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Abstract
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Introduction

A fundamental part of differential geometry is the study of differential invariants of geometric s
tures. Our concern in this paper is the explicit construction of such invariants. More specifically, w
to construct invariant differential operators for a class of structures known asparabolic geometries. These
geometries have attracted attention in recent years for at least two reasons: first, they include exa
long-standing interest in differential geometry, such as conformal structures, projective structures
structures; second, they have a rich algebraic theory, due to their intimate relation with the repres
theory of parabolic subgroupsP of semisimple Lie groupsG.

A great deal of progress in our understanding of invariant differential operators in parabolic ge
has been made through the efforts of many people. The key idea, pioneered by Eastwood and R[19]
and Baston[2] is that (generalized) Bernstein–Gelfand–Gelfand (BGG) complexes of parabolic V
module homomorphisms are dual to complexes of invariant linear differential operators on gene
flag varietiesG/P , and these complexes should admit ‘curved analogues’, that is, there shoul
sequences of invariant linear differential operators on curved manifolds modelled on these homo
spaces. This is now known to hold for all regular BGG complexes[16].

The prototypical parabolic geometry is conformal geometry, whose model is the generalized fla
ety SO0(n+1,1)/CO(n)�R

n∗, namely then-sphereSn with its standard flat conformal structure. In th
case another, more explicit, approach to the study of differential invariants has been fruitfully a
one first chooses a representative Riemannian metric (or, more generally, a compatible Weyl str
then one invokes the well-known results of invariant theory in Riemannian (or Weyl) geometry;
one studies how the differential invariants depend on the choice of Riemannian metric (or Weyl st
[25,33]). The differential invariants which are independent of the choice are invariants of the con
structure. The advantage of these methods is that they give explicit formulae for the differential
mal invariants in familiar Riemannian terms. They have been particularly successful in the const
of first and second order linear differential operators[6,21,23], but have been extended to higher or
operators and certain other parabolic structures (variously known as the|1|-graded, abelian or AHS struc
tures) in[13–15]. In the first order case, the approach of Fegan[21] has also been extended to arbitra
parabolic geometries[31].

In this paper we build upon these explicit constructions of invariant differential operators in
of a compatible Weyl structure. The natural geometries for such constructions are parabolic geo
because we have a good notion of Weyl structure[12], similar to the conformal case, and we can be s
than many invariant operators exist because we have the BGG sequences[16]. Our results are three-fold
first, we simplify the formulae for standard linear differential operators given in[15]; second, we exten
these formulae to arbitrary parabolic structures; third, we uncover a fundamental object in pa
geometry, the Weyl jet operator, and its components, the Ricci-corrected Weyl derivatives of t
of our paper (cf.[33]). Since it will take us a little while in the body of the text to reach these res
we shall spend some time now explaining what the Ricci-corrected Weyl derivatives are, in the
conformal geometry.

Let M be ann-dimensional manifold with a conformal structurec. A compatible Weyl connectionD
onM is a torsion-free conformal connection on the tangent bundle ofM . It therefore induces a connectio
on the conformal frame bundle ofM , and hence covariant derivatives on any vector bundleV associated
to the frame bundle via a representationλ of the conformal group CO(n) on a vector spaceV.
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The most familiar Weyl connections are the Levi-Civita connections of representative Riem
metrics forc. However, the broader context of Weyl connections has a few advantages in con
geometry:

• Weyl connections form an affine space, modelled on the space of 1-formsγ and we writeD �→ D+γ

for this affine structure;
• the construction of the Levi-Civita connection from a Riemannian metric involves taking a deriv

so that differential invariants have one order higher in the metric than in the connection;
• a choice of Riemannian metric reduces the structure group to SO(n), making it easy to forget the 1

dimensional representations of the conformal group, an omission which comes back with a ven
in the form of conformal weights.

The affine structure of the space of Weyl connections provides a straightforward formulat
the well-known folklore that conformal invariance only needs to be checked infinitesimally: w
gard a differential invariantF constructed using a Weyl connection as a functionF(D); F is said
to be aconformal invariantif it is independent ofD; by the fundamental theorem of calculus, t
amounts to checking that∂γ F (D) = 0 for all Weyl connectionsD and 1-formsγ . More generally, if
F(D) is polynomial inD then this dependence can be computed using Taylor’s Theorem. In pa
lar, if s is a section of an associated bundleV andX is a vector field then∂γ DXs = [γ,X] · s where
[γ,X] = γ (X) id+γ ∧X ∈ co(T M) = R idT M ⊕ so(T M) and· denotes the natural action ofco(T M) on
V (induced by the representationλ of co(n) on V).

The Ricci-corrected derivatives have their origins in the observation that the explicit formul
conformally invariant differential operators in terms of a Weyl connection appear to have a s
atic form, essentially depending only on the order of the operator. For first order operators,
quite straightforward[21,23]: conformally invariant first order linear operators are all of the fo
π ◦ D :C∞(M,V ) → C∞(M,W), whereV andW are associated bundles,D the covariant derivative
on V induced by a Weyl connection, andπ is induced by an equivariant mapRn∗ ⊗ V → W. Evidently
∂γ π(Ds) = π([γ, ·] · s), so we obtain conformally invariant operators by lettingπ be the projection
onto the zero eigenspace of the operatorΨ ∈ End(T ∗M ⊗ V ) defined byΨ (γ ⊗ s) = [γ, ·] · s. Since
these eigenvalues can be shifted, by tensoringV with a one dimensional representation of CO(n), a large
number of first order operators are obtained.

Ricci corrections make their first appearance at the level of second order operators. Here o
that many conformally invariant operators are of the formπ(D2s + rD ⊗ s) whereπ is induced by an
equivariant mapRn∗ ⊗ R

n∗ ⊗ V → S2
R

n∗ ⊗ V → W (the first map being symmetrization), andrD is the
normalized Ricci curvatureof the Weyl connection, which is a covector-valued 1-form onM constructed
from the curvature of the Weyl connection. For present purposes, all we need to know aboutrD is its
dependence onD: ∂γ rD = −Dγ .

Now compare this with the variation of the second derivative:

∂γ D2
X,Y s = [γ,X] · DY s − D[γ,X]·Y s + DX

([γ,Y ] · s) − [γ,DXY ] · s
= [DXγ,Y ] · s + [γ,X] · DY s + [γ,Y ] · DXs − D[γ,X]·Y s.

This formula means that we can use the Ricci curvature to make the second derivativealgebraicin D.
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Definition. TheRicci-corrected second derivativeon sectionss of an associated bundleV is defined by
D

(2)
X,Y s = D2

X,Y s + [rD(X),Y ] · s.

Hence∂γ D(2)s = γ ∗1 Ds where

(γ ∗1 φ)X,Y = [γ,X] · φY + [γ,Y ] · φX − φ[γ,X]·Y
= ([γ,X] · φ)

Y
+ [γ,Y ] · φX.

It is now a purely algebraic matter to find projectionsπ such thatπ(D(2)s) is a conformal invarian
of s. As it turns out, these projections often have the property thatπ([rD(·), ·] · s) = π(rD ⊗ s). The
simplest example is the conformal hessian sym0 D(2)s = sym0(D

2s + rDs) wheres is a section of the
weight 1 line bundleL.

The same ideas apply to higher order operators: we want to write these operators asπ ◦ D(k) for some
projections induced by an equivariant map(⊗k

R
n∗) ⊗ V → Sk

R
n∗ ⊗ V → W, whereD(k) is a Ricci-

correctedkth power of the Weyl connection. Again we make the observation that if∂γ (π ◦ D(k)) = 0
thenπ ◦ D(k) must certainly be algebraic inD, and we can in fact arrange forD(k) itself to be algebraic
in D.

Definition. The Ricci-corrected powers of the Weyl connectionon an associated bundleV are defined
inductively byD(0)s = s, D(1)s = Ds and

ιXD(k+1)s = DXD(k)s + rD(X) ∗1 D(k−1)s,

where

(γ ∗1 φ)X1,...,Xk
=

k∑
j=1

([γ,Xi] · φX1,...,Xi−1

)
Xi+1,...,Xk

.

A calculation shows that∂γ D(k)s = γ ∗1 D(k−1)s.

The inductive formula can easily be summed to give

D(k) =
∑

�+m=k

∑
1�i1<···<i��m

Dm−i� ◦ (
rD(·)∗1

) ◦ Di�−i�−1−1 ◦ · · ·

◦ (
rD(·)∗1

) ◦ Di2−i1−1 ◦ (
rD(·)∗1

) ◦ Di1−1.

Thus the search for explicit invariant operators reduces to an algebraic problem, and we shall fi
a large class of projectionsπ annihilatingγ ∗1 D(k−1)s produce universal numbers when applied to
terms ofD(k), essentially because the actionγ ∗1 on (⊗jT ∗M) ⊗ V for j < k is closely related to the
action on(⊗kT ∗M) ⊗ V .

This theory of Ricci-corrected derivatives in conformal geometry was developed over severa
by the first two authors, and described, in part, in[18]. In the homogeneous case, i.e., onSn, the second
author explained the actionγ ∗1 in terms of the second order part of the action of a conformal
tor field on sections of a homogeneous vector bundle[18]. It became clear however, that there wa
systematic underlying principle behind these formulae, even in the curved case, which should a
eralize to arbitrary parabolic geometries. More precisely, the actionγ ∗1 is related to part of the actio
of the nilradical of the parabolic subalgebrap on certainsemiholonomic jet moduleŝJ k

V associated to
0
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a moduleV [20,30]. This action is considerably more complicated in general than it is in the co
mal case, and we are forced to consider the representation theory of the entire parabolic subgP ,
not just its Levi factorP0 as we did in the conformal case (whereP0 = CO(n) andP = CO(n) � R

n∗).
Hence we must work withP -modulesV, and the corresponding vector bundlesV are associated t
a larger principalP -bundle, which in the conformal case is the Cartan bundle with its normal C
connection. This development ultimately provides a simple conceptual explanation for the formu
obtain.

The structure of the paper is as follows. We begin by defining Cartan geometries and invarian
entiation in Section1: this is a standard way to treat parabolic geometries[8,10,30], although in practice
a geometry is defined by more primitive data, which must be differentiated to obtain the Cartan c
tion [11]. The key point is that a Cartan connection determines semiholonomic jet operators taking
in bundles associated to semiholonomic jet modules.

In Sections2–3 we begin the study of parabolic geometries and Weyl structures. We adopt a
approach to Weyl structures (which we relate to the approach ofČap and Slovak[12] in Appendix A)
in order to emphasise the relationship between the geometry of Weyl structures and some ele
representation theory which we exploit throughout our treatment. At the algebraic level, a Weyl
ture is a lift ε of a certain ‘grading element’ε0 in the Levi factorp0 to the parabolic Lie algebrap.
The grading element induces a filtration of aP -moduleV and a lift ε splits this filtration, i.e., deter
mines an isomorphismεV of V with its associated graded module grV. Geometric Weyl structures fo
parabolic geometries are given simply by applying the same procedure pointwise on the underlyin
ifold: a geometric Weyl structureE then determines a splittingEV :V → grV of any associated filtere
P -bundleV . Now if V is a filteredP -bundle, so is its semiholonomick-jet bundleĴ kV , and splitting
this bundle allows us to project out Ricci corrected derivatives as components of thek-jet. This sim-
ple construction, which we present in Section4, makes Ricci corrected differentiation easy to stu
from a theoretical point of view. On the other hand, it is also easily related to covariant different
explicit formulae are obtained as soon as one understands the action of the nilradical ofp on jet mod-
ules.

In Section5, we pave the way for the construction of invariant operators by studying special
of projections from jet modules, which have the effect of killing most of the complicated terms
jet module action. For irreducible modules, the remaining terms of the jet module action reduce
projection of a scalar action, which we compute using Casimirs. In Section6 we give our construc
tion of a large class of invariant operators, and write out the formulae for operators up to or
We illustrate the scope of the constructions in Section7 and give some examples in conformal geo
etry.

Finally let us mention further potential applications of Ricci-corrected differentiation. Althoug
this paper we have applied Ricci-corrected derivatives to the construction of invariantlinear differential
operators, the same ideas can be expected to yield explicit formulae for multilinear differential ope
such as the operators of[8]. Indeed, this was our original motivation to study Ricci-corrected differen
tion in conformal geometry: one approach to construct (say) bilinear differential operators is to co
terms constructed from pairs ofnoninvariantlinear differential operators; to do this one needs noninv
ant operators which nevertheless depend on the choice of Weyl structure in a simple way—pro
of Ricci-corrected derivatives onto irreducible components have this property.
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1. Invariant derivatives in Cartan geometry

Parabolic geometries are geometries modelled on a generalized flag varietyG/P , i.e.,G is a semisim-
ple Lie group andP is a parabolic subgroup. A standard way to define ‘curved versions’ of homoge
spaces is as Cartan geometries. In this section, we recall the basic calculus of such geometries
ing [8,10,20,29,30].

Fix a Lie algebrag with a Lie groupP acting by automorphisms such thatp is a P -equivariant
subalgebra ofg, and the derivative of theP -action ong is the adjoint action ofp on g. (These technica
conditions are simply those that arise whenP is a subgroup of a Lie groupG with Lie algebrag.)

Definition 1.1. Let M be a manifold with dimension dimM = dimg − dimp. A Cartan connection
of type (g,P ) on M is a principalP -bundleπ :G → M , together with aP -invariantg-valued 1-form
θ :T G → g such that for eachy ∈ G, θy :TyG → g is an isomorphism which sends each generatorζξ of the
P -action to the correspondingξ ∈ p, i.e.,ζξ,y = θ−1

y (ξ). HereP -invariance means that Ad(p) · r∗
pθ = θ

for anyp ∈ P , whererp denotes the rightP -action onG. We refer to(M,G, θ) as aCartan geometry.

Note that Cartan connections form anopen subsetof an affine space modelled on the space of horiz
tal P -invariantg-valued 1-forms. However, one can freely add horizontalP -invariantp-valued1-forms
to a Cartan connection, without losing invertibility.

Associated to anyP -moduleV is a vector bundleV = G ×P V, defined to be the quotient ofG × V

by the action(y, v) �→ (yp−1,p · v). This induces an action(p · f )(y) = p · f (yp) on functionsf ∈
C∞(G,V) which identifies sectionsϕ of V = G ×P V overM with P -invariant functionsf :G → V:

C∞(M,V ) = C∞(G,V)P .

Similarly P -invariant horizontalV-valued forms onG are identified with forms onM with values inV .
In particular the 1-formT G → g/p induced by the Cartan connectionθ is P -invariant and horizontal
corresponding to a bundle mapT M → G ×P g/p. The open condition on the Cartan connection me
that this is an isomorphism and henceforth we identifyT M with G ×P g/p in this way. We letgM =
G ×P g and observe that there is a surjective bundle map fromgM to T M , with kernelpM = G ×P p.

Cartan connections do not in general induce covariant derivatives on associated bundles, but t
way of differentiating sections of such bundles usinggM instead ofT M .

Definition 1.2. Let (G, θ) be a Cartan connection of type(g,P ) on M , and letV be aP -module with
associated vector bundleV = G ×P V. Then the linear map defined by

∇θ :C∞(G,V) → C∞(G,g∗ ⊗ V),

∇θ
ξ f = df

(
θ−1(ξ)

)
(for all ξ in g) is P -equivariant. The restriction to C∞(G,V)P , or equivalently the induced linear ma
∇θ :C∞(M,V ) → C∞(M,g∗

M ⊗ V ), is called theinvariant derivativeonV .

ThecurvatureK :∧2T G → g of a Cartan geometry is defined by

K(X,Y ) = dθ(X,Y ) + [
θ(X), θ(Y )

]
.
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It induces a curvature functionκ :G → ∧2g∗ ⊗ g via

κy(ξ,χ) = Ky

(
θ−1(ξ), θ−1(χ)

) = [ξ,χ ] − θy

[
θ−1(ξ), θ−1(χ)

]
,

wherey ∈ G and the latter bracket is the Lie bracket of vector fields onG.
The p-invariance ofχ �→ θ−1(χ) for χ ∈ g means that[θ−1(ξ), θ−1(χ)] = θ−1[ξ,χ ] for any ξ ∈ p,

and hence thatκ(ξ, ·) = 0 for ξ ∈ p so thatκ ∈ C∞(G,∧2(g/p)∗ ⊗ g)P . In other wordsK is a horizontal
2-form and inducesKM ∈ C∞(M,∧2T ∗M ⊗ gM).

Lemma 1.3. Let (G, θ) be a Cartan geometry of type(g,P ) onM .

(i) For f ∈ C∞(G,V)P , we have(∇θ
ξ f )(y) + ξ · (f (y)) = 0 for all ξ ∈ p andy ∈ G.

(ii) We also have∇θ
ξ (∇θ

χf ) − ∇θ
χ (∇θ

ξ f ) = ∇θ
[ξ,χ]f − ∇θ

κ(ξ,χ)f for all ξ,χ ∈ p.

Proof. (i) Differentiate theP -invariance conditionp · (f (yp)) = f (y).
(ii) Both sides are equal todf ([θ−1(ξ), θ−1(χ)]). �
These facts enable us to define a semiholonomic jet operatorĵ k

θ identifying the semiholonomic je
bundleĴ kV with an associated bundleG ×P Ĵ k

0 V [8,13,30]. Recall that the semiholonomic jet bundl
are defined inductively bŷJ 1V = J 1V andĴ k+1V is the subbundle ofJ 1Ĵ kV on which the two natura
maps toJ 1Ĵ k−1V agree. The advantage of semiholonomic jets is that they depend only on the
functor, the natural transformationJ 1V → V and some abstract nonsense.

Proposition 1.4. Let (G, θ) be a Cartan geometry of type(g,P ) onM andV a P -module.

(i) The mapj1
θ :C∞(M,V ) → C∞(M,V ⊕(g∗

M ⊗V )) sendingϕ to (ϕ,∇θϕ) defines an injective bundl
map, from the1-jet bundleJ 1V toV ⊕(g∗

M ⊗V ), whose image isG×P J 1
0 V whereJ 1

0 V = {(φ0, φ1) ∈
V ⊕ (g∗ ⊗ V): φ1(ξ) + ξ · φ0 = 0 for all ξ ∈ p}.

(ii) Similarly the mapĵ k
θ sending a sectionϕ to (ϕ,∇θϕ, (∇θ )2ϕ, . . . , (∇θ )kϕ) defines an isomorphism

between the semiholonomic jet bundleĴ kV and the subbundleG ×P Ĵ k
0 V of

⊕k
j=0((⊗jg∗

M) ⊗ V ),

whereĴ k
0 V is the set of all(φ0, φ1, . . . , φk) in

⊕k
j=0((⊗jg∗) ⊗ V) satisfying(for 1 � i < j � k) the

equations

φj (ξ1, . . . , ξi, ξi+1, . . . , ξj ) − φj(ξ1, . . . , ξi+1, ξi, . . . , ξj ) = φj−1
(
ξ1, . . . , [ξi, ξi+1], . . . , ξj

)
,

φi(ξ1, . . . , ξi) + ξi · (φi−1(ξ1, . . . , ξi−1)
) = 0

for all ξ1, . . . , ξj ∈ g with ξi ∈ p.

Proof. (i) Certainly the map on smooth sections only depends on the 1-jet at each point, and it is in
since the symbol of∇θ is the inclusionT ∗M ⊗V → g∗

M ⊗V . It maps intoG×P J 1
0 V by vertical triviality,

but this has the same rank asJ 1V .
(ii) Similar: the equations are those given by the vertical triviality and the Ricci identity, beari

mind thatκ is horizontal. The (semiholonomic) symbols of the iterated invariant derivatives are still
by inclusions(⊗jT ∗M) ⊗ V → (⊗jg∗

M) ⊗ V . �
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2. Parabolic subalgebras and algebraic Weyl structures

Parabolic geometries are Cartan geometries of type(g,P ) whereg is semisimple and the Lie algeb
p of P is a parabolic subalgebra. In this section we develop a few basic facts about parabolic suba
and their representations, emphasising the relation between filtered and graded modules. The ke
of parabolic subalgebras is the presence of ‘algebraic Weyl structures’ which split filtered module
splittings, carried out pointwise, equip parabolic geometries with covariant derivatives on ass
bundles.

A parabolic subalgebra of a semisimple Lie algebra is a subalgebra containing a Borel (i.e., m
solvable) subalgebra. However, to keep our treatment as self-contained as possible, with minima
structure theory, we find the following equivalent and elementary definition more convenient. W
to [4,12,30]for an alternative approach.

Definition 2.1. Let g be a semisimple Lie algebra. For a subspaceu of g we let u⊥ be the orthogona
subspace with respect to the Killing form(· , ·). Then a subalgebrap of g is parabolic iff p⊥ is the
nilradical of p, i.e., its maximal nilpotent ideal. It follows that the quotientp0 := p/p⊥ is a reductive Lie
algebra, called theLevi factor.

Let p⊥, (p⊥)2 = [p⊥,p⊥], . . . , (p⊥)j+1 = [p⊥, (p⊥)j ], . . . be the descending central series ofp⊥. Since
p⊥ is nilpotent there is an integerk � 0, called thedepthof p, such that(p⊥)k+1 = 0 but(p⊥)k �= 0. Thus
p⊥ has ak-step filtration (k = 0 is the trivial casep⊥ = 0 andp = g). We obtain from this a filtration ofg
by settingg(−j) = (p⊥)j andg(j−1) = g⊥

(−j) for j � 1 so that

g = g(k) ⊃ g(k−1) ⊃ · · · ⊃ g(1) ⊃ g(0) = p ⊃ p⊥ = g(−1) ⊃ · · · ⊃ g(−k) ⊃ g(−k−1) = 0.

It is easily verified that[g(i),g(j)] ⊆ g(i+j), so thatg is a filtered Lie algebra. The associated graded
algebra is grg = ⊕k

j=−k gj wheregj = g(j)/g(j−1) and is said to be|k|-graded. Note in particular tha
p0 = g0.

An important fact about parabolic subalgebras is that this filtration ofg is split.

Lemma 2.2. There are(non-canonical) splittings of the exact sequences

(2.1)0 → g(j−1) → g(j) → gj → 0

which induce a Lie algebra isomorphism betweeng andgrg.

Proof. Any semisimple Lie algebra admits a Cartan involution, i.e., an automorphismσ :g → g such
thatσ 2 = id andh(ξ,χ) := (σ (ξ),χ) is positive definite. We split(2.1)for eachj by identifyinggj with
the h-orthogonal complement tog(j−1) in g(j). Supposeξ ∈ g(i) is h-orthogonal tog(i−1), i.e., σ(ξ) ∈
g⊥

(i−1) = g(−i), andχ ∈ g(j) is h-orthogonal tog(j−1). Then[ξ,χ ] ∈ g(i+j) andσ [ξ,χ ] = [σ(ξ), σ (χ)] ∈
g(−i−j) so [ξ,χ ] is h-orthogonal tog(i+j−1). Hence the splittings defined byσ induce a Lie algebra
isomorphism. �

We refer to such a splitting ofg as analgebraic Weyl structure: it is not unique, but we can obtain ve
good control over the possible splittings thanks to the following.
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Lemma 2.3. There is a unique elementε0 in the centre ofp0 = p/p⊥ such that[ε0, ξ ] = jξ for all ξ ∈ gj

and all j .

Proof. Since grg is semisimple, the derivation defined byξ �→ jξ for ξ ∈ gj must be inner, i.e., equa
adε0 for ε0 ∈ grg (which is unique sinceZ(g) = 0). Now [ε0, ε0] = 0 and[ε0, ξ ] = 0 for all ξ ∈ g0, soε0

is in the centre ofg0 = p0. �
Definition 2.4. The elementε0 is called thegrading element. Let w = {ε ∈ p: π0(ε) = ε0} be the set of
all lifts of ε0 to p with respect to the exact sequence

(2.2)0 → p⊥ → p
π0→ p0 → 0.

The elements ofw are precisely the algebraic Weyl structures: the isomorphism ofg with grg is
given by the eigenspace decomposition of adε for a lift of ε0 to ε ∈ p ⊆ g. The space of algebraic We
structures is thereforew, an affine space modelled onp⊥.

Let P be a Lie group acting ong with Lie algebrap as in the previous section, and suppose addition
that the quotient groupP0 = P/expp⊥ stabilizesε0 ∈ p0 (which is automatic ifP0 is connected) so tha
the adjoint action ofP onp preservesw.

Lemma 2.5. expp⊥ � P acts freely and transitively onw.

Proof. If γ ∈ p⊥, (Adexpγ )ε = exp(adγ )ε = ε +[γ, ε]+ · · · . The result follows because adγ is nilpo-
tent onp, andγ �→ [γ, ε] is a bijection onp⊥. �

The stabilizer ofε is thus a subgroup ofP projecting isomorphically ontoP0, so that an algebrai
Weyl structure splits the quotient group homomorphismπ0 :P → P0.

The fundamental vector fieldsζγ (γ ∈ p⊥) generating the action of expp⊥ onw give rise to a Maurer–
Cartan formη :T w → p⊥ with η(ζγ ) = γ . If we identifyT w with w×p⊥ using the affine space structu
thenζγ,ε = [γ, ε], soηε is the inverse ofγ �→ [γ, ε] onp⊥.

2.1. Filtered and graded modules

We say that aP0-module issemisimpleif it is completely reducible and the grading elementε0 acts
by a scalar on irreducible components (the latter condition is automatic for complex modules
eigenvalues ofε0 will be called thegeometric weightsof the module.

There is a one to one correspondence betweenP0-modules andP -modules on which expp⊥ acts
trivially. We say such aP -module is semisimple if the correspondingP0-module is. More generally, w
shall considerP -modulesV with aP -invariant filtration

(2.3)V = V(λ) ⊃ V(λ−1) ⊃ V(λ−2) ⊃ · · · ⊃ V(λ−�) ⊃ 0

(for a scalarλ and an integer�) such that the associated graded module grV is a semisimpleP -module
graded by geometric weight. We refer to such modules asfilteredP -modules. We extend the definition
in a straightforward way to direct sums of such modules.

An algebraic Weyl structureε splits any filteredP -moduleV into the eigenspaces ofε, giving a vec-
tor space isomorphismε :V → grV. This isomorphism is notP -equivariant (though it is tautologicall
V
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P0-equivariant using the splitting ofπ0 :P → P0 defined byε). However, by the naturality of the con
struction, the mapε �→ εV is P -equivariant. More precisely, if̃ε = (Adp)ε is any other algebraic Wey
structure (withp ∈ P ), then

(2.4)ε̃V(v) = p · εV(p−1 · v).

In particular, if p ∈ expp⊥, we haveε̃V = εV ◦ (q−1 · ). Since the action of expp⊥ on w is free and
transitive, this dependence implies that if we have a smooth familyε = ε(s) of algebraic Weyl structure
thendεV(X)(v) = −εV(η(dε(X)) · v).

Lemma 2.6. For a smooth mapε :S → w and a filteredP -moduleV, theEndV-valued1-form ε−1
V

dεV

onS is given by the natural action of−ε∗η on V.

2.2. The tangent module

We end this section by considering the modulem := g/p, which is the filteredP -module dual top⊥.
More precisely, the Killing form ofg gives a nondegenerate pairing betweeng/p andp⊥, which will
also be denoted bym∗. This duality depends on the normalization of the Killing form, which we do
specify at present.

We have seen thatg is a filteredP -module, withm andm∗ as quotient and sub- modules respectiv
The associated graded modules grm and grm∗ are graded nilpotent subalgebras of grg. In particular, as
semisimpleP -modules, grg = grm⊕p0 ⊕grm∗, although the Lie bracket is not compatible with this
rect sum decomposition. An algebraic Weyl structureε therefore determines a vector space isomorph
ε• :m ⊕ p0 ⊕ m∗ → g.

Observe thatf := g1 is the lowest geometric weight subspace of grm, and so is aP -submodule ofm;
the dualf∗ is naturally a quotientP -module ofp⊥ = m∗.

3. Parabolic geometries and Weyl structures

Definition 3.1. A parabolic geometryonM is a Cartan geometry(G, θ) of type(g,P ) with g semisimple
andp parabolic, satisfying the conditions of the previous two sections.

We defineG0 to be the principalP0-bundleG/expp⊥ and we letπ0 also denote the projectionG → G0,
so thatπ0(yp) = π0(y)π0(p) for y ∈ G andp ∈ P .

The tangent bundleT M = G ×P m has a natural filtration induced by the filtration ofm, the smalles
nontrivial distribution in the filtration beingfM = G ×P f. The cotangent bundleT ∗M = G ×P m∗ =
G ×P p⊥ is a bundle of nilpotent Lie algebras, the nilradical bundle ofpM = G ×P p. The quotient
pM/T ∗M is a reductive Lie algebra bundle, namelypM,0 := G ×P p0. Observe thatpM,0 has a canonica
grading sectionE0, induced by the grading elementε0 of p0, which isP -invariant.

Definition 3.2. Let (G, θ) be a parabolic geometry onM . Then a (geometric)Weyl structureE on M is
a smooth lift of the grading sectionE0 to a section ofpM .

Thus a Weyl structure amounts to a smooth choice of algebraic Weyl structure at each poin
algebraic Weyl structures form an affine space, a Weyl structure is a section of an affine bun
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bundle of Weyl geometrieswM = G ×P w. In particular, Weyl structures always exist, and form an af
space modelled on the space of 1-forms onM .

Remark 3.3 (Key observation). Any construction with algebraic Weyl structures can be carried out
geometric Weyl structures. We can either work with associated bundles or on the principal bundleG, and
both points of view are useful.

(i) If V = G ×P V is bundle associated to a filteredP -moduleV, with graded bundle grV = G ×P

grV = G0 ×P0 grV, then a Weyl structureE provides an isomorphismEV :V → grV , simply by
applying the construction of the previous section pointwise. We also obtain a bundle isomo
E• :T M ⊕ pM,0 ⊕ T ∗M → gM .

(ii) A Weyl structure may equally be regarded as aP -invariant functionE :G → w. For any filteredP -
moduleV, we then have aP -equivariant isomorphismEV :G × V → G × grV whose fibre aty ∈ G
is E(y)V; the induced isomorphism of associated bundles isEV . Similarly we get aP -equivariant
isomorphismE• :G × (m ⊕ p0 ⊕ m∗) → G × g inducingE•.

If we fix an algebraic Weyl structure then any geometric Weyl structure may be writtenE = (Adq)ε,
whereq :G → expp⊥ is P -invariant in the sense thatpq(yp)π0(p

−1) = q(y): hereP0 acts onP via the
lift defined byε. As we discuss inAppendix A, this allows us to relate our approach to Weyl structu
to the original approach of̌Cap and Slovák[12].

4. Ricci-corrected Weyl differentiation

The main difficulty in the study of invariant differential operators on parabolic geometries is
there is no natural covariant derivative on associated bundles: we only have the invariant de
∇θ :C∞(M,V ) → C∞(M,g∗

M ⊗ V ) in general. There is no canonical projectiong∗
M → T ∗M ; equiv-

alently, the restriction mapg∗ → m∗ = p⊥ is notP -equivariant.
Weyl structures provide two solutions to this problem, one well known (Weyl connections), the

implicitly known (and closely related to the ‘conformal derivation’ of Wünch[33]), but not properly
formalized (Ricci-corrected Weyl connections). In our theory, both can be defined straightforwardly
Remark 3.3(i).

Definition 4.1. Let (G → M,θ) be a parabolic geometry andE be a Weyl structure onM . Let V =
G ×P V be a filteredP -bundle (i.e., associated to a filteredP -module).

(i) The Ricci-corrected Weyl connectionD(1) :C∞(M,V ) → C∞(M,T ∗M ⊗ V ) is given byD
(1)
X ϕ =

∇θ
E•Xϕ for all vector fieldsX and sectionsϕ of V . In other wordsD(1) obtained by restricting the invarian

derivative to tangent vectors using the isomorphismE• :T M ⊕ pM ⊕ T ∗M → gM induced byE.
(ii) The Weyl connectionD :C∞(M,V ) → C∞(M,T ∗M ⊗ V ) is Dϕ = E−1

V D(1)(EV ϕ), i.e., the con-
nection onV induced byD(1) on grV via the isomorphismEV :V → grV .

By definition,D(1) andD agree on bundles associated to semisimpleP -modules (when expp⊥ acts
trivially and V and grV are canonically isomorphic). In the notation we suppress their dependen
the Weyl structureE. A priori they also depend on the chosenP -moduleV. This latter dependence
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straightforward as they are associated to principalP -connections. To see this, we use the isomorph
E• :G × (m ⊕ p0 ⊕ m∗) → G × g defined by the Weyl structure to decompose the Cartan conne
θ :T G → g as

(4.1)θ = E•θm + θp, θp = E•θp0 + θm∗,

whereθm := (θ modp) :T G → m is the solder form, induced by projectingθ ontom = g/p and similarly
θp0 := (θp modp⊥) :T G → p0 = p/p⊥. Thus

(4.2)E−1
• ◦ θ = θm + θp0 + θm∗

and we can write thep-part conceptually as

(4.3)θp := (E•θp0 − E∗η) + (θm∗ + E∗η),

whereη is the Maurer–Cartan form onw. This leads to the following proposition.

Proposition 4.2. Let (G → M,θ) be a parabolic geometry with Weyl structureE. Then:

(i) θp is a principalP -connection onG inducingD(1) on associated bundles;
(ii) θE = E•θp0 − E∗η is a principalP -connection onG inducingD on associated bundles;

(iii) ρ = θm∗ +E∗η is a horizontal,P -invariantp⊥-valued1-form onG; if rD is the inducedT ∗M-valued
1-form onM and · is the natural action ofT ∗M = p⊥

M onV , then

(4.4)D
(1)
X ϕ = DXϕ + rD(X) · ϕ.

Proof. (i) Clearlyθp is P -invariant andp-valued, and so, sinceθ is a Cartan connection,θp is a principal
P -connection. LetX be a vector field andϕ a section ofV , and letχ :G → m andf :G → V be the
correspondingP -invariant functions. Since the identification ofT M with G ×P m is via the solder form
χ = θm(X̂) for anyP -invariant lift X̂ of X to G.

As aP -invariant function onG, D
(1)
X ϕ is then

∇θ
E•χf = ∇θ

E•θm(X̂)
f = ∇θ

θ(X̂)
f − ∇θ

θp(X̂)
f = df (X̂) + θp(X̂) · f,

which is precisely theP -invariant function onG corresponding to the covariant derivative ofϕ alongX

induced byθp.
(ii) We now mirror the construction ofD from D(1) on the principal bundle level, usingRemark 3.3(ii):

if V is a filteredP -module andf :G → V is P -invariant, corresponding to a sectionϕ of V = G ×P V,
thenDϕ corresponds to theP -invariant horizontal 1-form

E−1
V

(d + θp)(EVf ) = df + E•(θp0) · f + E−1
V

(dEV)f = df + θE · f
with θE = E•(θp0) − E∗η, by Lemma 2.6, as required.

(iii) This follows immediately becauseθp = θE + ρ. (One can also easily see directly thatE∗η + θm∗
is aP -invariantp⊥-valued horizontal 1-form onG.) �

In conformal geometryrD is thenormalized Ricci curvature(aka. theSchoutenor Rho tensor) of D.
This is the origin of the term Ricci-corrected Weyl connection.

We wish to see how the objects we have constructed depend on the choice of Weyl structure.
either do this onM , or for the correspondingP -invariant objects onG.
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Proposition 4.3. Let E and Ẽ = (Adq−1)E be Weyl structures, with q :M → G ×P expp⊥ (associated
to the adjoint action), and letV be a filteredP -bundle. ThenẼV = EV ◦ (q·).

This is immediate from Eq.(2.4). In practice it suffices to understand infinitesimal variations. Leqt

be a curve of sections ofpM with q0 = id and q̇0 = γ for a 1-formγ (equivalently aP -invariant func-
tion G → p⊥). Then for any objectF(E) depending onE, define(∂γ F )(E) to be thet-derivative of
F((Adq−1

t )E) at t = 0 (so that∂γ E = −γ ). By the fundamental theorem of calculus,F is indepen-
dent of the Weyl structure if and only if(∂γ F )(E) = 0 for all Weyl structuresE and all 1-formsγ .
Proposition 4.3implies that∂γ EV = EV ◦ (γ ·). It is now straightforward to differentiate the definition
D(1).

Proposition 4.4. For a Weyl structureE, a 1-form γ , and a vector fieldX, let [γ,X]EpM
= [γ,E•X] −

E•(γ · X). Then for any sectionϕ of a filteredP -moduleV ,

(4.5)∂γ D
(1)
X ϕ = [γ,X]EpM

· ϕ.

Proof. For X ∈ T M , ∂γ E•X = E•(γ · X) − [γ,E•X] = −[γ,X]EpM
. This is pM -valued (it is thepM

component of the Lie bracket[γ,X], where the lift ofX to gM and the projection topM are defined using
E), and so∂γ ∇θ

E•Xϕ = ∇θ
∂γ E•Xϕ = [γ,X]EpM

· ϕ. �
The Ricci-corrected first derivativeD(1) agrees with the Weyl connection on semisimple modu

Ricci corrections start to play a more important role when higher derivatives are considered, bec
modules are not semisimple. The following deceptively simple definition clearly generalizes the pr
definition ofD(1).

Definition 4.5. Let E be a Weyl structure. Then we define an isomorphism from

Ĵ k
θ V �

k⊕
j=0

(⊗jg∗
M) ⊗ V to Ĵ k

EV :=
k⊕

j=0

(⊗jT ∗M) ⊗ V

by sendingφ = (φ0, φ1, . . . , φk) to ψ = (ψ0,ψ1, . . . ,ψk) whereψj = (φj ◦ E•)|⊗j T M .
If ϕ ∈ C∞(M,V ), then the section of̂J k

EV corresponding tôjk
θ ϕ is denotedĵ k

Dϕ = (ϕ,D(1)ϕ,D(2)ϕ,

. . . ,D(k)ϕ). We callĵ k
D theWeyl jet operator, and its componentsD(j) theRicci-corrected powers of th

Weyl connection.

An alternative description of the Weyl jet operator is obtained from the obvious natural isomor
between gr̂J k

θ V and grĴ k
EV . Thenĵ k

D = E−1
[b]Ĵ k

EV
E[b]Ĵ k

θ V ĵ k
θ . It follows that

(4.6)∂γ ĵ k
Dϕ = E−1

Ĵ k
EV

EĴ k
θ V γ · ĵ k

θ ϕ − γ · E−1
Ĵ k
EV

EĴ k
θ V ĵ k

θ ϕ = γ ∗ ĵ k
Dϕ − γ · ĵ k

Dϕ,

where∗ is the action ofT ∗M on Ĵ k
EV induced by the isomorphismE−1

Ĵ k
EV

EĴ k
θ V with Ĵ k

θ V .

The computation of∗ is a straightforward exercise in algebra: it suffices to describe the jetφ̃ = γ · φ
for φ ∈ Ĵ k

0 V, γ ∈ p⊥, in terms of the elements̃ψ andψ of Ĵ k
ε V := ⊕k

j=0(⊗jm∗) ⊗ V corresponding to

φ̃ andφ using an algebraic Weyl structureε. Thisp-module structure on̂J k
V is computed in[12,30]: let
ε
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us sketch briefly the computation. We writeψ = (ψ0,ψ1, . . . ,ψk) with ψj ∈ (⊗jm∗) ⊗ V and similarly
for ψ̃ .

First, note that the existence of natural projectionsĴ k
0 V → Ĵ �

0 V (for k � �) implies that theψj

component contributes only tõψj+s for s � 0, independently ofk � j + s. We may therefore write
ψ̃� = (γ ∗ψ)� = ∑

j+s=� γ ∗s ψj for any� � k, whereγ ∗s ψj denotes the contribution fromψj . Clearly
γ ∗0 ψj = γ · ψj is the ordinary action ofp⊥ � p.

Secondly, observe that the natural inclusionsĴ k+1
0 V → J 1

0 Ĵ k
0 V mean that we can computeγ ∗s ψj

inductively using the definition ofJ 1
0 V. Recall that this consists of the pairs(φ0, φ1) in V ⊕ (g∗ ⊗ V)

with φ1(ξ)+ ξ ·φ0 = 0 for ξ ∈ p. The identification withV⊕ (m∗ ⊗V) is obtained by restrictingφ1 to m,
usingε. The inducedp-module structure onV⊕ (m∗ ⊗V) is given byξ · (φ0, φ1|m) = (ξ ·φ0, (ξ ·φ1)|m),
and one easily computes that(ξ ·φ1)|m = ξ · (φ1|m)+[ξ, ·]εp ·φ0, whereε is used to split the natural map
p → g → m. Therefore

γ ∗ (ψ0,ψ1) = (γ · ψ0, γ · ψ1 + γ ∗1 ψ0) with γ ∗1 ψ0 = [γ, ·]εp · ψ0.

(Applying this pointwise onM , we rederive Eq.(4.5).) Iterating this action we have

γ ∗s ψ0 = [[. . . [γ, ·]εp, . . .]εp, ·
]ε

p
· ψ0.

The formula forγ ∗s ψj is also computed inductively, by considering the action ofγ on J 1
0 Ĵ

j+s−1
0 V:

apply this action to(0, . . . ,0, φj ,0, . . . ,0) ∈ Ĵ
j+s−1
0 V to obtainγ ∗s ψj as them∗ ⊗ (⊗j+s−1m∗) ⊗ V

component with respect toε.
Passing from the algebra to associated bundles, we obtain the following result.

Proposition 4.6. The action ofγ ∈ T ∗M onψ ∈ Ĵ k
EV induced by the identification witĥJ k

θ V is given by

(γ ∗ ψ)� =
∑

j+s=�

γ ∗s ψj

where, if we suppose thatψj = A1 ⊗ · · · ⊗ Aj ⊗ v for Ai ∈ T ∗M andv ∈ V , we have

γ ∗0 ψj = γ · ψj,

γ ∗1 ψj =
∑

0�i�j

A1 ⊗ A2 ⊗ · · · ⊗ Ai ⊗ [γ, ·]EpM
· (Ai+1 ⊗ · · · ⊗ Aj ⊗ v),

γ ∗s ψj =
∑

0�i1�i2�···�is�j
a1,a2,...,as

A1 ⊗ · · · ⊗ Ai1 ⊗ ea1 ⊗ Ai1+1 ⊗ · · · ⊗ Ai2 ⊗ ea2 ⊗ Ai2+1 ⊗ · · ·

⊗ Ais−1 ⊗ eas−1 ⊗ Ais−1+1 ⊗ · · · ⊗ Ais ⊗ eas ⊗[[. . . [γ, ea1]EpM
, ea2]EpM

, . . . eas−1]EpM
, eas

]E

pM
· (Ais+1 ⊗ · · · ⊗ Aj ⊗ v).

In these formulaeea is a frame ofT M with dual frameea .

This action not only gives an explicit formula for∂γ ĵD: it also provides an explicit inductive formu
for the Ricci-corrected powersD(k) of the Weyl connectionD. Indeed, since the orderk+1 part ofj1

θ ĵ k
θ ϕ

is the same as that of̂jk+1
θ ϕ, we obtain:

ι D(k+1)ϕ = D D(k)ϕ + proj
(
rD(X) ∗ ĵ k ϕ

)

X X (⊗kT ∗M)⊗V D



D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149–175 163

class

eyl

nd

a
re
e as

in

e

ctoring

on
(4.7)= DXD(k)ϕ +
∑

j+s=k

rD(X) ∗s D(j)ϕ.

Explicit formulae for invariant differential operators will follow by computing projections ofD(k) using
this inductive expression and some representation theory.

5. Strongly invariant operators

5.1. Jet module homomorphisms

Our goal is to explain how Ricci-corrected Weyl differentiation leads to explicit formulae for a
of invariant differential operators. These are thestrongly invariantoperators of[15,16,20], defined as
follows. Let V andW beP -modules and letΦ : Ĵ k

0 V → W be aP -homomorphism. ThenΦ induces a
bundle mapF :G ×P Ĵ k

0 V → G ×P W, and hence an invariant differential operatorF ◦ ĵ k
θ from V to W .

In practice, suchP -homomorphisms are constructed by lifting aP0-homomorphism grΦ : gr Ĵ k
0 V →

grW using an algebraic Weyl structureε to giveΦε = ε−1
W

◦ grΦ ◦ εV. SinceΦ(Adq)εv = q · Φε(q
−1 · v),

it follows that Φ = Φε is a P -homomorphism if and only if it is independent of the algebraic W
structureε.

If we mirror this construction on associated bundles, for any Weyl structureE, a bundle map
grF : gr Ĵ kV → grW (associated to grΦ : gr Ĵ k

0 V → grW) induces a differential operatorE−1
W ◦ grF ◦

EĴkV ◦ ĵ k
θ from V to W , which will be invariant if it is independent of the choice of Weyl structureE. An

obvious sufficient condition is thatE−1
W ◦ grF ◦ EĴkV is independent of the choice of Weyl structure a

these are the strongly invariant operators. (The condition is not necessary becauseĵ k
θ ϕ will satisfy some

Bianchi identities not satisfied by general sections ofĴ kV .)
The method we shall adopt for constructing strongly invariant operators is to constructP -

homomorphismΦ : Ĵ k
ε V → W, inducing a bundle mapF : Ĵ k

EV → W and hence, for any Weyl structu
E, a differential operatorF ◦ ĵ k

D from V to W . SinceĴ k
ε V has the same associated graded modul

Ĵ k
0 V, it is straightforward to obtain conditions thatΦ induces aP -homomorphismĴ k

0 V → W, and hence
a strongly invariant operator. The expressionF ◦ ĵ k

D then gives an explicit formula for this operator
terms of a Weyl structure.

TheP -homomorphisms we construct here all factor through the projections

Ĵ k
ε V → ⊗km∗ ⊗ V → ⊗kf∗ ⊗ V,

where the second projection is induced by the restriction mapm∗ → f∗. Our first task is to apply thes
projections to the jet module action∗. Then we apply further projections(⊗kf∗) ⊗ V → W to obtain
theP -homomorphisms we seek. In geometric terms, operators obtained from homomorphisms fa
through these projections are given by applying a bundle map(⊗kf∗M)⊗V → W to the restriction ofD(k)

to ⊗kfM .

5.2. Restricting the jet module action

We first restrictγ ∗ ψ to f. For notational simplicity we give the result algebraically: the formulae
associated bundles easily follow.
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Proposition 5.1. SupposeV is a semisimpleP -module. Letπf denote the restriction maps⊗jm∗ → ⊗j f∗
and let ea , ea be dual bases forf, f∗. Then(γ ∗ ψ)� = ∑

j+s=� γ ∗s ψj , where for eachj we have,
supposingψj = A1 ⊗ · · · ⊗ Aj ⊗ v as before,

πf(γ ∗0 ψj) = 0,

πf(γ ∗1 ψj) =
∑

0�i�j

πf(A1 ⊗ A2 ⊗ · · · ⊗ Ai) ⊗ Ψ
(
γ ⊗ πf(Ai+1 ⊗ · · · ⊗ Aj ⊗ v)

)
,

πf(γ ∗s ψj ) =
∑

0�i1�i2�···�is�j
a1,a2,...,as−1

πf(A1 ⊗ · · · ⊗ Ai1) ⊗ ea1 ⊗ πf(Ai1+1 ⊗ · · · ⊗ Ai2) ⊗ ea2 ⊗ · · ·

⊗ eas−1 ⊗ πf(Ais−1+1 ⊗ · · · ⊗ Ais ) ⊗
Ψ

([
. . . [[γ, ea1]εp, ea2]εp, . . . eas−1

]ε

f∗ ⊗ πf(Ais+1 ⊗ · · · ⊗ Aj ⊗ v)
)
.

Here, for any semisimpleP -moduleṼ, we defineΨ : f∗ ⊗ Ṽ → f∗ ⊗ Ṽ by

(5.1)Ψ (A ⊗ ṽ)(χ) = [A,χ ] · ṽ
for χ ∈ f, which is well defined sincẽV is semisimple. In the above formulae for∗1 and ∗s , we have
Ṽ = (⊗j−if∗) ⊗ V and(⊗j−is f∗) ⊗ V respectively.

Proof. This is immediate from (the algebraic version of)Proposition 4.6, and the equality

πf

([[. . . [[γ, ea1]εp, ea2]εp, . . . eas−1]εp, eas

]ε

p
· (Ais+1 ⊗ · · · ⊗ Aj ⊗ v)

)
= [[. . . [[γ, ea1]εp, ea2]εp, . . . eas−1]εf∗, eas

]ε

p0
· (πf(Ais+1 ⊗ · · · ⊗ Aj) ⊗ v

)
,

which holds because the projection of the Lie bracketp⊥ ⊗ p⊥ → p⊥ → f∗ vanishes and the modu
(⊗j−is f∗) ⊗ V is semisimple. �

The formulae of this proposition may not seem simpler than the full formulae ofProposition 4.6, but
they are easier to handle, sinceΨ is an operator on semisimple modules.

5.3. Special types of projections

To progress further, we need to understand the map

Ψ : f∗ ⊗ V → f∗ ⊗ V, Ψ (A ⊗ v) =
∑

a

ea ⊗ ([A,ea] · v)
,

whereV is a semisimpleP -module andea andea are dual bases off andf∗ respectively. SinceΨ is a
P -homomorphism, it acts by a scalar on every irreducible component off∗ ⊗ V and these scalars ca
be computed explicitly using Casimirs. Note now that all weights of thep0-modulem∗ have multiplicity
one (they are just positive roots ofg). Hence results from[5,27,31]show that all irreducible componen
of m∗ ⊗ V are multiplicity free.

We can writef∗ ⊗ V as a sum of well-defined irreducibleP0-componentsVb. Consequently,(⊗2f∗) ⊗
V = f∗ ⊗ (

⊕
b1

Vb1) can be again written as a sum of invariant subspaces labelled by a couple(b1, b2)

of indices indicating that it is the isotypic component with labelb insidef∗ ⊗ V . Inductively, we get a
2 b1
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well defined decomposition of(⊗kf∗)⊗ V into P0-invariant subspaces labelled by pathsb = (b1, . . . , bk)

of indices showing their positions in consecutive decompositions. Note that the full isotypic comp
of (⊗kf∗) ⊗ V with labelbk is the direct sum of all subspacesVb labelled by pathsb ending withbk.

We now suppose that our componentVb is in thesymmetrictensor productSkf∗ ⊗ V.

Proposition 5.2. Letπ be a projection ofĴ k
ε V to an invariant subspace in(Skf∗ ⊗ V) ∩ Vb for someVb

in the decomposition described above. Then for any elementψ of Ĵ k
ε V, the only contribution toπ(γ ∗ψ)

is fromψk−1 and ifψ = A1 ⊗ · · · ⊗ Ak−1 ⊗ v we have

π(γ ∗ ψ) =
∑

0�i�k−1

π
(
A1 ⊗ A2 ⊗ · · · ⊗ Ai ⊗ Ψ

(
πf(γ ) ⊗ πf(Ai+1 ⊗ · · · ⊗ Ak−1 ⊗ v)

))
.

Proof. Note first thatπ(γ ∗ ψ) = ∑
j+s=k π(γ ∗s ψj ) and that thes = 0 term vanishes (sinceV is

semisimple). Hence it remains to show that the terms withs � 2 are zero. To do this is suffices to sho
that terms in whichΨ is applied to a Lie bracket are killed by the projection. Consider therefor
expression of the form∑

a

ea ⊗ Ψ
([γ, ea]εf∗ ⊗ v

)

and suppose we apply a projectionπ to (⊗2f∗) ⊗ V which factors throughS2f∗ ⊗ V and is of the form
π2 ◦ id ⊗π1 whereπ1 : f∗ ⊗V → V1 is a projection onto an isotypic component. SinceΨ acts by a scala
on such a component, the result is a multiple ofπ applied to∑

a

ea ⊗ [γ, ea]εf∗ ⊗ v.

The projectionπ factorizes through the symmetric product, so it suffices to note that(∑
a

ea ⊗ [γ, ea]εf∗
)

(χ1, χ2) = [γ,χ1]εf∗(χ2) = γ
([ε•χ1, ε•χ2] modp

)
,

which is clearly antisymmetric inχ1, χ2 ∈ f. The terms appearing in the action fors � 2 are all of this
form, with γ andv replaced by iterated brackets and suitable tensor products.�
5.4. Casimir computations

In this section we compute the eigenvalues ofΨ and hence prove thatΨ acts by a scalar on eac
isotypic component. This is the first point at which we need detailed information from represen
theory, so we set up the necessary notation[22].

Let g be a semisimple Lie algebra with complexificationgC. We choose a Cartan subalgebrahC in
gC, a set∆+ of positive roots, and its subsetS = {α1, . . . , αr} of simple roots. Using the Killing form
(· , ·), with any normalization, the fundamental weightsω1, . . . ,ωr are defined by(α∨

i , ωj ) = δij , where
α∨

i = 2αi/(αi, αi).
The dominant Weyl chamberC is given by linear combinations of fundamental weights with n

negative coefficients. Finite dimensional complex irreducible representations ofgC (as well as ofg) are
characterized by their highest weightsλ ∈ C, which lie in the weight lattice{∑λiωi : λi ∈ Z}. The cor-
responding representation will be denoted byV .
λ



166 D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149–175

ich can
tions of
l,

n. In
the fol-

can
ndowed

a
oot
ng in

eight
t

ts

s with
he
A reductive algebra is a direct sum of a commutative and a semisimple algebra (either of wh
be trivial). Its irreducible (complex) representations are tensor products of irreducible representa
the summands, where irreducible representations of a commutative Lie algebraa are one dimensiona
characterized by an element of Hom(a,C).

Remark 5.3. For simplicity, we focus on complex representations of the Lie algebras in questio
practice, we may well be more interested in real representations. For this, it is sufficient to use
lowing description: a real or quaternionic structure on a complexg-moduleV is a conjugate-linearg-map
J :V → V with J 2 = 1 or J 2 = −1 respectively. An irreducible real representation of a Lie algebra
be identified either with an irreducible complex representations, or with such a representation e
with a real or quaternionic structure. We note also that ifV is a complexg-module andU is a real
g-module with complexificationUc, thenU ⊗ V andU

c ⊗C V are equivalent as complex modules.

We now specialize to the situation whereg is a semisimple Lie algebra with parabolic subalgebrp

and Levi factorp0. The setS of simple roots forgC can be chosen in such a way that all positive r
spaces are contained inpC. This fixes an algebraic Weyl structure, and the positive root spaces lyi
pC

0 correspond to roots in the span of the subsetS0 of ‘uncrossed’ simple roots—we writeS = S× ∪S0 for
the decomposition into crossed and uncrossed simple roots. In this situation, we shall say that a wλ

(integral forg) is dominant forp, if its restriction tohC

ss = hC ∩ pC

0,ss is dominant forpC

0,ss . Such a weigh
specifies uniquely an irreducibleP -module.

Let us denote byδ the half sum of positive roots forgC and byδ0 the half sum of those positive roo
for gC for which the corresponding root space belongs togC

0 .

Proposition 5.4. Let Vλ be an irreducible representation ofp0 with highest weightλ ∈ (hC)∗. Let f∗ ⊗
Vλ = ⊕

µ∈A Vµ be the decomposition of the tensor product into the sum of isotypic component
highest weightµ and letπµ be the projection toVµ. Let δ denote the half sum of positive roots for t
Lie algebrag. Then

Ψ =
∑

cµπµ,

with

cµ = 1

2

(|µ + δ|2 − |λ + δ|2)
and |α|2 = (α,α). (Note thatΨ depends upon the normalization of the Killing form, since we used it to
identifyp⊥ with (g/p)∗, and hence the bracket off∗ with f depends on(· , ·).)
Proof. We first give a formula forΨ in terms of the Casimir operatorC of p0, as in[21,31]. Let Ei and
Ei be bases forp0 which are dual with respect to(· , ·). Then

Ψ (γ ⊗ v) =
∑

a

ea ⊗ [γ, ea] · v =
∑

i

[Ei, γ ] ⊗ Ei · v =
∑

i

[Ei, γ ] ⊗ Ei · v

and so

2Ψ (γ ⊗ v) =
∑

Ei · Ei · (γ ⊗ v) − γ ⊗
(∑

Ei · Ei · v
)

−
(∑

Ei · Ei · γ
)

⊗ v
i i i
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= C(γ ⊗ v) − γ ⊗ C(v) − C(γ ) ⊗ v.

It is well known that on an irreducible representation with highest weightλ, C acts by the scalar(λ,λ +
2δ0): with the definition ofδ0 above, this holds even thoughp0 is reductive rather than semisimple
see[31].

Let us writeS× = {βi : i = 1, . . . , r× � r} for the crossed simple roots ofg. We know that−βi are
precisely the highest weights of the irreducible componentsf∗i of theP0-modulef∗, so that the irreducible
components off∗i ⊗ Vλ have highest weights of the formλ − βi + γ , whereγ is an integral linear
combination of simple roots forpC

0 . Hence for any isotypic componentVµ there is ani so thatVµ is an
invariant subspace off∗i ⊗ Vλ.

Since the action of the Casimir depends only on the highest weight, we deduce, following[31], that
Ψ acts on the entire isotypic componentVµ by the scalar

c = 1

2

[
(µ,µ + 2δ0) − (λ,λ + 2δ0) − (−βi,−βi + 2δ0)

]
.

It remains to identifyc with the constantcµ above. For any simple rootβ, we have

2(δ,β) = (
δ,2β/|β|2)|β|2 =

n∑
j=1

(ωj ,β
∨)|β|2 = |β|2.

Hence(µ,µ + 2δ0) − (λ,λ + 2δ0) − (−βi,−βi + 2δ0) is given by

(µ,µ + 2δ) − (λ,λ + 2δ) − 2(δ − δ0,µ − λ) − 2(βi, δ − δ0)

= |µ + δ|2 − |λ + δ|2 + 2(δ − δ0,−βi − µ + λ).

We know thatµ − λ is a weight off∗i , hence−βi − (µ − λ) = ∑
α∈S0

nαα. But for all α ∈ S0, we have
(α, δ − δ0) = 0, so the last term vanishes.�

6. Explicit constructions of invariant operators

In this section, we are going to construct a large class of invariant differential operators. Most o
belong to the class of standard regular operators, but a certain subclass are standard singular o
The class of operators constructed here does not cover all standard regular operators, but we sh
examples that it covers many of them.

Various special cases of the main results of this section can be found in[6,15,16,21,31].

Theorem 6.1. Let α ∈ (hC)∗ be a positive root withgα ⊂ f∗. In the case thatg has roots of differen
lengths, we shall suppose thatα is a long root. Letλ,µ be two integral dominant weights ofp0 with the
property

µ + δ = σα(λ + δ) = λ + δ − (λ + δ,α∨)α.

Interchangingλ andµ if necessary, suppose thatk := −(λ + δ,α∨) is positive.
(i) There is a unique irreducible componentVµ with highest weightµ in (⊗km∗) ⊗ Vλ. Furthermore,

V belongs toSkf∗ ⊗ V and is of the formV , whereV = V for b = (b , . . . , b ).
µ λ b bj λ+jα 1 k
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(ii) If π : Ĵ k
ε Vλ → Vµ is the corresponding projection, thenπ induces aP -homomorphismJ k

0 Vλ →
Vµ and hence a strongly invariant differential operatorπ ◦D(k) of orderk from sections ofVλ to sections
of Vµ.

Proof. (i) To prove uniqueness, let us note first that all weights ofm∗ are positive roots. Weights of⊗km∗
are hence sums ofk positive roots. The highest weight of any irreducible components of(⊗km∗) ⊗ Vλ

is of a formλ + β, whereβ is a weight of⊗km∗. The unicity claim is therefore true by the triang
inequality,α being a long root.

We now show that there is such a componentVµ. By assumption, bothλ andµ = λ + kα areP -
dominant, andjα is an extremal weight of�j f∗i for all j = 1, . . . , k. The so-called Parthasarathy–Ran
Rao–Varadarajan conjecture (proved in[28]) states that ifλ, ν are highest weights of two irreducib
(complex)p0-modulesVλ,Vν , and if α is an extremal weight ofVν , then an irreducible compone
Vλ+α with extremal weightλ + α will appear with multiplicity at least one inVλ ⊗C Vν . (In concrete
cases, more elementary arguments are available.) It follows that there is an irreducible compo
(�j f∗i ) ⊗ Vλ havingλ + jα as its highest weight. Hence necessarilyVµ ⊂ (�kf∗i ) ⊗ Vλ ⊂ Skf∗i ⊗ Vλ.
Furthermore, the same holds withλ replaced byλ + j ′α for all j ′ = 1, . . . , k − 1. Hence, by uniquenes
the projection factors through(�j f∗i ) ⊗ Vλ.

(ii) Let us prove now thatπ induces aP -homomorphism. The action ofm∗ onVµ is trivial, hence we
must show thatπ(γ ∗ ψ) vanishes for anyψ ∈ Ĵ k

ε Vλ and anyγ ∈ m∗.
Sinceπ is the projection to an irreducible piece ofSkf∗ ⊗ Vλ lying in a component of the formVb,

the action is given byProposition 5.2. Using the Casimir computation ofProposition 5.4, the projection
of the action byγ on an elementψ ∈ Ĵ k

V is given by

π(γ ∗ ψ) = cπ(γ ⊗ ψk−1)

with

2c =
k∑

j=1

(|λ + jα + δ|2 − |λ + (j − 1)α + δ|2) = |µ + δ|2 − |λ + δ|2,

which is zero becauseµ + δ = σα(λ + δ) andσα is an isometry. �
We turn now the formulae for these operators in terms of a Weyl structure. Explicit formulae f

coefficients of various curvature terms for standard operators were first found in the conformal c[3,
24], and later extended to the|1|-graded case[2,15]. A very surprising fact was that the formulae we
quite universal and did not depend on the specific parabolic structure or on the highest weight
representations involved. The general structure of coefficients described in[15] was quite complicated
Here we notice that the organization of the terms produced by the Ricci-corrected derivative le
much simpler coefficients. At the same time, the formulae are extended from the|1|-graded case to th
broad class of standard operators in all parabolic geometries with no extra complications: the form
operator depends only on its order.

Theorem 6.2. Let a positive integerk and a long rootα with gα ⊂ f∗ be given. Define differential opera
torsDk,j (of orderj = 0, . . . , k), acting on sections of any associated bundle, by the recurrence relation

(6.1)ιXDk,j+1 = DX ◦Dk,j + j (k − j)Γ (X) ⊗Dk,j−1
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with Dk,0 = id, Dk,1 = D. HereD be the covariant derivative given by the choice of the Weyl struc
andΓ = −1

2|α|2rD. LetDk = Dk,k. Then any invariant operator of orderk constructed inTheorem6.1,
mapping sections ofVλ to sections ofVµ, µ = λ + kα is given byπ ◦Dk whereπ is the projection onto
Vµ.

Proof. We know that the invariant operator is given byπ ◦ D(k) and we have given a recurrence formu
for D(k) in Section4. Hence we only have to compute the projection of the action ofrD on Sj f∗ ⊗ Vλ,
which is straightforward using the results of Sections5.2–5.4we find that the action is the tensor produ
with crD, where 2c = |λ + jα + δ|2 − |λ + δ|2.

Now, sincek = −(λ + δ,α∨), we have

2c = |λ + jα + δ|2 − |λ + δ|2 = (2λ + jα + 2δ, jα) = |α|2j (−k + j).

Substituting this into the projection of the recurrence formula forD(j+1) gives(6.1). �
Hence the universal nature of the explicit formulae for invariant operators arises from the fact tDk

only depends uponk. It is straightforward to computeDk for smallk. Omitting the tensor product sig
when tensoring withΓ j = Γ ⊗ · · · ⊗ Γ , we have

D1s = Ds,

D2s = D2s + Γ s,

D3s = D3s + 2D(Γ s) + 2Γ Ds,

D4s = D4s + 3D2(Γ s) + 4D(Γ Ds) + 3Γ D2s + 9Γ 2s,

D5s = D5s + 4D3(Γ s) + 6D2(Γ Ds) + 6D(Γ D2s) + 4Γ D3s

+ 24D(Γ 2s) + 16Γ D(Γ s) + 24Γ 2Ds,

D6s = D6s + 5D4(Γ s) + 8D3(Γ Ds) + 9D2(Γ D2s) + 8D(Γ D3s) + 5Γ D4s

+ 45D2(Γ 2s) + 40D(Γ D(Γ s)) + 25Γ D2(Γ s)

+ 64D(Γ 2Ds) + 40Γ D(Γ Ds) + 45Γ 2D2s + 225Γ 3s,

D7s = D7s + 6D5(Γ s) + 10D4(Γ Ds) + 12D3(Γ D2s)

+ 12D2(Γ D3s) + 10D(Γ D4s) + 6Γ D5s

+ 72D3(Γ 2s) + 72D2
(
Γ D(Γ s)

) + 120D2(Γ 2Ds) + 60D
(
Γ D2(Γ s)

)
+ 100D

(
Γ D(Γ Ds)

) + 36Γ D3(Γ s)

+ 60Γ D2(Γ Ds) + 120D(Γ 2D2s) + 72Γ D(Γ D2s) + 72Γ 2D3s

+ 720D(Γ 3s) + 432Γ D(Γ 2s) + 432Γ 2D(Γ s) + 720Γ 3Ds,

D8s = D8s + 7D6(Γ s) + 12D5(Γ Ds) + 15D4(Γ D2s)

+ 16D3(Γ D3s) + 15D2(Γ D4s) + 12D(Γ D5s) + 7Γ D6s

+ 105D4(Γ 2s) + 112D3
(
Γ D(Γ s)

) + 192D3(Γ 2Ds) + 105D2
(
Γ D2(Γ s)

)
+ 180D2

(
Γ D(Γ Ds)

) + 84D
(
Γ D3(Γ s)

) + 225D2(Γ 2D2s)

+ 144D
(
Γ D2(Γ s)

) + 49Γ D4(Γ s) + 84Γ D3(Γ Ds) + 180D
(
Γ D(Γ D2s)

)
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+ 105Γ D2(Γ D2s) + 192D(Γ 2D3s) + 112Γ D(Γ D3s) + 105Γ 2D4s

+ 1575D2(Γ 3s) + 1260D
(
Γ D(Γ 2s)

) + 1344D
(
Γ 2D(Γ s)

) + 735Γ D2(Γ 2s)

+ 2304D(Γ 3Ds) + 784Γ D
(
Γ D(Γ s)

)
+ 735Γ 2D2(Γ s) + 1344Γ D(Γ 2Ds) + 1260Γ 2D(Γ Ds) + 1575Γ 3D2s

+ 11025Γ 4s.

The combinatorics of the coefficients are simpler than in[15] and the numbers are generally smaller;
formulae there are obtained from those here by expanding the derivatives ofΓ using the product rule
Notice that the coefficients depend only on the position of theΓ ’s, and the coefficients of the nonline
terms inΓ are easily computed as products of the coefficients of the linear terms, as is clear fr
inductive definition of eachDk.

We are still free to choose the normalization of the Killing form(· , ·): since−1
2|α|2 is independen

of the long rootα, we could arrange that this is 1 andΓ = rD. This is the normalization that gives th
formulae stated in the introduction for the conformal case.

7. Scope of the construction

We now show that the class of operators constructed in the previous section includes many s
invariant operators, at least for the ‘large’ parabolic subgroups occuring in interesting examples. W
also show that in conformal geometry, the operators we construct include (at least in the conform
case) those coming from AdS/CFT correspondence for partially massless fields in string theory.

7.1. Lagrangian contact structure

Let us consider the case of a Lagrangian contact structure (see[9,30,32]). This is the real split case o
the complex parabolic algebra corresponding to the Dynkin diagram

(7.1). . .× • • ×α1 α2 αn αn+1
, n � 1.

The Lie group isG = PSL(n + 2,R) with Lie algebrag = sl(n + 2,R), grg being equipped with the
|2|-grading given by block matrices of size 1, n,1. Theg1 part decomposes further into a direct su
g1 = gL

1 ⊕ gR
1 of two irreducibles; theg2 part is one-dimensional.

In geometric terms, we have a contact structure on a real manifold of dimension 2n + 1 with a direct
sum decomposition of the contact distribution into two Lagrangian subbundles.

To be explicit, we consider the casen = 3, when the two irreducible components ofg−1 are three
dimensional. Let us denote roots corresponding to both bye1, e2, e3 andf1, f2, f3 respectively, ordere
so thate1, f1 are the highest weights forg1, considered as ap0-module, ande3, f3 are the lowest ones
Let g be the root corresponding tog .
−2
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The (labelled) Hasse diagram for standard operators is shown above. The labels on the arrows
the ‘directions’α for the corresponding operators. We have constructed all operators indicated
arrows, hence only the horizontal arrows are missing.

A similar diagram applies in CR geometry, this being another real form of Lagrangian contact
etry, except that some representations and operators become conjugate.

7.2. G2-case

For a more exotic example, let us consider the split real case of theG2 complex algebra. In this cas
the root system has 12 elements. If we denote simple roots byα1 (the longer one) andα2 (the shorter one)
then the set of positive roots is{α1, α2, α3, α4, α5, α6} with α3 = α1 + α2, α4 = α1 + 2α2, α5 = α1 + 3α2,
α6 = 2α1 + 3α2. Let us consider the case that the parabolic is a Borel (maximal solvable) subgr
G2. Then the associated graded algebra grg is |5|-graded with

g1 = R · {α1} ⊕ R · {α2}, g2 = R · {α3}, g3 = R · {α4},
g4 = R · {α5}, g5 = R · {α6}.

The (labelled) Hasse diagram then has the form

The operators constructed in Section6, indicated by full arrows, are now not so numerous.
There are two other parabolic subgroups ofG2 up to isomorphism, one inducing a|3|-grading, the

other a|2|-grading of the Lie algebra ofG . For the|3|-grading, all roots ing are short, and so n
2 1
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operators are constructed. For the|2|-grading, we have:

g1 = R · {α1} ⊕ R · {α3} ⊕ R · {α4} ⊕ R · {α5}, g2 = R · {α6}.
The Hasse graph in this case is

with approximately half of the operators constructed in Section6.

7.3. The conformal case

In the even-dimensional case,all operators in the BGG sequence are obtained by the construct
Section6, although there are nonstandard operators which are not. In the odd dimensional case
one arrow in the Hasse diagram which has a special character, as was already noted in[24]. In dimension
2n − 1, g = so(p, q,R) with p + q = 2n + 1 and a|1|-grading. We denote positive roots with ro
spaces included ing1 by ±α1, . . . ,±αn,αn+1, whereαn+1 is the short simple root. Suppose that the ro
α1, . . . , αn are ordered, i.e., thatα1 is the highest among them andαn is the smallest. Then the (labelle
Hasse diagram has the form

The middle operator is labelled by the only short root, hence the construction of Section6 does not apply
however, the other operators are all constructed.

7.4. AdS/CFT for partially massless fields

The operators constructed in the conformal case include some operators closely related
AdS/CFT correspondence for partially massless fields.

We recall that, besides massive or strictly massless fields, partially massless fields of higher sp
studied on vacuum Einstein manifolds with a cosmological constant[7]. In Dolan, Nappi and Witten[17],
the following situation was considered. LetM be an Einstein manifold asymptotic to anti-de Sitter sp
of dimension 4 and letX be its boundary with the induced conformal structure[26]. Then the AdS/CFT
correspondence[1] yields a correspondence between a partially massless fieldφ on M and a fieldL on
X, satisfying a certain conformally invariant equation (called a ‘partial conservation law’ in[17]).

In the case that the fieldL is a symmetric traceless tensor fieldLi1...,is , the equation is, to leading orde

∇i1 · · ·∇is−n
Li1...is + · · · = 0.

The source and the target for the equation are easily identified and the operator is the last op
the BGG sequence (described in Section7.3 in the odd dimensional case). Hence Section6 provides an
explicit formula for a conformally invariant operator of this form.

A detailed study of the cases = 2, n = 0 in [17] leads to the equation onRd

∇i∇jL
ij + 1

d − 2
RijL

ij = 0,

which agrees with the formula of Section6 since the tracefree parts of1 R andΓ agree.

n−2 ij



D.M.J. Calderbank et al. / Differential Geometry and its Applications 23 (2005) 149–175 173

e-
er

nt

sentation
l, there

struc-

t

n

The higher order equations with curvature corrections in Section6 are natural candidates for the corr
sponding higher order equations (the cases withs −n > 2) for the fieldL. As an example, let us consid
the cases = 3, n = 0, where we get

(7.2)∇i∇j∇kL
ijk + 2

d − 2

[∇i(RjkL
ijk) + Rjk∇iL

ijk
] = 0

for a traceless symmetric tensor field with three indices onR
d . (Of course, after expanding the covaria

derivatives using the Leibniz rule, we obtain the formulae already present in[15,24].) In the conformally
flat situation, this must be the equation arising from the AdS/CFT correspondence, because repre
theory shows that conformally invariant operators are unique up to a multiple in this case. In genera
may be conformally invariant curvature corrections in the lower order terms.
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Appendix A. Weyl structures as reductions

In this appendix we relate our approach to Weyl structures and the original approach ofČap and
Slovák[12], who define a Weyl structure to be aP0-equivariant sectionσ of π0 :G → G0. For this defin-
ition to make sense, an algebraic Weyl structureε must be fixed so thatπ0 :P → P0 is split.

By means of the equationyq(y) = σ(π0(y)) such a sectionσ is equivalent to aP -invariant trivial-
ization q :G → expp⊥ of the principal expp⊥-bundleπ0 :G → G0, where theP -invariance means tha
pq(yp)π0(p)−1 = q(y) for all p ∈ P,y ∈ G.

On the other hand, using the algebraic Weyl structureε, any geometric Weyl structure onM is given
by E = (Adq)ε for a uniqueP -invariantq :G → expp⊥. To summarize:

Proposition A.1. Let (G → M,θ) be a parabolic geometry and fix an algebraic Weyl structureε.
Then there is a natural bijection between Weyl structuresE on M and P0-equivariant sectionsσ of
π0 :G → G0.

In our development, we used the Weyl structureE to give aP -invariant direct sum decompositio
E• :G × m ⊕ p0 ⊕ m∗ → G × g and hence write

(A.1)E−1
• ◦ θ = θm + θp0 + θm∗ = θm + E−1

• ◦ θp = θm + E−1
• ◦ θE + ρ,

whereθp andθE are principalP -connections onG andρ is aP -invariantp⊥-valued horizontal 1-form
inducing the normalized Ricci curvaturerD. On the other hand, an algebraic Weyl structureε gives a
fixed direct sum decompositionε∗ :m ⊕ p0 ⊕ m∗ → g, related toE• by conjugating with the action ofq,
whereE = (Adq)ε.

Since the fixed decomposition is onlyP0-invariant,Čap and Slovák define theWeyl formto be the
pull backτ = σ ∗θ of θ to G0, then decomposeτ into a solder form, a principalP0-connection and a
P -invariantp⊥-valued 1-form. In our approach(A.1) is aP -invariant lift of this decomposition toG.
0
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Appendix B. Dependence of D and rD on the Weyl structure

In Eq. (4.5), we obtained the (infinitesimal) dependence of the Ricci-corrected Weyl connectioD(1)

on the Weyl structure. We now do the same for the Weyl connectionD and the normalized Ricci curvatu
rD (we do not need these results in the body of the paper, but include them for general interest).

Proposition B.1. For γ ∈ C∞(M,p⊥
M) andX ∈ T M , ∂γ rD(X) = −DXγ + [γ,X]Ep⊥

M
, whereX is lifted

to gM and the Lie bracket is projected ontop⊥
M usingE.

Proof. rD is thep⊥
M -valued 1-form onM induced byρ = E∗η + θm∗ , whereE∗ηy = ηE(y)dEy andθm∗

is shorthand for them∗ component(E−1• θ)m∗ . Viewing γ as aP -invariantp⊥-valued function onG with
∂γE = −γ , we easily compute that∂γ (E∗η) = −dγ − [γ,E∗η] and∂γ θm∗ = (E−1• [γ, θ ])m∗ − [γ, θm∗] =
[γ,E•θp0] + (E−1• [γ,E•θm])m∗ . Hence

∂γ ρ = −(
dγ − [E∗η, γ ] + [E•θp0, γ ]) + [γ, θm]E

p⊥

as required, sinceθE = −E∗η + E•θp0 is the principal connection inducingD. �
Proposition B.2. Let V be a filteredP -bundle andϕ a section ofV . Then forγ ∈ C∞(M,p⊥

M) and
X ∈ T M , ∂γ DXϕ = ([γ,X]EpM,0

+ DXγ ) · ϕ.

Proof. Dϕ = E−1
V D(1)(EV ϕ) and so∂γ DXϕ = E−1

V ([γ,X]EpM
· (EV ϕ)) + DX(γ · ϕ) − γ · DXϕ. As grV

is semisimple, the result follows.�
SinceD

(1)
X ϕ = DXϕ + rD(X) · ϕ, these computations are not independent: we check

∂γ (DXϕ + rD(X) · ϕ) = [γ,X]EpM,0
· ϕ + [γ,X]Ep⊥

M
· ϕ = [γ,X]EpM

· ϕ
in accordance with Eq.(4.5). Unlike D(1), the Weyl connectionD does not depend algebraically on t
Weyl structure. This, of course, was the whole reason for introducing Ricci corrections in the first p
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[13] A. Čap, J. Slovák, V. Soǔcek, Invariant operators on manifolds with almost hermitian symmetric structures, I. Inv

differentiation, Acta Math. Univ. Comenianae 66 (1997) 33–69.
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