} is a planar graph. Moreover, there is a plane embedding of H_{t}^{\prime} such that for any $1 \leqslant j \leqslant \alpha_{t}-2$, the four vertices $y_{t-1, h_{t-1}}^{j}$, $y_{t-1,2}^{j}, x_{t-1,3}^{j+1}, x_{t-1,1}^{j+1}$ (in this cyclic ordering) form a face of the embedding.

The proof of Lemma 6.3 is easy and similar to the proof of Theorem 5.1, and we shall omit the details.

Now we construct the graphs H_{t} from H_{t}^{\prime} by adding vertices and edges as follows: For each $1 \leqslant j \leqslant \alpha_{t}-2$, let S_{j} be the face formed by the four vertices

$$
y_{t-1, h_{t-1}}^{j}, y_{t-1,2}^{j}, x_{t-1,3}^{j+1}, x_{t-1,1}^{j+1},
$$

we put two new vertices a_{j}, b_{j} into the interior of the face S_{j} and add the edges

$$
a_{j} b_{j}, \quad a_{j} y_{t-1, h_{t-1}}^{j}, \quad b_{j} y_{t-1, h_{t-1}}^{j}, \quad a_{j} x_{t-1,3}^{j+1}, \quad b_{j} x_{t-1,3}^{j+1}, \quad a_{j} x_{t-1,1}^{j+1} .
$$

The resulting graph is H_{t}.
It follows from the construction that H_{t} is planar. The graph H_{t} is not an ordered graph. However, for convenience, we shall refer the j th vertex of H_{t}^{\prime} as the j th vertex of H_{t}. Intuitively, we may regard H_{t} as an ordered graph with some extra vertices.

Lemma 6.4. The graph H_{t} has circular chromatic number $\chi_{c}\left(H_{t}\right) \geqslant$ p_{t-1} / q_{t-1}, and if ϕ is a $\left(p_{t-1}, q_{t-1}\right)$-colouring of H_{t}, then the first copy of F_{t-1} is coloured the same way as the last copy of F_{t-1}.

Proof. Since H_{t} contains G_{t-1} as a subgraph, and $\chi_{c}\left(G_{t-1}\right)=p_{t-1} / q_{t-1}$, we conclude that $\chi_{c}\left(H_{t}\right) \geqslant p_{t-1} / q_{t-1}$. Indeed, it is not difficult to show that $\chi_{c}\left(H_{t}\right)=p_{t-1} / q_{t-1}$, however, we shall not need that. Suppose ϕ
is a $\left(p_{t-1}, q_{t-1}\right)$-colouring of H_{t}. Then the restriction of ϕ to H_{t}^{\prime} is a $\left(p_{t-1}, w_{t-1}\right)$-colouring of H_{t}^{\prime}.

In graph H_{t}^{\prime}, the union of F_{t-1}^{1} and H_{t-1}^{1} induces a copy of G_{t-1}; the union of $F_{t-1}^{\alpha_{t}}$ and $H_{t-1}^{\alpha_{t}-1}$ induces a copy of G_{t-1}^{\prime}; and for $j=2,3, \ldots, \alpha_{t}-1$, the union of F_{t-1}^{j} and H_{t-1}^{j} induces a copy of $G_{t-1}^{\prime \prime}$. Each of the graphs $G_{t-1}, G_{t-1}^{\prime}$ and $G_{t-1}^{\prime \prime}$ has circular chromatic number p_{t-1} / q_{t-1} by previous results. Applying Lemmas 6.2 and 5.4, we conclude that the colours of the first and the last vertex of $H_{t-1}^{\alpha_{t}-1}$ determine the colours of the vertices of $F_{t-1}^{\alpha_{t}}$ and $F_{t-1}^{\alpha_{t}-1}$. Therefore, the last two copies of F_{t-1} are coloured the same way.

Similarly, for $j=1,2, \ldots, \alpha_{t-2}$, the colours of the first and the last vertex of H_{t-1}^{j} determine the colours of the vertices F_{t-1}^{j}. It remains to show that for $j=1,2, \ldots, \alpha_{t}-2$, the colour of the first and the last vertex of H_{t-1}^{j} determine the colours of the vertices of F_{t-1}^{j+1}, and hence the j th copy of F_{t-1} is coloured the same way as the $(j+1)$ st copy of F_{t-1}. This is subtly different from the argument in the proof of Theorem 5.3, because for $j=1,2, \ldots, \alpha_{t}-2$, the union of the j th copy of H_{t-1} and the $(j+1)$ th copy of F_{t-1} does not induce a subgraph of circular chromatic number p_{t-1} / q_{t-1}.
We now prove that F_{t-1}^{1} and F_{t-1}^{2} are coloured the same way.
Let the three vertices of $F_{t-1}^{1}\left(\right.$ resp. $\left.F_{t-1}^{2}\right)$ be $\left(x_{t-1,1}^{1}, x_{t-1,2}^{1}, x_{t-1,3}^{2}\right)$ (resp. $\left(x_{t-1,1}^{2}, x_{t-1,2}^{2}, x_{t-1,3}^{2}\right)$. And let the first and the last vertex of H_{t-1}^{1} be $y_{t-1,1}^{1}$ and $y_{t-1, h_{t-1}}^{1}$, respectively.

Without loss of generality, we may assume that $\phi\left(x_{t-1,1}^{1}\right)=0$. By Lemmas 5.4 and 6.2 , we may assume that

$$
\begin{aligned}
\phi\left(x_{t-1,2}^{1}\right) & =q_{t-1}, \phi\left(x_{t-1,3}^{1}\right)=2 q_{t-1}, \phi\left(y_{t-1,1}^{1}\right) \\
& =3 q_{t-1}, \phi\left(y_{t-1, h_{t-1}}^{1}\right)=p_{t-1}-q_{t-1} .
\end{aligned}
$$

Next we consider the restriction of ϕ to the union of F_{t-1}^{2} and H_{t-1}^{2}, which induces a copy of G_{t-1} as well. Assume that $\phi\left(x_{t-1,1}^{2}\right)=b$. Applying Lemma 6.2 and Lemma 5.4, we conclude that depending on the direction of the good Hamilton cycle, we have either

$$
\phi\left(x_{t-1,2}^{2}\right)=b+q_{t-1} \quad\left(\bmod p_{t-1}\right),
$$

and

$$
\phi\left(x_{t-1,3}^{2}\right)=b+2 q_{t-1} \quad\left(\bmod p_{t-1}\right),
$$

or

$$
\phi\left(x_{t-1,2}^{2}\right)=b-q_{t-1} \quad\left(\bmod p_{t-1}\right)
$$

and

$$
\phi\left(x_{t-1,3}^{2}\right)=b-2 q_{t-1} \quad\left(\bmod p_{t-1}\right) .
$$

Recall that F_{t-1}^{2} is hooked to H_{t-1}^{1} with a type 1 special hook. This means that the following pairs are edges of H_{t}^{\prime} :

$$
e_{1}=x_{t-1,1}^{2} y_{t-1, h_{t-1}}^{1}, \quad e_{2}=x_{t-1,3}^{2} y_{t-1,1}^{1}, \quad e_{3}=x_{t-1,3}^{2} y_{t-1,2}^{1} .
$$

The edge e_{1} gives the inequality

$$
0 \leqslant b \leqslant p_{t-1}-2 q_{t-1},
$$

for otherwise ϕ is not a (p_{t-1}, q_{t-1})-colouring of G_{t}.
First we assume that $\phi\left(x_{t-1,3}^{2}\right)=b+2 q_{t-1}\left(\bmod p_{t-1}\right)$. Then the edge e_{2} gives the inequality

$$
b+2 q_{t-1} \leqslant 2 q_{t-1}
$$

which implies that $b=0$, and hence the second copy and the first copy of F_{t-1} are coloured the same way.

Next we assume that $\phi\left(x_{t-1,3}^{2}\right)=b-2 q_{t-1}\left(\bmod p_{t-1}\right)$. Since $0 \leqslant b \leqslant$ $p_{t-1}-2 q_{t-1}$, we have

$$
b-2 q_{t-1} \leqslant p_{t-1}-4 q_{t-1}<0
$$

and hence

$$
\phi\left(x_{t_{1}, 3}^{2}\right)=b-2 q_{t-1} \quad\left(\bmod p_{t-1}\right)=p_{t-1}+b-2 q_{t-1} \geqslant p_{t-1}-2 q_{t-1} .
$$

Then the edge e_{2} gives the inequality

$$
p_{t-1}-2 q_{t-1} \leqslant \phi\left(x_{t-1,3}^{2}\right) \leqslant 2 q_{t-1} .
$$

Now we shall show that in order to extend the colouring of $\phi\left(y_{t-1, h_{t-1}}^{1}\right)$, $\phi\left(x_{t-1,1}^{2}\right), \phi\left(x_{t-1,3}^{2}\right)$ to a proper (p_{t-1}, q_{t-1})-colouring of the two vertices a_{1}, b_{1} of H_{t}, we must have $\phi\left(x_{t-1,3}^{3}\right)=2 q_{t-1}$, and that $\phi\left(x_{t-1,1}^{2}\right)=b=0$. This is contrary to the assumption that $\phi\left(x_{t-1,3}^{2}\right)=b-2 q_{t-1}\left(\bmod p_{t-1}\right)$.

Since $\phi\left(y_{t-1, h_{t-1}}^{1}\right)=p_{t-1}-q_{t-1}$ and $p_{t-1}-2 q_{t-1} \leqslant \phi\left(x_{t-1,3}^{2}\right) \leqslant 2 q_{t-1}$, and that each of a_{1}, b_{1} is adjacent to both $y_{t-1, h_{t-1}}^{1}$ and $x_{t-1,3}^{2}$, it follows that

$$
0 \leqslant \phi\left(a_{1}\right) \leqslant q_{t-1}
$$

and

$$
0 \leqslant \phi\left(b_{1}\right) \leqslant q_{t-1} .
$$

As a_{1}, b_{1} are adjacent, it follows that one of a_{1}, b_{1} has colour 0 and the other has colour q_{t-1}. This implies that $\phi\left(x_{t-1,3}^{2}\right)=2 q_{t-1}$.

However, a_{1} is adjacent to $x_{t-1,1}^{2}$. Then the condition that

$$
0 \leqslant \phi\left(x_{t-1,1}^{2}\right) \leqslant 4 q_{t-1}-p_{t-1}
$$

forces $b=\phi\left(x_{t-1,1}^{2}\right)=0$, contrary to the assumption that $\phi\left(x_{t-1,3}^{2}\right)=$ $b-2 q_{t-1}\left(\bmod p_{t-1}\right)$. This proves that under the colouring ϕ, the vertices of F_{t-1}^{1} and F_{t-1}^{2} are coloured the same way.

The same argument can be used to show that the vertices F_{t-1}^{j} and the vertices of F_{t-1}^{j+1} are coloured the same way, for all $j=1,2, \ldots, \alpha_{t}-2$. As we have already shown that the vertices of $F_{t-1}^{\alpha_{t}-1}$ and the vertices of $F_{t-1}^{\alpha_{t}}$ are coloured the same way, Lemma 6.4 is proved.

The graph F_{t+1} is constructed in the same way as H_{t}, however, with one fewer copy of F_{t-1} and one fewer copy of H_{t-1}. The graph G_{t} is obtained by hooking F_{t} to H_{t} by a type 3 hook; the graph G_{t}^{\prime} is obtained by hooking F_{t} to H_{t} with a type 4 hook. The graph T_{t+1} is obtained by hooking F_{t+1} to F_{t} with a type 3 hook; S_{t+1} is obtained by hooking F_{t} to F_{t+1} with a type 3 hook; T_{t+1}^{\prime} is obtained by hooking F_{t+1} to F_{t} with a type 4 hook; S_{t+1}^{\prime} is obtained by hooking F_{t} to F_{t+1} with a type 4 hook.

Figure 3 illustrates the construction of F_{i}, H_{i}, G_{i}, for the fraction 26/7, whose alpha sequence is $(2,2,3)$.

Lemma 6.5. The graphs G_{t} and G_{t}^{\prime} have circular chromatic number at most p_{t} / q_{t}.

Proof. First we consider the subgraph R of G_{t} which is obtained from G_{t} by deleting the vertices a_{j}, b_{j} for $j=1,2, \ldots, \alpha_{t}-2$. The graph R is also obtained by hooking F_{t} to H_{t}^{\prime} with a type 3 hook. Each of the graph F_{t} and H_{t}^{\prime} is an ordered graph. The graph R is also an ordered graph, where the order being the vertices of F_{t} in order, followed by the vertices of H_{t}^{\prime} in the reverse order. Note that the number of vertices of R is p_{t} (cf. Lemma 5.2). We rename the vertices of R so that the vertices are $\left(c_{1}, c_{2}, \ldots, c_{p_{t}}\right)$ in that

FIG. 3. $\quad F_{i}$ and H_{i} for the alpha sequence (2, 2, 3).
order. Then we define a colouring ϕ as $\phi\left(c_{j}\right)=j q_{t}\left(\bmod p_{t}\right)$. The same argument as the proof of Theorem 5.2 shows that ϕ is a proper colouring of R.

Now we extend ϕ to a colouring of G_{t} as follows: For each $1 \leqslant j \leqslant \alpha_{t}-2$, we let $\phi\left(a_{j}\right)=\phi\left(x_{t-1,2}^{j+1}\right)$ and let $\phi\left(b_{j}\right)=\phi\left(x_{t-1,1}^{j+1}\right)$. Here we abuse the names of the vertices, and let $x_{t-1, i}^{j+1}$ denote the i th vertex of the $(j+1)$ th copy of F_{t-1} in H_{t}. It is straightforward to verify that this extension of ϕ is a $\left(p_{t}, q_{t}\right)$-colouring of G_{t}.

The same argument shows that $\chi_{c}\left(G_{t}^{\prime}\right) \leqslant p_{t} / q_{t}$.
The proof of Lemma 6.1 can also be done as follows: we identify a_{j} with $x_{t-1,2}^{j+1}$, and b_{j} with $x_{t-1,1}^{j+1}$ in G_{t}. Then using the same argument as in the proof of Theorem 5.2, we can show that the resulting graph (which unfortunately is non-planar) has circular chromatic number at most p_{t} / q_{t}.

Lemma 6.6. The circular chromatic number of the graph G_{t} and G_{t}^{\prime} are strictly greater than p_{t-1} / q_{t-1}.

Proof. Assume to the contrary that $\chi_{c}\left(G_{t}\right) \leqslant p_{t-1} / q_{t-1}$. Since G_{t} contains G_{t-1} is a subgraph and $\chi_{c}\left(G_{t-1}\right)=p_{t-1} / q_{t-1}$, we conclude that $\chi_{c}\left(G_{t}\right)=p_{t-1} / q_{t-1}$.

Let ϕ be a $\left(p_{t-1}, q_{t-1}\right)$-colouring of G_{t}. By Lemma 6.4, the first copy of F_{t-1} and the last copy of F_{t-1} are coloured the same way.

We note that in H_{t}, the two vertices $x_{t-1,2}^{1}$ and $x_{t-1,3}^{1}$ have the same neighbours, so that they are not distinguishable in H_{t}. However, they are distinguishable in G_{t}, as $x_{t-1,2}^{1}$ is adjacent to $x_{t, f_{t}}^{2}$, while $x_{t-1,3}^{1}$ is not. Therefore if we are simply colouring H_{t}, the colours of $x_{t-1,2}^{1}$ and $x_{t-1,3}^{1}$ could be interchanged, however, if we colour the whole graph G_{t}, it can be shown that their colours cannot be exchanged (cf. proof of Lemma 5.4).

Since the first and the last copy of F_{t-1} in H_{t} are coloured the same way, we conclude that the restriction of ϕ to the union of F_{t} and the first copy of $F_{t-1}\left(\right.$ in $\left.H_{t}\right)$ is a $\left(p_{t-1}, q_{t-1}\right)$-colouring of T_{t}, contrary to the previous result $\chi\left(T_{t}\right)>p_{t-1} / q_{t-1}$. Therefore $\chi_{c}\left(G_{t}\right)>p_{t-1} / q_{t-1}$. The proof for $\chi_{c}\left(G_{t}^{\prime}\right)>p_{t-1} / q_{t-1}$ is the same.

Theorem 6.1. The graphs G_{t} and G_{t}^{\prime} have circular chromatic number p_{t} / q_{t}.
Proof. By Lemmas 6.5 and 6.6, we have

$$
p_{t-1} / q_{t-1}<\chi_{c}\left(G_{t}\right) \leqslant p_{t} / q_{t} .
$$

Assume to the contrary that $\chi_{c}\left(G_{t}\right)=k / d \neq p_{t} / q_{t}$. By the construction of the Farey sequence, it follows that $k>p_{t}$. (Indeed, straightforward calculation shows that $k \geqslant p_{t}+p_{t+1}$.)

Let ϕ be a (k, d)-colouring of G_{t}. By Corollary $5.1, G_{t}$ has a cycle of length k (note that the number of vertices of G_{t} is certainly less than $2 p_{t}<2 k$, and hence G_{t} cannot have a cycle of length $2 k$ or more), say, $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$, such that $\phi\left(c_{i}\right)=i d(\bmod k)$. This cycle must be a good cycle (although not Hamilton) with respect to the fraction k / d (cf. proof of Lemma 5.4).

It is straightforward to verify that for two fractions a / b and a^{\prime} / b^{\prime} between 3 and $4, a / b<a^{\prime} / b^{\prime}$ if and only if the alpha sequence of a / b is greater than the alpha sequence of a^{\prime} / b^{\prime} under the lexicographic order. As $p_{t-1} / q_{t-1}<$ $k / d<p_{t} / q_{t}$, and that the initial part of the alpha sequence of p_{t} / q_{t} is the alpha sequence of p_{t-1} / q_{t-1}, we conclude that the initial part of the alpha sequence of k / d is the alpha sequence of p_{t-1} / q_{t-1}. Therefore $\left(p_{0} / q_{0}\right.$, $\left.p_{1} / q_{1}, \ldots, p_{t-1} / q_{t-1}\right)$ is an initial part of the Farey sequence of k / d. So far any edge $c_{k} c_{s}$ of G_{t}, we have $|s-k| \neq q_{j}+1, q_{j}+2, q_{j}-3, p_{j}-4$ for any $0 \leqslant j \leqslant t-1$.

Consider the intersection of C with H_{t}. We regard H_{t} as the union of F_{t-1}^{j} for $j=1,2, \ldots, \alpha_{t}$, and H_{t-1}^{j} for $j=1,2, \ldots, \alpha_{t}-1$, and $A_{j}=\left\{a_{j}, b_{j}\right\}$ for $j=1,2, \ldots, \alpha_{t}-2$.

By the pigeonhole principle, we know that there exists $1 \leqslant j \leqslant \alpha_{t}-2$, such that the intersection $C \cap\left(A_{j} \cup F_{t-1}^{j+1} \cup H_{t-1}^{j+1}\right)$ has at least $f_{t-1}+$ $h_{t-1}+1=g_{t-1}+1$ vertices (cf. the proof of Lemma 5.2).

However, we should show that this is impossible. To be precise, we shall prove the following claim (which will be used in later proofs as well):

Claim 1. For any good path B of H_{t} (with respect to the fraction p_{t-1} / q_{t-1}), if the initial vertex of B is contained in F_{t-1}^{1} and the terminal vertex is contained in $F_{t-1}^{\alpha_{t}}$, then the intersection $B \cap\left(A_{j} \cup F_{t-1}^{j+1} \cup H_{t-1}^{j+1}\right)$ has at most $f_{t-1}+h_{t-1}=g_{t-1}$ vertices.

Assume to the contrary that B is a good path of H_{t} such that

$$
\left|B \cap\left(A_{j} \cup F_{t-1}^{j+1} \cup H_{t-1}^{j+1}\right)\right| \geqslant g_{t-1}+1
$$

Figure 4 below shows the union $A_{j} \cup F_{t-1}^{j+1} \cup H_{t-1}^{j+1}$, together with H_{t-1}^{j}. For simplicity, we shall refer to the vertices by the names in Fig. 4, which are different from the names we used before.

By noting that y_{1}, y_{2} form a cut set, and that $h_{t-1} \geqslant 8$, it is easy to see that $B \cap H_{t-1}^{j+1}$ is a path of H_{t-1}^{j+1} whose two end vertices are y_{1} and y_{2} respectively. Moreover, this path of H_{t-1}^{j+1} is either a Hamilton path, or a path of length $h_{t-1}-1$, i.e., missing at most one vertex of H_{t-1}^{j+1}, for otherwise the intersection $B \cap\left(A_{j} \cup F_{t-1}^{j+1} \cup H_{t-1}^{j+1}\right)$ could not have more than g_{t-1} vertices.

One of the end vertices, say $y_{i}(i=1$ or 2$)$, of the path $B \cap H_{t-1}^{t+1}$ is adjacent to some x_{s} in the path B. First we show $s \neq 2$. This is because

FIG. 4. For the proof of Claim 1.
$x_{2} y_{3-i}$ is an edge of H_{t}. If x_{2} is the vertex preceding y_{i} in the path B, then the positive difference of the positions of x_{2} and y_{3-i} in B is equal to either $p_{t-1}-3$ or $p_{t-1}-4$ (according to whether $\left|B \cap V\left(H_{t-1}^{j+1}\right)\right|=h_{t-1}$, or $\left.\left|B \cap V\left(H_{t-1}^{j+1}\right)\right|=h_{t-1}-1\right)$, contrary to the assumption B is a good path with respect to k / d. Therefore $s=1$ or 3 .

First we consider the case $s=3$, i.e., $x_{3} y_{2}$ is an edge of the path B. If we traverse along the path B backwards, and starting at x_{3}, then the path will pass through 3 or 4 of the vertices x_{1}, x_{2}, a, b and then reach the vertex v_{1}. (If B contains less than 3 of the vertices x_{1}, x_{2}, a, b, then the intersection $B \cap\left(A_{j} \cup F_{t-1}^{j+1} \cup H_{t-1}^{j+1}\right)$ could not have more than g_{t-1} vertices.) Let u be the vertex among x_{1}, x_{2}, a, b which is adjacent to v_{1} in B. Then $x_{3} u$ is an edge of H_{t}, and the positive difference of their positions in B is 3 or 4, contrary to the assumption that B is a good path.

Next we consider the case that $s=1$, i.e., $x_{1} y_{1}$ is an edge of B. If the vertex preceding x_{1} in B is v_{1}, then the path B must pass through both the vertices a and b, and then reach the vertex x_{3} (if we traverse B backwards). However $x_{1} x_{3}$ is an edge of H_{t}, which implies that the positive difference of their positions in B cannot be 3 . Assume now that the vertex preceding x_{1} in B is not v_{1}. Then the path will pass through 3 or 4 of the vertices x_{2}, x_{3}, a, b and then reach either the vertex v_{1} or the vertex v_{2}. If the path reaches v_{2}, then it is easy to see that the positive difference of the positions of x_{1} and x_{3} in B is 3 , which is a contradiction. Assume now that the path will pass through 3 or 4 of the vertices x_{2}, x_{3}, a, b and then reach the vertex v_{1}. If it passes through only 3 of the vertices x_{2}, x_{3}, a, b, then the positive difference of the positions of x_{1} and v_{1} in B is 4 , which is a contradiction. Therefore B passes through all the 4 vertices x_{2}, x_{3}, a, b. However, it is easy to see that in this case, the positive difference of the positions of x_{1} and a in B is either 3 or 4 , again contrary to the assumption that B is a good path. This completes the proof of Claim 1, as well as the proof of Theorem 6.1.

Lemma 6.7. The graphs $T_{t+1}, S_{t+1}, T_{t+1}^{\prime}$ and S_{t+1}^{\prime} have circular chromatic number greater than p_{t} / q_{t}.

Proof. The proof of this lemma is similar to the proof of the fact that $\chi_{c}\left(G_{t}\right) \geqslant p_{t} / q_{t}$. First of all, we show that $\chi_{c}\left(T_{t+1}\right)>p_{t-1} / q_{t-1}$, by applying the previous result that $\chi_{c}\left(S_{t}\right)>p_{t} / q_{t}$ and Lemma 6.4. Then we prove that for any fraction $p_{t-1} / q_{t-1}<k / d \leqslant p_{t} / q_{t}$, there is no (k, d)-colouring of T_{t+1}, by applying Claim 1 . We shall omit the details.

Now we shall construct graphs $F_{i+1}, H_{i}, G_{i}, G_{i}^{\prime}, T_{i}, S_{i}, T_{i}^{\prime}, S_{i}^{\prime}$ for $i \geqslant t+1$.

Suppose $i \geqslant t+1$. Then the graph H_{i} is constructed by taking α_{i} copies of F_{i-1} and $\alpha_{i}-1$ copies of H_{i-1}. For $j=1,2, \ldots, \alpha_{i}-1$, the j th copy of F_{i-1} is hooked to the j th copy of H_{i-1} with a type 3 hook; the $(j+1)$ th copy of F_{i} is hooked to the j th copy of H_{i} with a type 4 hook. The graph F_{i+1} is constructed the same way as H_{i}, but with one fewer copy of F_{i-1} and one fewer copy of H_{i-1}.

Similarly to the graph H_{t}, the graphs H_{i} and F_{i+1}, for $i \geqslant t+1$, are not ordered graphs. However, the subgraphs of H_{i} and F_{i+1}, obtained by deleting those a_{j} 's and b_{j} 's added in the construction of H_{t} and F_{t+1}, are ordered graphs. We shall regard H_{i} and F_{i+1} as ordered graphs with some extra vertices. It is in this sense that we add the hooking edges between these graphs. (Note that the types of hooks are only defined between ordered graphs.)

For $i \geqslant t+1$, the graph G_{i} is obtained by hooking F_{i} to H_{i} with a type 3 hook; and G_{i}^{\prime} is obtained by hooking F_{i} to H_{i} with a type 4 hook.

For $i \geqslant t+1$, the graph T_{i} is obtained by hooking F_{i} to F_{i-1} with a type 3 hook; S_{i} is obtained by hooking F_{i-1} to F_{i} with a type 3 hook; T_{i}^{\prime} is obtained by hooking F_{i} to F_{i-1} with a type 4 hook; S_{i}^{\prime} is obtained by hooking F_{i-1} to F_{i} with a type 4 hook.

Lemma 6.8. For any $i \geqslant t+1$, any good path of H_{i} (resp. F_{i}) has length at most $h_{i}\left(\right.$ resp. $\left.f_{i}\right)$. Moreover, for any good path P of $H_{i}\left(\right.$ resp. $\left.F_{i}\right)$ of length $h_{i}\left(\right.$ resp. $\left.f_{i}\right)$, the first and the last two vertices of P are the first and the last two vertices of $H_{i}\left(r e s p . F_{i}\right)$ in that order.

The proof of Lemma 6.8 is similar to the proof of Lemma 5.6, by using induction, and by applying Claim 1 . We shall omit the details.

Theorem 6.2. For each $i \geqslant t+1$, the graphs $F_{i}, H_{i}, G_{i}, G_{i}^{\prime}$ are planar graphs with $\chi_{c}\left(G_{i}\right)=\chi_{c}\left(G_{i}^{\prime}\right)=\chi_{c}\left(G_{i}^{\prime \prime}\right)=p_{i} / q_{i}$, and each of the graphs T_{i+1}, $S_{i+1}, T_{i+1}^{\prime}, S_{i+1}^{\prime}$ has circular chromatic number greater than p_{i} / q_{i}.

Proof. First, we prove that $\chi_{c}\left(G_{i}\right) \leqslant p_{i} / q_{i}$ and $\chi_{c}\left(G_{i}^{\prime}\right) \leqslant p_{i} / q_{i}$. The proof is similar to the proof of Lemma 6.5.

In H_{t} (resp. F_{t+1}), we identify the vertex a_{j} with $x_{t-1,2}^{j+1}$, and identify b_{j} with $x_{t-1,1}^{j+1}$, for $j=1,2, \ldots, \alpha_{t}-2$ (resp. for $j=1,2, \ldots, \alpha_{t}-3$). Here we con-
sider H_{t} as the union of copies of F_{t-1} and H_{t-1} and refer the i th vertex of the j th copy of F_{t-1} as $x_{t-1, i}^{j}$. We shall denote the resulting graph by $H_{t}^{*}\left(\right.$ resp. $\left.F_{t+1}^{*}\right)$.

In the later constructions of $G_{i}, G_{i}^{\prime}, F_{i}, H_{i}$, we may replace any copy of H_{t} (resp. F_{t+1}) by H_{t}^{*} (resp. F_{t+1}^{*}), and denote the resulting graphs by $G_{i}^{*}, G_{i}^{*}, F_{i}^{*}, H_{i}^{*}$, etc. Then the graphs $G_{i}^{*}, G_{i}^{*}, F_{i}^{*}, H_{i}^{*}$ are ordered graphs (although they are not planar any more), and G_{i}^{*} has p_{i} vertices (cf. proof of Lemma 5.2). Suppose the vertices of G_{i}^{*} are $\left(c_{1}, c_{2}, \ldots, c_{p_{i}}\right)$ in that order. Then define $\phi\left(c_{j}\right)=j q_{i}\left(\bmod p_{i}\right)$. The same argument as in the proof of Theorem 5.2 shows that ϕ is a $\left(p_{i}, q_{i}\right)$-colouring of G_{i}^{*}. Therefore ϕ induces a $\left(p_{i}, q_{i}\right)$-colouring of G_{i}. Similarly, we can prove that $\chi_{c}\left(G_{i}^{\prime}\right)$ $\leqslant p_{i} / q_{i}$.

Next, we shall prove that $\chi_{c}\left(G_{i}\right)=p_{i} / q_{i}$ and that each of the graphs $T_{i+1}, S_{i+1}, T_{i+1}^{\prime}, S_{i+1}^{\prime}$ has circular chromatic number greater than p_{i} / q_{i}, by induction. The argument is similar to the proof of Theorem 5.3, only instead of applying Lemma 5.6, we shall use Lemma 6.8. We shall omit the details.

7. OPEN PROBLEMS

In this section, we ask a few questions motivated by the result of this paper.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph of G by contracting edges. We say G is H-minor free if H is not a minor of G. It is well-known that planar graphs are K_{5}-minor free. Therefore, the result in this paper implies that for any rational number $2 \leqslant r \leqslant 4$, there exists a K_{5}-minor free graph whose circular chromatic number is r. A natural question is:

Question 7.1. What are the possible values of the circular chromatic numbers of K_{n}-minor free graphs?

If Hadwiger conjecture is true, then any K_{n}-minor free graph has circular chromatic number at most $n-1$. A question parallel to that for the planar graphs is this:

Question 7.2. Is it true that for any rational number $2 \leqslant r \leqslant n-1$, there exists a K_{n}-minor free graph whose circular chromatic number is equal to r ?

A surprising negative answer for the case $n=4$ is recently obtained by P. Hell and X. Zhu [7]. It is shown in [7] that for any K_{4}-minor free graph G, we have either $\chi_{c}(G)=3$ or $\chi_{c}(G) \leqslant 8 / 3$.

For $n \geqslant 6$, it is proved in [18] that for every rational number $2 \leqslant r \leqslant$ $n-2$, there exists a K_{n}-minor free graph with circular chromatic number r. It remains unknown whether for every $n-2<r<n-1$, there is a K_{n}-minor free graph with circular chromatic number r.

Another direction for generalizing the result of this paper is to consider graphs embedded on other surfaces.

Question 7.3. For an integer $n \geqslant 1$, what are the possible values of the circular chromatic numbers of graphs embeddable on the surface of (orientable) genus n ?

In particular, the following question seems non-trivial:

Question 7.4. Does there exists an $\varepsilon>0$ and an integer n such that for every rational number $4 \leqslant r \leqslant 4+\varepsilon$, there exists a graph G with $\chi_{c}(G)=r$, embeddable on the surface of (orientable) genus n ?

It seems to the author that the answer to this question is more likely to be negative.

An alternate way of asking Question 7.3 is this:

Question 7.5. Given a rational number r, what is the minimum n such that there exists a graph G embeddable on the surface of (orientable) genus n and $\chi_{c}(G)=r$?

If $r>4$, it is possible that the number n is somehow related to the length of the alpha sequence of r.

The last question is about flows of graphs, and is due to L. Goddyn, and was raised in a discussion [9] about the result in this paper. Colourings of graphs and flows of graphs are dual concepts. Goddyn et al. [8] defined the circular chromatic number of a graph G by using the concept of flow of the cocyclic matroid of G. Given an oriented matroid M, define the circular flow number $F_{c}(M)$ of M as the infimum of the ratios k / d such that M has an integer flow f satisfying the condition that $d \leqslant|f(e)| \leqslant k-d$ for every element e of M. It was shown in [8] that the circular chromatic number of a graph G is equal to the circular flow number of the cocyclic matroid of G. An interesting problem is to determine the possible values of the circular flow number of a graph. To be precise, we define the circular flow number of a graph G as follows:

Suppose k and d are integers such that $k \geqslant 2 d$. A (k, d)-flow of an oriented (2-edge connected) graph G is an assignment f of integers to the edges of G such that

- For any vertex v of G, we have

$$
\sum_{e \in N^{+}(v)} f(e)=\sum_{e \in N^{-}(v)} f(e) .
$$

Here $N^{+}(v)$ denotes the set of edges with v as their tail and $N^{-}(v)$ denotes the set of edges with v as their head.

- For every edge e of G we have

$$
d \leqslant|f(e)| \leqslant k-d .
$$

We define the circular flow number $F_{c}(G)$ of a 2-edge connected graph G as the infimum of the ratios k / d such that an (arbitrary) orientation of G has a (k, d)-flow.

Just like the circular chromatic number of a graph, the circular flow number of a graph is a refinement of the flow number $\phi(G)$ of a graph [5], which is defined to be the minimum integer n such that G has a no-wherezero n-flow. It can be proved that $\phi(G)=\left\lceil F_{c}(G)\right\rceil$ for any graph G. Also similar to the circular chromatic number, the circular flow number of a finite graph is always a rational number.

It follows from Seymour's 6 -flow Theorem that for any graph G we have $F_{c}(G) \leqslant 6$. If Tutte's 5 -flow conjecture is true, then for any graph G we have $F_{c}(G) \leqslant 5$.

Like the problem we asked for planar graphs, a natural question for the circular flow numbers of graphs is the following:

Question 7.6. What are the possible values of the circular flow numbers of graphs?

Since the circular chromatic number of a graph is the circular flow number of its cocyclic matroid, we conclude that the circular chromatic number of a planar graph is equal to the circular flow number of its dual graph. Therefore we have the following corollary:

Corollary 7.1. For every rational number $2 \leqslant r \leqslant 4$, there exists a planar graph G whose circular flow number is equal to r.

However, the answer to the following question remains unknown:
Question 7.7. It is true that every rational number between 4 and 5 is the circular flow number of a graph?

Recently, Steffen [12] proved that there are graphs whose circular flow numbers are greater than 4 but arbitrarily close to 4 .

REFERENCES

1. J. A. Bondy and P. Hell, A note on the star chromatic number, J. Graph Theory 14 (1990), 479-482.
2. G. J. Chang, L. Huang, and X. Zhu, Circular chromatic numbers of Mycielski's graphs, Discrete Math., in press.
3. G. J. Chang, L. Huang, and X. Zhu, The circular chromatic number and the fractional chromatic number of distance graphs, European J. Comb., in press.
4. C. Chien and X. Zhu, The circular chromatic numbers of series-parallel graphs of large girth, preprint, 1999.
5. R. Diestel, "Graph Theory," Springer-Verlag, New York, 1997.
6. D. R. Guichard, Acyclic graph colouring and the complexity of the star chromatic number, J. Graph Theory 17 (1993), 129-134.
7. P. Hell and X. Zhu, The circular chromatic numbers of series-parallel graphs, J. Graph Theory, in press.
8. L. A. Goddyn, M. Tarsi, and C. Q. Zhang, On (k, d)-colourings and fractional nowherezero flows, J. Graph Theory 28 (1998), 155-161.
9. L. A. Goddyn, personal communication, 1997.
10. D. Moser, The star-chromatic number of planar graphs, J. Graph Theory 24 (1997), 33-43.
11. I. Niven, "An Introduction to the Theory of Numbers," Wiley, New York, 1991.
12. E. Steffen, personal communication, 1997, 1998.
13. E. Steffen and X. Zhu, On the star chromatic numbers of graphs, Combinatorica 16 (1996), 439-448.
14. A. Vince, Star chromatic number, J. Graph Theory 12 (1988), 551-559.
15. X. Zhu, Graphs whose circular chromatic number equal the chromatic number, Combinatorica 19 (1999), 139-149.
16. X. Zhu, Star chromatic numbers and product of graphs, J. Graph Theory 16 (1992), 557-569.
17. X. Zhu, A simple proof of Moser's Theorem, J. Graph Theory 30 (1999), 19-26.
18. X. Zhu, Construction of uniquely H-colorable graphs, J. Graph Theory 30 (1999), 1-6.
19. X. Zhu, Circular colouring and graph minors, preprint, 1997.
20. X. Zhu, Circular coloring and graph homomorphism, Bull. Austral. Math. Soc. 59 (1999), 83-97.
21. X. Zhu, The circular chromatic number, a survey, preprint, 1997.
