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Abstract

We introduce the notion of Ricci-corrected differentiation in parabolic geometry, which is a modification of
covariant differentiation with better transformation properties. This enables us to simplify the explicit formulae for
standard invariant operators given in [Bap, J. Slovak, V. Sdiek, Invariant operators on manifolds with almost
hermitian symmetric structures, lll. Standard operators, Differential Geom. Appl. 12 (2000) 51-84], and at the
same time extend these formulae from the context of AHS structures (which include conformal and projective
structures) to the more general class of all parabolic structures (including CR structures).
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Introduction

A fundamental part of differential geometry is the study of differential invariants of geometric struc-
tures. Our concern in this paper is the explicit construction of such invariants. More specifically, we wish
to construct invariant differential operators for a class of structures knoparabolic geometriesThese
geometries have attracted attention in recent years for at least two reasons: first, they include examples o
long-standing interest in differential geometry, such as conformal structures, projective structures and CR
structures; second, they have a rich algebraic theory, due to their intimate relation with the representation
theory of parabolic subgroup? of semisimple Lie groups.

A great deal of progress in our understanding of invariant differential operators in parabolic geometry
has been made through the efforts of many people. The key idea, pioneered by Eastwood &b@i Rice
and Bastor2] is that (generalized) Bernstein—-Gelfand—Gelfand (BGG) complexes of parabolic Verma
module homomorphisms are dual to complexes of invariant linear differential operators on generalized
flag varietiesG/ P, and these complexes should admit ‘curved analogues’, that is, there should exist
sequences of invariant linear differential operators on curved manifolds modelled on these homogeneous
spaces. This is now known to hold for all regular BGG complg¢%é

The prototypical parabolic geometry is conformal geometry, whose model is the generalized flag vari-
ety SQ(n +1, 1)/CO(n) x R"™, namely the:-sphereS” with its standard flat conformal structure. In this
case another, more explicit, approach to the study of differential invariants has been fruitfully applied:
one first chooses a representative Riemannian metric (or, more generally, a compatible Weyl structure);
then one invokes the well-known results of invariant theory in Riemannian (or Weyl) geometry; finally
one studies how the differential invariants depend on the choice of Riemannian metric (or Weyl structure
[25,33). The differential invariants which are independent of the choice are invariants of the conformal
structure. The advantage of these methods is that they give explicit formulae for the differential confor-
mal invariants in familiar Riemannian terms. They have been particularly successful in the construction
of first and second order linear differential operaf@:21,23] but have been extended to higher order
operators and certain other parabolic structures (variously known ggpeaded, abelian or AHS struc-
tures) in[13-15] In the first order case, the approach of Feffj has also been extended to arbitrary
parabolic geometrig81].

In this paper we build upon these explicit constructions of invariant differential operators in terms
of a compatible Weyl structure. The natural geometries for such constructions are parabolic geometries,
because we have a good notion of Weyl strucf@igd, similar to the conformal case, and we can be sure
than many invariant operators exist because we have the BGG seq{jc&ur results are three-fold:
first, we simplify the formulae for standard linear differential operators givgh5h second, we extend
these formulae to arbitrary parabolic structures; third, we uncover a fundamental object in parabolic
geometry, the Weyl jet operator, and its components, the Ricci-corrected Wey!l derivatives of the title
of our paper (cf[33]). Since it will take us a little while in the body of the text to reach these results,
we shall spend some time now explaining what the Ricci-corrected Weyl derivatives are, in the case of
conformal geometry.

Let M be ann-dimensional manifold with a conformal structureA compatible Weyl connectio®
on M is atorsion-free conformal connection on the tangent bundié.df therefore induces a connection
on the conformal frame bundle 81, and hence covariant derivatives on any vector budéssociated
to the frame bundle via a representationf the conformal group C@) on a vector spac¥.
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The most familiar Weyl connections are the Levi-Civita connections of representative Riemannian
metrics forc. However, the broader context of Weyl connections has a few advantages in conformal
geometry:

e Weyl connections form an affine space, modelled on the space of 1-foand we writeD +— D +y
for this affine structure;

e the construction of the Levi-Civita connection from a Riemannian metric involves taking a derivative,
so that differential invariants have one order higher in the metric than in the connection;

e a choice of Riemannian metric reduces the structure group te)S@®aking it easy to forget the 1-
dimensional representations of the conformal group, an omission which comes back with a vengeance
in the form of conformal weights.

The affine structure of the space of Weyl connections provides a straightforward formulation of
the well-known folklore that conformal invariance only needs to be checked infinitesimally: we re-
gard a differential invarian# constructed using a Weyl connection as a functiofD); F is said
to be aconformal invariantif it is independent ofD; by the fundamental theorem of calculus, this
amounts to checking thak, F (D) = 0 for all Weyl connectionsD and 1-formsy. More generally, if
F (D) is polynomial in D then this dependence can be computed using Taylor's Theorem. In particu-
lar, if s is a section of an associated bundeand X is a vector field therd, Dys = [y, X] - s where
[y, X]1=y(X)id+y A X € co(TM) =Ridry @ so(T M) and- denotes the natural action af(7T M) on
V (induced by the representatiarof co(n) on V).

The Ricci-corrected derivatives have their origins in the observation that the explicit formulae for
conformally invariant differential operators in terms of a Weyl connection appear to have a system-
atic form, essentially depending only on the order of the operator. For first order operators, this is
quite straightforward21,23]} conformally invariant first order linear operators are all of the form
ToD:C®(M,V)— C®(M,W), whereV and W are associated bundleb, the covariant derivative
onV induced by a Weyl connection, afndis induced by an equivariant m&¥* ® V — W. Evidently
d,m(Ds) =m([y,-]-s), so we obtain conformally invariant operators by lettingoe the projection
onto the zero eigenspace of the operakoe End7*M ® V) defined by? (y ® s) = [y, -] - s. Since
these eigenvalues can be shifted, by tensovingth a one dimensional representation of @Q a large
number of first order operators are obtained.

Ricci corrections make their first appearance at the level of second order operators. Here one finds
that many conformally invariant operators are of the foriD?s + r” ® s) wherer is induced by an
equivariant mafR™* @ R @ V— S?R™ ® V — W (the first map being symmetrization), arfd is the
normalized Ricci curvaturef the Weyl connection, which is a covector-valued 1-formiértonstructed
from the curvature of the Weyl connection. For present purposes, all we need to know 8kistits
dependence op: 3,r” = —Dy.

Now compare this with the variation of the second derivative:

3, D% ys =1[y. X1+ Dys — Dy, x1vs + Dx([y. Y1-s) — [y, DxY]-s
=[Dxy,Y]-s+1[y,X]-Dys+[y,Y] - Dxs — Dy, x}.vs.

This formula means that we can use the Ricci curvature to make the second desiggivaicin D.
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Definition. The Ricci-corrected second derivativa sections of an associated bundhé is defined by
DPys=D2 s +[r?(X),Y]-s.

Henced, D@s =y %1 Ds where

y*x1P)xy =1y, X1 - ¢y +1y, Y] -dx — ¢ .x17

It is now a purely algebraic matter to find projectionssuch thatz (D@s) is a conformal invariant
of s. As it turns out, these projections often have the property #tat?(-), -1-s) = 7(r? ® s5). The
simplest example is the conformal hessian g@f's = symy(D?s + rPs) wheres is a section of the
weight 1 line bundld..

The same ideas apply to higher order operators: we want to write these operatar®4s for some
projections induced by an equivariant mggp/R") @ V — SR™* @ V — W, whereD® is a Ricci-
correctedkth power of the Weyl connection. Again we make the observation thiat(if o D®) =0
thenm o D® must certainly be algebraic iP, and we can in fact arrange f&r® itself to be algebraic
in D.

Definition. The Ricci-corrected powers of the Weyl connectmman associated bundié are defined
inductively byD©@s =5, D5 = Ds and

ixD* Vs = Dy D®s 4+ 1P (X) %, D* Vs,
where
k

itLsen Xk
j=1

A calculation shows that, D®s =y %, D*Vs.

The inductive formula can easily be summed to give

D=3 3 D" "o (rP’()r)o D o

L+m=k 1<i1<-<ig<m

o (rP()*1) o D777 o (rP()%1) 0 DL,
Thus the search for explicit invariant operators reduces to an algebraic problem, and we shall find that
a large class of projections annihilatingy s, D% produce universal numbers when applied to the
terms of D®, essentially because the actipr; on (®/T*M) ® V for j < k is closely related to the
action on(*T*M)Q V.

This theory of Ricci-corrected derivatives in conformal geometry was developed over several years

by the first two authors, and described, in part8]. In the homogeneous case, i.e.,$1n the second
author explained the actiopx; in terms of the second order part of the action of a conformal vec-
tor field on sections of a homogeneous vector bufiti}. It became clear however, that there was a
systematic underlying principle behind these formulae, even in the curved case, which should also gen-
eralize to arbitrary parabolic geometries. More precisely, the agtianis related to part of the action
of the nilradical of the parabolic subalgehran certainsemiholonomic jet module%‘V associated to
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a moduleV [20,30] This action is considerably more complicated in general than it is in the confor-
mal case, and we are forced to consider the representation theory of the entire parabolic s&hgroup
not just its Levi factorPy as we did in the conformal case (wWhefg= CO(n) and P = CO(n) x R™).

Hence we must work withP-modulesV, and the corresponding vector bundlésare associated to

a larger principalP-bundle, which in the conformal case is the Cartan bundle with its normal Cartan
connection. This development ultimately provides a simple conceptual explanation for the formulae we
obtain.

The structure of the paper is as follows. We begin by defining Cartan geometries and invariant differ-
entiation in Sectiorl: this is a standard way to treat parabolic geome{i¢k0,30] although in practice
a geometry is defined by more primitive data, which must be differentiated to obtain the Cartan connec-
tion [11]. The key point is that a Cartan connection determines semiholonomic jet operators taking values
in bundles associated to semiholonomic jet modules.

In Sections2—-3 we begin the study of parabolic geometries and Weyl structures. We adopt a novel
approach to Weyl structures (which we relate to the approacbapfand Slovak12] in Appendix A)
in order to emphasise the relationship between the geometry of Weyl structures and some elementary
representation theory which we exploit throughout our treatment. At the algebraic level, a Weyl struc-
ture is a lifte of a certain ‘grading elementy in the Levi factorpg to the parabolic Lie algebra.

The grading element induces a filtration ofPamoduleV and a lifte splits this filtration, i.e., deter-
mines an isomorphismy of V with its associated graded module¥grGeometric Weyl structures for
parabolic geometries are given simply by applying the same procedure pointwise on the underlying man-
ifold: a geometric Weyl structurg then determines a splittingy : V — grV of any associated filtered
P-bundleV. Now if V is a filtered P-bundle, so is its semiholonomicjet bundle*V, and splitting

this bundle allows us to project out Ricci corrected derivatives as components bfj¢heThis sim-

ple construction, which we present in Sectibnmakes Ricci corrected differentiation easy to study
from a theoretical point of view. On the other hand, it is also easily related to covariant differentiation:
explicit formulae are obtained as soon as one understands the action of the nilragical @t mod-

ules.

In Section5, we pave the way for the construction of invariant operators by studying special types
of projections from jet modules, which have the effect of killing most of the complicated terms in the
jet module action. For irreducible modules, the remaining terms of the jet module action reduce to the
projection of a scalar action, which we compute using Casimirs. In Se6tiwa give our construc-
tion of a large class of invariant operators, and write out the formulae for operators up to order 8.
We illustrate the scope of the constructions in Seciiand give some examples in conformal geom-
etry.

Finally let us mention further potential applications of Ricci-corrected differentiation. Although in
this paper we have applied Ricci-corrected derivatives to the construction of indareanrtdifferential
operators, the same ideas can be expected to yield explicit formulae for multilinear differential operators,
such as the operators [&]. Indeed, this was our original motivation to study Ricci-corrected differentia-
tion in conformal geometry: one approach to construct (say) bilinear differential operators is to combine
terms constructed from pairs nbninvariantlinear differential operators; to do this one needs noninvari-
ant operators which nevertheless depend on the choice of Weyl structure in a simple way—projections
of Ricci-corrected derivatives onto irreducible components have this property.
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1. Invariant derivativesin Cartan geometry

Parabolic geometries are geometries modelled on a generalized flag @fiRty.e., G is a semisim-
ple Lie group andP is a parabolic subgroup. A standard way to define ‘curved versions’ of homogeneous
spaces is as Cartan geometries. In this section, we recall the basic calculus of such geometries, follow-
ing [8,10,20,29,3Q]

Fix a Lie algebrag with a Lie group P acting by automorphisms such thatis a P-equivariant
subalgebra ofj, and the derivative of th@-action ong is the adjoint action of on g. (These technical
conditions are simply those that arise wheris a subgroup of a Lie grou@ with Lie algebrag.)

Definition 1.1. Let M be a manifold with dimension didf = dimg — dimp. A Cartan connection
of type (g, P) on M is a principal P-bundler : G — M, together with aP-invariantg-valued 1-form
0:TG — gsuchthatforeach e G,0,:7,G — gis anisomorphism which sends each generatof the
P-action to the correspondinge p, i.e., s, = 9;1(5). Here P-invariance means that Agl) - ;0 =6
for any p € P, wherer, denotes the righP-action onG. We refer to(M, G, 6) as aCartan geometry

Note that Cartan connections formapen subsetf an affine space modelled on the space of horizon-
tal P-invariantg-valued 1-forms. However, one can freely add horizofahvariantp-valued1-forms
to a Cartan connection, without losing invertibility.

Associated to any’-moduleV is a vector bundld/ = G x p V, defined to be the quotient f x V
by the action(y, v) = (yp~%, p - v). This induces an actioty - f)(y) = p - f(yp) on functionsf e
C>(G, V) which identifies sectiong of V =G x p V over M with P-invariant functionsf :G — V:

C®(M,V)=C>®(@G, V7.

Similarly P-invariant horizontalV-valued forms org are identified with forms o/ with values inV'.
In particular the 1-fornT'G — g/p induced by the Cartan connectiénis P-invariant and horizontal,
corresponding to a bundle mapV — G x p g/p. The open condition on the Cartan connection means
that this is an isomorphism and henceforth we identiif with G x p g/p in this way. We letg,, =
G x p g and observe that there is a surjective bundle map fgnto 7 M, with kernelp,, =G xp p.

Cartan connections do not in general induce covariant derivatives on associated bundles, but there is ¢
way of differentiating sections of such bundles usjginstead ofl’ M.

Definition 1.2. Let (G, ) be a Cartan connection of tygg, P) on M, and letV be aP-module with
associated vector bundlé= G x p V. Then the linear map defined by

VP:C®(G,V) = C®(G,g" ®V),
Vif=df(67'®)

(for all £ in g) is P-equivariant. The restriction to°G, V), or equivalently the induced linear map
V?:C®(M,V)— C®(M, g}, ®V),is called thénvariant derivativeon V.

Thecurvaturek : A°TG — g of a Cartan geometry is defined by

K(X,Y)=do(X,Y)+ [0(X),0())].
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It induces a curvature function: G — A%g* ® g via

ky(€, ) =Ky (071©). 071 (0) =&, x1 - 6,[071(©). 07 (0]

wherey € G and the latter bracket is the Lie bracket of vector fieldgon

The p-invariance ofy — 671(x) for x € g means thaid=1(£),071(x)] =071, x] for any & e p,
and hence that(, -) = 0 for £ € p so thatc € C*(G, A%(g/p)* ® g)”. In other wordsK is a horizontal
2-form and inducex ; € C®°(M, A°T*M ® gu).

Lemma1.3. Let (G, ) be a Cartan geometry of typgg, P) on M.

(i) For f € C*(G. V)", we have(V{ f)(y)+ & - (f(y)) =0forall £ epandyeg.
(i) We also haveZ{ (V) f) = VO(VEf) =V f = Vi, f forall & x ep.
Proof. (i) Differentiate theP-invariance conditiorp - (f(yp)) = f(y).

(ii) Both sides are equal tdf ([071(£),671(x)]). O

These facts enable us to define a semiholonomic jet opef@ttoientifying the semiholonomic jet
bundle J*V with an associated bund x » f(’,‘V [8,13,30] Recall that the semiholonomic jet bundles
are defined inductively by*V = J!V and J**1V is the subbundle of */*V on which the two natural
maps toJ1J*~1v agree. The advantage of semiholonomic jets is that they depend only on the 1-jet
functor, the natural transformatioh'V — V and some abstract nonsense.

Proposition 1.4. Let (G, 8) be a Cartan geometry of tygg, P) on M andV a P-module.

(i) The mapj}:C®(M,V)— C*(M,V & (g}, ®V)) sendingp to (¢, V%) defines an injective bundle
map, from thel-jet bundle'V to V & (g}, ® V), whose image i§ x p J;V whereJ}V = {(¢o, ¢1) €
Vo (g*®V): ¢1(§) +&-po=0forall & p}.

(i) Similarly the mapjf sending a sectiop to (¢, V¢, (V%)%p, ..., (V) p) defines an isomorphism
between the semiholonomic jet bundley and the subbundig x » J§V of B’ _o(®@/g}) ® V),
where J§V is the set of algo, ¢1. . ... ¢x) in B_o((®7g") ® V) satisfying(for 1< i < j < k) the
equations

G (€1, & i, E) — G B G E) = @16 L 6 il L6,
biEr, ... &) +& - (pi—a(Er. ..., &) =0
forall &,...,&; e gwith & ep.

Proof. (i) Certainly the map on smooth sections only depends on the 1-jet at each point, and itis injective
since the symbol o¥? is the inclusio*M ® V — g%, ® V. It maps intog x p J3'V by vertical triviality,
but this has the same rank &5V .

(i) Similar: the equations are those given by the vertical triviality and the Ricci identity, bearing in
mind thatk is horizontal. The (semiholonomic) symbols of the iterated invariant derivatives are still given
by inclusions(®/ T*M) @ V — (®’gi,) @ V. O
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2. Parabolic subalgebras and algebraic Weyl structures

Parabolic geometries are Cartan geometries of {yp®) whereg is semisimple and the Lie algebra
p of P is a parabolic subalgebra. In this section we develop a few basic facts about parabolic subalgebras
and their representations, emphasising the relation between filtered and graded modules. The key featur
of parabolic subalgebras is the presence of ‘algebraic Weyl structures’ which split filtered modules. Such
splittings, carried out pointwise, equip parabolic geometries with covariant derivatives on associated
bundles.

A parabolic subalgebra of a semisimple Lie algebra is a subalgebra containing a Borel (i.e., maximal
solvable) subalgebra. However, to keep our treatment as self-contained as possible, with minimal use of
structure theory, we find the following equivalent and elementary definition more convenient. We refer
to [4,12,30]for an alternative approach.

Definition 2.1. Let g be a semisimple Lie algebra. For a subspacd g we letu' be the orthogonal
subspace with respect to the Killing form, -). Then a subalgebra of g is paraboliciff pt is the
nilradical of p, i.e., its maximal nilpotent ideal. It follows that the quotiegt= p/p* is a reductive Lie
algebra, called thkevi factor.

Letpt, (pH)2=[p*, ptl, ..., (Y =[p*, (p)/], ... be the descending central seriepof Since
pt is nilpotent there is an integér> 0, called thedepthof p, such thaip*)*** = 0 but(p+)* £ 0. Thus
p* has ak-step filtration k£ = 0 is the trivial cas@' = 0 andp = g). We obtain from this a filtration of
by settingg, = (p™)’ andg; 1 = g ;, for j > 1 so that

=00 28k- 2 "8 280 =P pt= 91D DGk 2 Gk-1 =0

It is easily verified thafg. g(j)] € gi+j), SO thatg is a filtered Lie algebra. The associated graded Lie
algebra is gg = @';:_k g; Whereg; = g(;)/9(j—-1 and is said to béx|-graded. Note in particular that

Po = go.
An important fact about parabolic subalgebras is that this filtratignisfsplit.

Lemma 2.2. There are(non-canonicdl splittings of the exact sequences
O0—gj-y—>9)—>9,—>0 (2.1)

which induce a Lie algebra isomorphism betwgesndgrg.

Proof. Any semisimple Lie algebra admits a Cartan involution, i.e., an automorphisgm— g such
thato? =id andh (&, x) := (o (€), x) is positive definite. We spli2.1)for each; by identifyingg; with
the h-orthogonal complement tg;_1) in g(;). SUPPOSE € g; is h-orthogonal tog_1), i.e.,0(§) €
gé_l) = g, andy € g;) is h-orthogonal tog(;_1). Then[&, x] € gi+j) ando[&, x]1=1[o0(§),0(x)] €
g—i—j) SO[&, x] is h-orthogonal tog ;1. Hence the splittings defined by induce a Lie algebra
isomorphism. O

We refer to such a splitting gf as analgebraic Weyl structurdt is not unique, but we can obtain very
good control over the possible splittings thanks to the following.



D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149-175 157

Lemma 2.3. There is a unique elemesgy in the centre ofp = p/p* such thafeq, £] = j& forall £ € g;
and all 5.

Proof. Since gry is semisimple, the derivation defined by— j¢ for & € g; must be inner, i.e., equal
adsq for g9 € grg (which is unique sinc& (g) = 0). Now [so, £0] = 0 and[eo, £] = 0 for all £ € gg, SO&g
is in the centre ofijp =po. O

Definition 2.4. The elementy is called thegrading elementLet v = {¢ € p: mo(e) = g} be the set of
all lifts of &g to p with respect to the exact sequence

0—>pl—>pﬂ)>po—>0. (2.2)

The elements ofv are precisely the algebraic Weyl structures: the isomorphisgn with grg is
given by the eigenspace decomposition ot &or a lift of e to ¢ € p C g. The space of algebraic Weyl
structures is therefone, an affine space modelled gn.

Let P be a Lie group acting ogwith Lie algebrap as in the previous section, and suppose additionally
that the quotient groupy = P/ expp= stabilizesey € po (Which is automatic ifPy is connected) so that
the adjoint action ofP onp preserveso.

Lemma 2.5. expp* < P acts freely and transitively om.

Proof. If y € pt, (Adexpy)e = expady)e =& + [y, €]+ - - - . The result follows because @ds nilpo-
tent onp, andy > [y, ¢] is a bijection orpt. O

The stabilizer ofs is thus a subgroup of projecting isomorphically ontd,, so that an algebraic
Weyl structure splits the quotient group homomorphiggn P — P,.

The fundamental vector fields (y € pt) generating the action of exp onw give rise to a Maurer—
Cartan formy: Tw — pt with n(¢,) = y. If we identify Tto with v x p* using the affine space structure
then¢, . = [y, €], son, is the inverse of — [y, e] on pt.

2.1. Filtered and graded modules

We say that aPp-module issemisimpléf it is completely reducible and the grading elemegniacts
by a scalar on irreducible components (the latter condition is automatic for complex modules). The
eigenvalues o, will be called thegeometric weightsf the module.

There is a one to one correspondence betwBgmodules andP-modules on which exp- acts
trivially. We say such @&-module is semisimple if the correspondifg-module is. More generally, we
shall conside?-modulesV with a P-invariant filtration

V=VuH2OV4a-1DVu2D-DVuy D0 (2.3)

(for a scalan. and an integef) such that the associated graded modul€ gra semisimpleP-module
graded by geometric weight. We refer to such modulefitaged P-modules We extend the definition
in a straightforward way to direct sums of such modules.

An algebraic Weyl structure splits any filteredP-moduleV into the eigenspaces of giving a vec-
tor space isomorphisiy, : V — grV. This isomorphism is noP-equivariant (though it is tautologically
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Po-equivariant using the splitting ofy: P — Py defined bye). However, by the naturality of the con-
struction, the map — ey is P-equivariant. More precisely, & = (Ad p)e¢ is any other algebraic Weyl
structure (withp € P), then

Ev(v)=p-ev(p™ V), (2.4)
In particular, if p € expp*, we haveéy = ey o (¢~ - ). Since the action of exp* on v is free and
transitive, this dependence implies that if we have a smooth famiy (s) of algebraic Weyl structures
thendey (X)(v) = —ey(n(de(X)) - v).

Lemma 2.6. For a smooth map : S — o and a filteredP-moduleV, the EndV-valued1-form e 'dey
on S is given by the natural action 6fe*n on'V.

2.2. The tangent module

We end this section by considering the modmle= g/p, which is the filteredP-module dual tgp*.
More precisely, the Killing form ofy gives a nondegenerate pairing betwggn and p*, which will
also be denoted b*. This duality depends on the normalization of the Killing form, which we do not
specify at present.

We have seen thatis a filteredP-module, withm andm* as quotient and sub- modules respectively.
The associated graded modulesngend grm* are graded nilpotent subalgebras ofgin particular, as
semisimpleP-modules, gy = grm & po & grm*, although the Lie bracket is not compatible with this di-
rect sum decomposition. An algebraic Wey! structutberefore determines a vector space isomorphism
Eoe.MDpodmM* — g.

Observe thaf := g, is the lowest geometric weight subspace ohgand so is aP-submodule ofn;
the dualf* is naturally a quotienP-module ofp* = m*.

3. Parabolic geometries and Weyl structures

Definition 3.1. A parabolic geometrpn M is a Cartan geometrig, 6) of type (g, P) with g semisimple
andp parabolic, satisfying the conditions of the previous two sections.

We defineGy to be the principaPy-bundleG / exppt and we letrg also denote the projectigh— Go,
so thatro(yp) = mo(y)mo(p) for y e Gandp € P.

The tangent bundl& M = G x » m has a natural filtration induced by the filtrationwaf the smallest
nontrivial distribution in the filtration being,, = G xp f. The cotangent bundl*M = G xp m* =
G xp p* is a bundle of nilpotent Lie algebras, the nilradical bundlepgf= G xp p. The quotient
pu/T*M is a reductive Lie algebra bundle, namely o := G X p po. Observe thap,, o has a canonical
grading sectiorky, induced by the grading elemesyt of po, which is P-invariant.

Definition 3.2. Let (G, 0) be a parabolic geometry avi. Then a (geometricjVeyl structureE on M is
a smooth lift of the grading sectiaFi, to a section of,.

Thus a Weyl structure amounts to a smooth choice of algebraic Weyl structure at each point. Since
algebraic Weyl structures form an affine space, a Weyl structure is a section of an affine bundle, the
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bundle of Weyl geometries,, = G x p to. In particular, Weyl structures always exist, and form an affine
space modelled on the space of 1-formsin

Remark 3.3 (Key observation Any construction with algebraic Weyl structures can be carried out with
geometric Weyl structures. We can either work with associated bundles or on the principal ¢usmaite
both points of view are useful.

() If V=G xp V is bundle associated to a filterettmoduleV, with graded bundle g = G xp
arV =Gy xp, grv, then a Weyl structur& provides an isomorphismy : V. — grV, simply by
applying the construction of the previous section pointwise. We also obtain a bundle isomorphism
E,.TM D pPmoD T*M — Im-

(i) A Weyl structure may equally be regarded a® anvariant functionf : G — tvo. For any filteredP-
moduleV, we then have @-equivariant isomorphisriy : G x V — G x grV whose fibre ay € G
is £(y)v; the induced isomorphism of associated bundleEg,is Similarly we get aP-equivariant
isomorphisne, : G x (m @ po® m*) — G x g inducingE,.

If we fix an algebraic Weyl structure then any geometric Weyl structure may be wéittefAd g)e,
whereq : G — expp' is P-invariant in the sense thaty (yp)mo(p~1) = ¢(y): here Py acts onP via the
lift defined bye. As we discuss if\ppendix A this allows us to relate our approach to Weyl structures
to the original approach afap and Slovakl2].

4. Ricci-corrected Weyl differentiation

The main difficulty in the study of invariant differential operators on parabolic geometries is that
there is no natural covariant derivative on associated bundles: we only have the invariant derivative
V?:C®(M,V) — C®(M, g% ® V) in general. There is no canonical projectigf) — T*M; equiv-
alently, the restriction mag* — m* = p* is not P-equivariant.

Weyl structures provide two solutions to this problem, one well known (Weyl connections), the other
implicitly known (and closely related to the ‘conformal derivation’ of Wiur&3]), but not properly
formalized (Ricci-corrected Weyl connections). In our theory, both can be defined straightforwardly using
Remark 3.8).

Definition 4.1. Let (G — M, 0) be a parabolic geometry anl be a Weyl structure oM. Let V =
g x p V be a filteredP-bundle (i.e., associated to a filter@dmodule).

(i) The Ricci-corrected Weyl connectiab® : C*(M, V) — C®(M, T*M ® V) is given byD ¢y =
Vg. o for all vector fieldsx and sectiong of V. In other wordsD™ obtained by restricting the invariant
derivative to tangent vectors using the isomorphBmMTM @ py & T*M — g, induced byE.

(if) The Weyl connectiorD : C*(M, V) — C*(M, T*M ® V) is Dy = E,;* DY (Ey¢), i.e., the con-
nection onV induced byD® on grV via the isomorphisnEy : V — grV.

By definition, DY and D agree on bundles associated to semisiniplmodules (when exp- acts
trivially and V and grV are canonically isomorphic). In the notation we suppress their dependence on
the Weyl structureE. A priori they also depend on the chosamoduleV. This latter dependence is
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straightforward as they are associated to principadonnections. To see this, we use the isomorphism
e:G X (M@ podm*) > G x g defined by the Weyl structure to decompose the Cartan connection
0:TG— gas

0 =CEbm+0p, Oy =CEbpy+ O, (4.1)

where@m := (0 modp) : TG — mis the solder form, induced by projectifigpntom = g/p and similarly
= (6, modpL): TG — po=p/pt. Thus

Elob =0 + Oy + O (4.2)
and we can write the-part conceptually as
Op 1= (Eebpy — E'N) + O+ +E ), (4.3)

wheren is the Maurer—Cartan form an. This leads to the following proposition.

Proposition 4.2. Let (G — M, 6) be a parabolic geometry with Weyl structute Then

(i) 6, is a principal P-connection org inducing D on associated bundlgs
(i) Og = &.0,, — E*n is a principal P-connection ory inducing D on associated bundles
(i) p = 6Om= +E*n is a horizontal P-invariantp*-valuedl-form ong; if »” is the induced * M-valued
1-form onM and- is the natural action of *M = p; onV, then

D¢ =Dxo+rP(X)-g. (4.4)

Proof. (i) Clearly6, is P-invariant and-valued, and so, sineeis a Cartan connectiof, is a principal
P-connection. LetX be a vector field ang a section ofV, and lety:G — m and f: G — V be the
correspondlngD -invariant functions. Since the identification B/ with G x p m is via the solder form,
= Gm(X) for any P-invariant I|ftX of Xtog.
As a P-invariant function org, D (p is then

0 0 v %

which is preC|ser thdJ-invarlant functlon org corresponding to the covariant derivativegoilong X
induced by,.

(ii) We now mirror the construction ab from D® on the principal bundle level, usirRemark 3.8i):
if Vis a filteredP-module andf : G — V is P-invariant, corresponding to a sectiprof V. =G xp V,
then Dy corresponds to th@-invariant horizontal 1-form

ESNA+0)(Evf)=df +E.Opy) - f+EAEN f=df +0s- f

with 0 = £,(6,,) — £*n, by Lemma 2.6 as required.
(iii) This follows immediately becausg, = 6¢ + p. (One can also easily see directly tl§&t) + 6,
is a P-invariantp-valued horizontal 1-form 0g.) O

In conformal geometry? is thenormalized Ricci curvaturéaka. theSchouteror Rho tensoy of D.
This is the origin of the term Ricci-corrected Weyl connection.

We wish to see how the objects we have constructed depend on the choice of Weyl structure. We can
either do this o\, or for the corresponding-invariant objects oig.
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Proposition 4.3. Let E and E = (Ad¢~ 1) E be Weyl structuresvithg: M — G xp expp* (associated
to the adjoint actiolp and letV be a filteredP-bundle. TherEy = Ey o (¢-).

This is immediate from Eq(2.4). In practice it suffices to understand infinitesimal variations.d.et
be a curve of sections @fy, with go = id andgo = y for a 1-formy (equivalently aP-invariant func-
tion G — p*). Then for any object(E) depending on&, define(d, F)(E) to be ther-derivative of
F((Adg,/hE) att =0 (so thatd, E = —y). By the fundamental theorem of calculus,is indepen-
dent of the Weyl structure if and only @, F)(E) = 0 for all Weyl structurest and all 1-formsy .
Proposition 4.3mplies thatd, Ey = Ey o (y-). Itis now straightforward to differentiate the definition of
DD,

Proposition 4.4. For a Weyl structureE, a 1-form y, and a vector fieldx, let [y, X]gM =[y, E.X]—
E.(y - X). Then for any section of a filtered P-moduleV,

39, DP 0 =[y. XIE - o. (4.5)

Proof. For X e TM, 0,E.X = E.(y - X) — [y, E.X] = -y, X]fM. This ispy-valued (it is thep,,

component of the Lie brackéy, X1, where the lift ofX to g, and the projection tp,, are defined using
E), and s®, V{ y¢ = VgVE.Xga =[y,X];, ¢ O

The Ricci-corrected first derivativ®® agrees with the Weyl connection on semisimple modules.
Ricci corrections start to play a more important role when higher derivatives are considered, because jet
modules are not semisimple. The following deceptively simple definition clearly generalizes the previous
definition of DV,

Definition 4.5. Let E be a Weyl structure. Then we define an isomorphism from

k k
v<@P@ignev to Jfv=PeTMmeV
j=0 j=0
by sendingp = (¢o, ¢1. - .., ) 10 ¥ = (Yo, Y1, ..., Yx) Wherey; = (¢; o Eo)lgirm-
If ¢ € C*(M, V), then the section of £V corresponding tgt¢ is denotedj’ ¢ = (¢, DP g, D@y,
..., D®g). We call j& theWeyl jet operatorand its component®'/) the Ricci-corrected powers of the
Weyl connection

An alternative description of the Weyl jet operator is obtained from the obvious natural isomorphism
Tk Tk “k -1 “k
between gv,V and gr/; V. Then; = E[b]fng[b]jgv‘](_). It follows that
ayjl]()(p = E;leEjgvy : J}fp -V E}leEfgng(p =Yy x* jg(p -V fﬁw, (46)
E E
wheres is the action off*M on Jj;V induced by the isomorphisi! E ., with J;V .
E

The computation o is a straightforward exercise in algebra: it suffices to describe thedet - ¢
for ¢ € J§V, y € pt, in terms of the elements andy of J¥V := @’;:0(®jm*) ® V corresponding to

¢ and¢ using an algebraic Weyl structuge This p-module structure orig"V is computed irf12,30} let
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us sketch briefly the computation. We write= (o, ¥1, . .., ¥) with ¥; € (®’m*) ® V and similarly
for .

First, note that the existence of natural projecticﬁ{@/ — féV (for k > £) implies that they;
component contributes only t&jﬂ for s > 0, independently ok > j + s. We may therefore write
Vo= (y*¥) = > j4s=e ¥ *s ¥ forany£ <k, wherey x; v; denotes the contribution from, . Clearly
y %o ¥, =y - ¥; is the ordinary action of* < p.

Secondly, observe that the natural inclusiofs'V — J}J§V mean that we can compugesx, ¥
inductively using the definition oﬁ'olV. Recall that this consists of the paligy, ¢1) In V& (g* ® V)
with ¢1(&) + & - o = 0 for & € p. The identification withV & (m* ® V) is obtained by restricting, to m,
usinge. The induceg-module structure ol & (m* ® V) is given by - (o, P1lm) = (€ - do, (€ - d1) ),
and one easily computes th@t: ¢1)|m =& - (¥1lm) + £, -1 - ¢o, Wheres is used to split the natural maps
p — g — m. Therefore

y* (o, Y1) = (v Yo v - Y1ty *1v0) With yxivo=1[y. I vo.
(Applying this pointwise onMf, we rederive Eq(4.5).) Iterating this action we have

y s o= [l [y Tpe 150 ] - Yoo

The formula fory x, v; is also computed inductively, by considering the actiory adn Jolf({*“lv:
apply this action ta0, ..., 0,¢;,0,...,0) € J{™ 'V to obtainy %, ¥, as them* ® (®/+m*) @ V
component with respect ta

Passing from the algebra to associated bundles, we obtain the following result.

Proposition 4.6. The action ofy € T*M onyr € f,’;v induced by the identification Witﬁ;‘V is given by
YxP)= Y vy
Jjts=¢t
where if we supposethal; =A; ®---® A; ® v for A; e T*M andv € V, we have

y*ovi=v- v,
y* Y= Z A1®A2®"‘®Ai®[ya']§M'(Ai+l®“‘®Aj®U),
0<i<j
y kW) = Y A® ®A,®U®A® B A, ® PR A1 ®
0<in i< < <Jj
ai,az,...,ds

A, , Q" TQ®A 110 A, Q™ ®
E
[ 17 ey anliys -+ Cas sl €a ], - (Ag41® - @ A; @ v).
In these formulae, is a frame ofT’ M with dual framee”.
This action not only gives an explicit formula fﬁy;fD: it also provides an explicit inductive formula

for the Ricci-corrected poweiB® of the Weyl connectioD. Indeed, since the ordér- 1 part ofj(}f§<p
is the same as that gf ¢, we obtain:

tx D = Dy DV + projigera gy (r° (0 * jhe)
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= DyDWyp + Z rP(X) %, DY . (4.7
Jt+s=k
Explicit formulae for invariant differential operators will follow by computing projectiongf using
this inductive expression and some representation theory.

5. Strongly invariant operators
5.1. Jet module homomorphisms

Our goal is to explain how Ricci-corrected Weyl differentiation leads to explicit formulae for a class
of invariant differential operators. These are 8tmngly invariantoperators 0f15,16,20] defined as
follows. LetV andW be P-modules and le® : J¥V — W be aP-homomorphism. Ther induces a
bundle mapF :G xp f(’)‘V — G xp W, and hence an invariant differential operatos ]é‘ fromV to W.

In practice, suchP-homomorphisms are constructed by liftingPeehomomorphism g& :grfé‘V —
grW using an algebraic Weyl structuseto give @, = sgvl ogrd oey. Since@pdg):v =q - (g1 v),
it follows that @ = @, is a P-homomorphism if and only if it is independent of the algebraic Weyl
structures.

If we mirror this construction on associated bundles, for any Weyl struckyrea bundle map
grF:grJ*v — grw (associated to gb : gr J¥V — grw) induces a differential operatdf;* o gr F o
E ji, o jk from V to W, which will be invariant if it is independent of the choice of Wey! structfireAn
obvious sufficient condition is that,;! o gr F o E ., is independent of the choice of Weyl structure and
these are the strongly invariant operators. (The condition is not necessary bfgtzﬁmtk satisfy some
Bianchi identities not satisfied by general sectiong’of .)

The method we shall adopt for constructing strongly invariant operators is to constriet a
homomorphism® : J¥V — W, inducing a bundle mag : /£V — W and hence, for any Weyl structure
E, a differential operato¥ o f}‘, fromV to W. Sincefs"V has the same associated graded module as
fé‘V, it is straightforward to obtain conditions th@tinduces aP-homomorphismfé‘V — W, and hence
a strongly invariant operator. The expressibr j,’g then gives an explicit formula for this operator in
terms of a Weyl structure.

The P-homomorphisms we construct here all factor through the projections

TV - @'m* @V — & @V,
where the second projection is induced by the restriction nwap> §*. Our first task is to apply these
projections to the jet module action Then we apply further projection®*§*) ® V — W to obtain
the P-homomorphisms we seek. In geometric terms, operators obtained from homomorphisms factoring
through these projections are given by applying a bundle @4fj,) ® V — W to the restriction of>®
to ®ka.

5.2. Restricting the jet module action

We first restricty x ¢ to f. For notational simplicity we give the result algebraically: the formulae on
associated bundles easily follow.



164 D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149-175

Proposition 5.1. Supposé is a semisimple®>-module. Letr; denote the restriction mags’/m* — ®/f*
and lete,, ¢* be dual bases fof, . Then(y x ), = ZHS:Z Y *s ¥;, where for eachj we have,
supposing/; =A1®---® A; ® v as before

(Y x0¥;) =0,
Ty k)= Y TA1® A @ ®A) @V (y @A 1 ® - ® A; ®V)),
0<i<j

Ti(y *s Yj) = Z Ti(A1® - ®A;) @ @mi(Ai+1Q - QA,) ®eP R ---

0y i< K <
ai,az,...,ds—1

®e* 1 R@mi(A;_111®---®A;)®
V([ [y ealys el a1 ] ® (A 11 ® - ® A; © V).
Here, for any semisimplé®-moduleV, we definel : f* @ V — §* @ V by
VARV)(X)=I[A, x]-V (5.1)
for x € f, which is well defined Sinc¥ is semisimple. In the above formulae far and *,, we have

V= (®/7f) ®V and (®’/~§) ® V respectively.

Proof. This is immediate from (the algebraic version Bfpposition 4.6and the equality
25 ([L [, earlys €arlys - €a1Jps €a ], - (A1 ® - ® A; @ v))
=[[..-[ly. ea ] €a sy - - 0, I eas]io (A1 ® - @A) ® ),

which holds because the projection of the Lie bragket® p* — p* — §* vanishes and the module
(®'75§%) ® V is semisimple. O

The formulae of this proposition may not seem simpler than the full formul&eegdosition 4.6but
they are easier to handle, singeis an operator on semisimple modules.

5.3. Special types of projections

To progress further, we need to understand the map

ViV eV, VARV =) " ®([A el v),

whereV is a semisimpleP-module ande, ande“ are dual bases dfandf* respectively. Sinc& is a
P-homomorphism, it acts by a scalar on every irreducible componefit®fV and these scalars can
be computed explicitly using Casimirs. Note now that all weights optamodulem™ have multiplicity
one (they are just positive roots @f. Hence results frorfb,27,31]show that all irreducible components
of m* @ V are multiplicity free.

We can writef* ® V as a sum of well-defined irreducib®-componentd/,. Consequently®?*) ®
V=®& (EBbl V,) can be again written as a sum of invariant subspaces labelled by a cougie)
of indices indicating that it is the isotypic component with labginsidef* ® V,,. Inductively, we get a
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well defined decomposition ¢&*f*) ® V into Py-invariant subspaces labelled by paths (b1, ..., by)
of indices showing their positions in consecutive decompositions. Note that the full isotypic component
of (®*§*) ® V with label b, is the direct sum of all subspac¥s labelled by path# ending withb,.

We now suppose that our compon&htis in thesymmetridensor producs*i* @ V.

Proposition 5.2. Let 7 be a projection ofl;"V to an invariant subspace is*§* ® V) NV, for someV,

in the decomposition described above. Then for any eIemerhtffV, the only contribution tor (v * 1)
isfromy,_;andify =A1® --- ® Ay_1 ® v we have

Ty xy) = Z (A1 A2® - Q@ A @V (5(y) @ Ti(Ai11® -+ ® A1 @ V))).

0<ig<k—1

Proof. Note first thatz (y * ¢) = Zjﬂzkn(y *; ¥;) and that thes = 0 term vanishes (sSinc¥ is
semisimple). Hence it remains to show that the terms with2 are zero. To do this is suffices to show
that terms in whichZ is applied to a Lie bracket are killed by the projection. Consider therefore an
expression of the form

> e @ (ly. el @ v)
and suppose we apply a projectigro (®2f*) ® V which factors througts?f* ® V and is of the form
o oid ® m; wherer; : {* ® V — V3 is a projection onto an isotypic component. Sidcacts by a scalar
on such a component, the result is a multipleradpplied to

Y @y, el @v.
a
The projectionr factorizes through the symmetric product, so it suffices to note that

<Z e @1y, ea]§*> (X1, x2) = [y, xal5- (x2) = ¥ ([€ X1, €0 X2] MOdp),
which is clearly antisymmetric itx1, x2 € f. The terms appearing in the action foe: 2 are all of this
form, with y andv replaced by iterated brackets and suitable tensor products.

5.4. Casimir computations

In this section we compute the eigenvaluesfofand hence prove thak acts by a scalar on each
isotypic component. This is the first point at which we need detailed information from representation
theory, so we set up the necessary notafa#j.

Let g be a semisimple Lie algebra with complexificatigh. We choose a Cartan subalgelfain
g®, a setA™ of positive roots, and its subsst= {a4, ..., «,} of simple roots. Using the Killing form
(-, -), with any normalization, the fundamental weighis . .., w, are defined bye,’, ;) = §;;, where
o =20;/(a;, o).

The dominant Weyl chambet is given by linear combinations of fundamental weights with non-
negative coefficients. Finite dimensional complex irreducible representatigiis(as well as ofy) are
characterized by their highest weights C, which lie in the weight latticd) " A;w;: A; € Z}. The cor-
responding representation will be denoted\hy
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A reductive algebra is a direct sum of a commutative and a semisimple algebra (either of which can
be trivial). Its irreducible (complex) representations are tensor products of irreducible representations of
the summands, where irreducible representations of a commutative Lie atgal@aone dimensional,
characterized by an element of HamC).

Remark 5.3. For simplicity, we focus on complex representations of the Lie algebras in question. In
practice, we may well be more interested in real representations. For this, it is sufficient to use the fol-
lowing description: a real or quaternionic structure on a comgimoduleV is a conjugate-linegg-map

J:V — V with J?2 =1 or J? = —1 respectively. An irreducible real representation of a Lie algebra can
be identified either with an irreducible complex representations, or with such a representation endowed
with a real or quaternionic structure. We note also tha¥ ifs a complexg-module andU is a real
g-module with complexificatioi, thenU ® V andU¢ ®¢ V are equivalent as complex modules.

We now specialize to the situation whegrés a semisimple Lie algebra with parabolic subalggbra
and Levi factorpg. The setS of simple roots forg® can be chosen in such a way that all positive root
spaces are contained pft. This fixes an algebraic Wey! structure, and the positive root spaces lying in
p§ correspond to roots in the span of the sulssedf ‘uncrossed’ simple roots—we write= S, U S for
the decomposition into crossed and uncrossed simple roots. In this situation, we shall say that a weight
(integral forg) is dominant forp, if its restriction toh%, = h® N g, is dominant forp . Such a weight
specifies uniquely an irreducibie-module.

Let us denote by the half sum of positive roots f@g* and bys, the half sum of those positive roots
for g© for which the corresponding root space belonggto

Proposition 5.4. Let V; be an irreducible representation gf with highest weight. € (h©)*. Letf* ®

Vi =€D,,c4 V.. be the decomposition of the tensor product into the sum of isotypic components with
highest weighjx and letrr,, be the projection tdV,,. Let$ denote the half sum of positive roots for the
Lie algebrag. Then

v =ZCMTL’M,
with
1 2 2
CM=§(|/H—5| — 2 +8%)

and|a|? = (a, «). (Note that¥ depends upon the normalization of the Killing forsince we used it to
identifyp with (g/p)*, and hence the bracket §fwith f depends on-, -).)

Proof. We first give a formula fo in terms of the Casimir operatdr of pg, as in[21,31] Let E/ and
E; be bases fopy which are dual with respect 1@, -). Then

Uy v =) ¢®ly.el-v=) [E,y]I®E -v=) [E,y]IQE v

a i

and so

2W(y®v):ZEi-Ei-(y®v)—y®(ZEi-Ei'v)—(ZEi-Ei'V)@)v



D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149-175 167

=C(y®v)—y®C(v)—C(y)Quv.

It is well known that on an irreducible representation with highest weiglit acts by the scalai., A +
280): with the definition of§, above, this holds even though is reductive rather than semisimple—
see[31].

Let us writeS, ={g;: i =1,...,r, < r} for the crossed simple roots gf We know that—g3; are
precisely the highest weights of the irreducible compongri§the Po-modulef*, so that the irreducible
components of* ® V, have highest weights of the form— g; + y, wherey is an integral linear
combination of simple roots fqr5. Hence for any isotypic componefi, there is an so thatV,, is an
invariant subspace gf ® V.

Since the action of the Casimir depends only on the highest weight, we deduce, fol[@d]nthat
¥ acts on the entire isotypic componénj by the scalar

1
c= é[(M,M—FZSo) — (A, A+ 280) — (—Bi, —Bi + 280)].

It remains to identifye with the constant,, above. For any simple rog, we have

268, 8) = (8, 28/IBP)IBP = _(w;, B)IBI> = IBI.

j=1

Hence(u, i + 280) — (A, A + 280) — (—Bi, —Bi + 280) is given by

=+ 817 = |A 487+ 26 — 80, —Bi — ju + A).

We know thatu — A is a weight off;, hence—p; — (L — ) = }_, ¢ nee. But for all« € So, we have
(a, 8§ — 8p) = 0, so the last term vanishesO

6. Explicit constructionsof invariant operators

In this section, we are going to construct a large class of invariant differential operators. Most of them
belong to the class of standard regular operators, but a certain subclass are standard singular operator
The class of operators constructed here does not cover all standard regular operators, but we shall see i
examples that it covers many of them.

Various special cases of the main results of this section can be foji6d $16,21,31]

Theorem 6.1. Let o € (h®)* be a positive root withy, C §*. In the case that has roots of different
lengths we shall suppose that is a long root. Letk, u be two integral dominant weights p§ with the

property
w+d=0,(A+8)=1+8— A+, a")a.
Interchangingh and . if necessary, suppose thiat= — (A + 8, «") is positive.

(i) There is a unique irreducible componé¥it with highest weighte in (®*m*) ® V,.. Furthermore,
V,, belongs taS*§* ® V, and is of the fornV,, whereV,,, =V, ;, forb= (b1, ..., by).
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(i) If mr: J;"V,\ — V,, is the corresponding projection, theninduces aP-homomorphisnv} Vv, —
V,, and hence a strongly invariant differential operatob D® of orderk from sections of/; to sections
of V,,.

Proof. (i) To prove uniqueness, let us note first that all weightsibfire positive roots. Weights @*m*
are hence sums @&f positive roots. The highest weight of any irreducible component®bf*) ® V,,

is of a formA + B8, wherep is a weight of@*m*. The unicity claim is therefore true by the triangle
inequality,a being a long root.

We now show that there is such a compon&pt By assumption, botih and i = A + ka are P-
dominant, and« is an extremal weight d&/{: for all j =1, ..., k. The so-called Parthasarathy—Ranga-
Rao—Varadarajan conjecture (proved28]) states that ifx, v are highest weights of two irreducible
(complex) po-modulesV;, V,, and if « is an extremal weight o¥,, then an irreducible component
V1o With extremal weight. + « will appear with multiplicity at least one i, ®c V,. (In concrete
cases, more elementary arguments are available.) It follows that there is an irreducible component of
(R/§) ® V, havinga + ja as its highest weight. Hence necessalily ¢ (%) ® V, C S+ ® V,.
Furthermore, the same holds withreplaced by, + j'« forall ;' =1, ...,k — 1. Hence, by uniqueness,
the projection factors througtk’{;) ® V.

(i) Let us prove now thatr induces aP-homomorphism. The action af* onV, is trivial, hence we
must show thatr (y * ) vanishes for any € J;"VA and anyy € m*.

Sincer is the projection to an irreducible piece §ff* ® V, lying in a component of the forriy,,
the action is given byroposition 5.2Using the Casimir computation &roposition 5.4the projection
of the action byy on an elemeny € J*V is given by

m(y x¥) =cn(y @ Yi-1)
with
k
26 =Y (Ih+ jo+ 07 — A+ G = Da+6) = |+ 812 — 1.+ 812,
j=1
which is zero because + § = o, (A + 8) anday, is an isometry. O

We turn now the formulae for these operators in terms of a Weyl structure. Explicit formulae for the
coefficients of various curvature terms for standard operators were first found in the conforni&l, case
24], and later extended to th&|-graded casg?,15]. A very surprising fact was that the formulae were
quite universal and did not depend on the specific parabolic structure or on the highest weights of the
representations involved. The general structure of coefficients descrilpgsl] iwas quite complicated.

Here we notice that the organization of the terms produced by the Ricci-corrected derivative leads to
much simpler coefficients. At the same time, the formulae are extended frophtpeaded case to the
broad class of standard operators in all parabolic geometries with no extra complications: the form of the
operator depends only on its order.

Theorem 6.2. Let a positive integek and a long rootr with g, C §* be given. Define differential opera-
tors Dy, ; (of order j =0, ..., k), acting on sections of any associated bunblethe recurrence relation

LXDk,j+l =Dy ODk,j +j(k — ])F(X) ®Dk,jfl (61)
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with Dy o = id, D1 = D. Here D be the covariant derivative given by the choice of the Weyl structure
andI” = —%|a|2rD. LetD, = Dy . Then any invariant operator of ordérconstructed infheoren®.1,
mapping sections df, to sections oV, u = A + ka is given byr o Dy wherer is the projection onto

V..

Proof. We know that the invariant operator is givendy D® and we have given a recurrence formula
for D® in Section4. Hence we only have to compute the projection of the actiorPobn S/§* ® V,,
which is straightforward using the results of Sectibria-5.4we find that the action is the tensor product
with cr?, where 2 = |A + jo + 8|2 — |L + 8|2

Now, sincek = — (A + 6, a"), we have

2e=A+ja+82—|A+8°=@r+ ja+ 25, jo) = || (—=k + J).

Substituting this into the projection of the recurrence formulaldéit? gives(6.1). O

Hence the universal nature of the explicit formulae for invariant operators arises from the fdot that
only depends upok. It is straightforward to comput®, for smallk. Omitting the tensor product sign
when tensoring with™/ = I' ® --- ® I", we have

D1s = Ds,
Dys = D%s + Is,
Dss = D3s + 2D(I's) + 2I" Ds,
Das = D*s + 3D?(I's) + 4D(I" Ds) + 3" D?s + 9I'%s,
Dss = D°s + 4D3(I"s) + 6D?(I" Ds) + 6D(I" D%s) + 4" D3s
+24D(I'%s) + 161"’ D(I's) + 24I"? Ds,
Des = D% + 5D*(I's) + 8D3(I" Ds) + 9D*(I" D?s) + 8D (I" D%) 4 5I"' D*s
+ 45D?(I"%s) 4+ 40D (I" D(I's)) + 25" D*(I"s)
+64D(I"?Ds) + 40I' D(I" Ds) + 45I'>D?s + 22513,
Dys = D's + 6D°(I"s) + 10D*(I" Ds) 4+ 12D3(I" D%s)
+ 12D%(I"' D35) + 10D(I" D*s) + 61" D°s
+72D*(I"%s) 4+ 72D*(I' D(I's)) + 120D*(I"*Ds) + 60D (I D*(I's))
+ 100D (I" D(I" Ds)) + 361" D3(I's)
+ 60" D(I" Ds) + 120D(I"?>D?s) + 72I" D(I" D?%s) + 72I"*D5s
+ 720D (I"3s) + 432" D(I"?s) + 432" D(I"s) + 7203 Ds,
Dgs = D8 + 7D8(I"s) + 12D%(I" Ds) + 15D*(I" D?s)
+ 16D3(I" D35) + 15D%(I" D*s) + 12D(I" D%s) + 71" D5
+105D*(I"%s) 4+ 112D3(I' D(Is)) + 192D(I"?Ds) + 105D?*(I" D*(I's))
+ 180D*(I" D(I" Ds)) + 84D (I" D*(I's)) + 225D*(I"*D°s)
+ 144D (I D*(I's)) + 49" D*(I's) + 84T’ D*(I" Ds) + 180D (I" D(I" D%s))



170 D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149-175

+ 105" D?(I" D?s) + 192D(I"2D3s) + 112" D(I" D3s) + 1052 D*s

+ 1575D*(I"%s) 4+ 1260D (1" D(I"%s)) + 1344D(I"*D(I's)) + 735" D*(I"%s)
+2304D(I"*Ds) + 784 D(I' D(I's))

+ 735I'2D?(I"s) + 1344 D(I'?Ds) + 1260r2D(I" Ds) + 15753 D?%s
+11025™%.

The combinatorics of the coefficients are simpler thafi] and the numbers are generally smaller; the
formulae there are obtained from those here by expanding the derivativesisihg the product rule.
Notice that the coefficients depend only on the position offtfee and the coefficients of the nonlinear
terms inI" are easily computed as products of the coefficients of the linear terms, as is clear from the
inductive definition of eact®,.

We are still free to choose the normalization of the Killing fotm-): since—%|o¢|2 is independent
of the long rootx, we could arrange that this is 1 afiti= r”. This is the normalization that gives the
formulae stated in the introduction for the conformal case.

7. Scope of the construction

We now show that the class of operators constructed in the previous section includes many standard
invariant operators, at least for the ‘large’ parabolic subgroups occuring in interesting examples. We shall
also show that in conformal geometry, the operators we construct include (at least in the conformally flat
case) those coming from AdS/CFT correspondence for partially massless fields in string theory.

7.1. Lagrangian contact structure

Let us consider the case of a Lagrangian contact structur¢q&€e32). This is the real split case of
the complex parabolic algebra corresponding to the Dynkin diagram

o1 0O Oy Opt1
X —e—x n>1 (7.1)

The Lie group isG = PSL(n 4+ 2, R) with Lie algebrag = sl(n + 2, R), grg being equipped with the
|2|-grading given by block matrices of sizerl 1. Theg; part decomposes further into a direct sum
g1 = g% @ g¥ of two irreducibles; they, part is one-dimensional.

In geometric terms, we have a contact structure on a real manifold of dimensieri 2vith a direct
sum decomposition of the contact distribution into two Lagrangian subbundles.

To be explicit, we consider the cage= 3, when the two irreducible components gof; are three
dimensional. Let us denote roots corresponding to botbybas, e3 and f1, f>, f3 respectively, ordered
so thatey, f1 are the highest weights f@r, considered as po-module, andes, f3 are the lowest ones.
Let g be the root corresponding to ».
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The (labelled) Hasse diagram for standard operators is shown above. The labels on the arrows indicate
the ‘directions’«a for the corresponding operators. We have constructed all operators indicated by full
arrows, hence only the horizontal arrows are missing.

A similar diagram applies in CR geometry, this being another real form of Lagrangian contact geom-
etry, except that some representations and operators become conjugate.

7.2. G,-case

For a more exotic example, let us consider the split real case @ tlwmplex algebra. In this case,

the root system has 12 elements. If we denote simple roats fifie longer one) and, (the shorter one),
then the set of positive roots fay, a, @z, aa, as, ag) With az = a1 + ap, os = a1 + 2002, a5 = a1 + 3o,
ag = 201 + 3a2. Let us consider the case that the parabolic is a Borel (maximal solvable) subgroup of
G». Then the associated graded algebrgigr5|-graded with

g1=R-{o1} @R {a2}, g2=R-{ag}, g3 =R {aa},

ga=R-{as}, g5 =R - {ag}.
The (labelled) Hasse diagram then has the form

The operators constructed in Sect@nndicated by full arrows, are now not so numerous.
There are two other parabolic subgroups@f up to isomorphism, one inducing|a|-grading, the
other a|2|-grading of the Lie algebra ofi,. For the|3|-grading, all roots ing; are short, and so no
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operators are constructed. For t@egrading, we have:
g1=R-{a1} ®R-{az} O R - {os} ® R - {5}, g2=R - {a}.

The Hasse graph in this case is

%} Qa3 o7 Oy as
. ° . ° ° .

with approximately half of the operators constructed in Sediion
7.3. The conformal case

In the even-dimensional casa| operators in the BGG sequence are obtained by the construction in
Section6, although there are nonstandard operators which are not. In the odd dimensional case there is
one arrow in the Hasse diagram which has a special character, as was already [Rffpdrirdimension
2n — 1, g =s0(p,q,R) with p + ¢ = 2n + 1 and a|l|-grading. We denote positive roots with root
spaces included ig by +a4, ..., *a,, @, 1, Wherew,, . 1 is the short simple root. Suppose that the roots
a, ..., a, are ordered, i.e., that; is the highest among them ang is the smallest. Then the (labelled)
Hasse diagram has the form

a1 Qo ap Qn+1 —ay, —Q -1

[ ] [ ] [ ] e [ ] [ ] [ ] [ ] e o —> 06— @

The middle operator is labelled by the only short root, hence the construction of S&dties not apply;
however, the other operators are all constructed.

7.4. AdS/CFT for partially massless fields

The operators constructed in the conformal case include some operators closely related to the
AdS/CFT correspondence for partially massless fields.

We recall that, besides massive or strictly massless fields, partially massless fields of higher spin were
studied on vacuum Einstein manifolds with a cosmological conftann Dolan, Nappi and WittefiL7],
the following situation was considered. Lt be an Einstein manifold asymptotic to anti-de Sitter space
of dimension 4 and leX be its boundary with the induced conformal structi2@]. Then the AdS/CFT
correspondencH] yields a correspondence between a partially masslessffietdM and a fieldL on
X, satisfying a certain conformally invariant equation (called a ‘partial conservation |g&/7]n

In the case that the field is a symmetric traceless tensor fidld-s, the equation is, to leading order,

Vi~V Lt ... =0.

ls—n

The source and the target for the equation are easily identified and the operator is the last operator in
the BGG sequence (described in SecfioBin the odd dimensional case). Hence SecBgrovides an
explicit formula for a conformally invariant operator of this form.

A detailed study of the case= 2,n = 0in [17] leads to the equation dr’

V,V,LU + —— R, LU =0,
J + d—2 J

which agrees with the formula of Sectiérsince the tracefree parts gi—zR,» ; andI” agree.
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The higher order equations with curvature corrections in Seétame natural candidates for the corre-
sponding higher order equations (the cases with: > 2) for the fieldL. As an example, let us consider
the case = 3,n =0, where we get

. 2 . -
ViV, Vi L% + d—_Z[Vi(RjkL”k) + R ViL'*]=0 (7.2)

for a traceless symmetric tensor field with three indice®6én(Of course, after expanding the covariant
derivatives using the Leibniz rule, we obtain the formulae already presgiti,4]) In the conformally

flat situation, this must be the equation arising from the AdS/CFT correspondence, because representatior
theory shows that conformally invariant operators are unique up to a multiple in this case. In general, there
may be conformally invariant curvature corrections in the lower order terms.
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Appendix A. Weyl structuresasreductions

In this appendix we relate our approach to Weyl structures and the original approél&paind
Slovak[12], who define a Weyl structure to beRg-equivariant section of g: G — Gg. For this defin-
ition to make sense, an algebraic Weyl structureust be fixed so thaty: P — Py is split.

By means of the equatiopng (y) = o (o(y)) such a sectiow is equivalent to aP-invariant trivial-
izationg : G — expp* of the principal expt-bundlery:G — Go, where theP-invariance means that
pg(yp)mo(p)t=q(y) forall pe P,y eg.

On the other hand, using the algebraic Weyl structyr@ny geometric Weyl structure ov is given
by £ = (Ad ¢)e for a uniqueP-invariantg : G — expp. To summarize:

Proposition A.1. Let (G — M,60) be a parabolic geometry and fix an algebraic Weyl structere
Then there is a natural bijection between Weyl structufesn M and Py-equivariant sectiong of
70:G — Go.

In our development, we used the Weyl structéréo give a P-invariant direct sum decomposition
E:G xm®po®dm* — G x gand hence write

E 100 =0n +0py+0m =0+ 00, =00 +E7 0 0s +p, (A1)

whered, andds are principalP-connections o1y and p is a P-invariantp*-valued horizontal 1-form
inducing the normalized Ricci curvatur€. On the other handan algebraic Wey! structure gives a
fixed direct sum decompositian : m @ pg & m* — g, related tof, by conjugating with the action @f,
where€ = (Adg)e. 5

Since the fixed decomposition is onBy-invariant, Cap and Slovak define thé&keyl formto be the
pull backt = o*0 of 6 to Gp, then decompose into a solder form, a principaPy-connection and a
Po-invariantpt-valued 1-form. In our approad/.1) is a P-invariant lift of this decomposition tg.
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Appendix B. Dependence of D and r? on the Weyl structure

In Eq. (4.5), we obtained the (infinitesimal) dependence of the Ricci-corrected Weyl connégzfion
on the Weyl structure. We now do the same for the Weyl conne@iand the normalized Ricci curvature
rP (we do not need these results in the body of the paper, but include them for general interest).

Proposition B.1. For y € C*(M, py;) and X € TM, 3,r°(X) = —Dxy + [y, X]{fb, whereX is lifted
to g, and the Lie bracket is projected ongg, usingE.

Proof. r” is thepy,-valued 1-form onM induced byp = £*n + O+, WhereE*n, = neg,)d€, andbys
is shorthand for then* component&;16),,«. Viewing y as aP-invariantp*-valued function org with
3,€ = —y, we easily compute that, (£*n) = —dy — [y, £*n] anddy O = (Y, ODmr — [V, O] =
[V, EOpol + (7MY, Ebm])m=- HeNce

dyp=—(dy — [EN, Y1+ [Ebpo, ¥]) + [y, Om]es
as required, sinces = —&£*n + E,6,, is the principal connection inducing. O

Proposition B.2. Let V be a filtered P-bundle andy a section ofV. Then fory € C*(M, py;) and
XeTM,d,Dxp= [y, X]{fM0 + Dxy) - ¢.

Proof. Dy = E;*D®(Ey¢) and sod, Dxp = E;*([y, X1E, - (Eve)) + Dx(y -¢) —y - Dxg. As grV
is semisimple, the result follows.O

SinceDE})w = Dx¢ +rP(X) - ¢, these computations are not independent: we check

3, (Dxp+r’(X)- @) =1y, XI5, .- o+ v, XIjr o=y, X1, - ¢

in accordance with Eq4.5). Unlike DV, the Weyl connectiorD does not depend algebraically on the
Weyl structure. This, of course, was the whole reason for introducing Ricci corrections in the first place.
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