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In the present paper the authors prove a thcorcm which asserts an interesting 
relationship between the classical Laplace transform, a certain class of Whittaker 
transforms, and a Weyl fractional integral involving a general class of polynomials 
with essentially arbitrary coefficients. By specializing the various parameters 
involved, this general theorem would readily yield several (known or new) results 
involving simpler integral operators. It is also shown how the relationship asserted 
by the theorem can be applied to evaluate the generalized Weyl fractional integrals 
of various special functions. (-* 19% Academic Press, Inc. 

1. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES 

Over two decades ago, Srivastava [ 141 considered an interesting unilka- 
tion of many familiar generalizations of the classical Laplace transform (cf., 
e.g., [27]; see also [S, Vol. I, Chaps. 4 and 51) 

Z{f(t): s} = Joe e-“f(t) df (1.1) 
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in the form: 

where W,,(z) denotes the Whittaker function of the second kind (cf. [26, 
p. 339, Sect. 16.12 et seq.]; see also [4, p. 264, Sect. 6.91). Since 

in terms of the modified Bessel function K,(z), the integral transform (1.2) 
contains each known generalization of the classical Laplace transform 
(l.l), involving the Bessel function K,,(z) or the Whittaker function W,,,(z) 
in the kernel. Furthermore, since 

W p+ 1,2, ?,(z) = z~+ 1’2e-Z’2 and Ki l,2 (z,=&z, (1.4) 

each of these generalizations would, in turn, reduce to the classical Laplace 
transform (1.1) upon suitably specializing the parameters q, K, p, p, and r~ 
occurring in Srivastava’s generalized Whittaker transform (1.2). For several 
interesting properties and characteristics of Srivastava’s transform (1.2), see 
the subsequent works by (for example) Srivastava and Vyas [21], 
Srivastava [15], Srivastava and Panda [19], Sinha [13], Munot and 
,Padmanabham [S], Tiwari and Ko [24], Rao [ 111, Malgonde and 
Saxena [7], Akhaury [ 11, and Carmichael and Pathak [2,3]. Of our 
concern here is merely the following particular case of (1.2) considered 
earlier by Varma [25]: 

K,p{.m : s> = ~1’~~#ld : 4 (1.5) 

which, in view of the first relationship in (1.4) would reduce immediately 
to the classical Laplace transform (1.1) upon setting tc = (l/2) -p- 

The main object of the present paper is to establish an interesting 
theorem which provides a useful relationship between the classical Laplace 
transform (l.l), the Varma (or special Whittaker) transform (1.5), and the 
generalized Weyl fractional integral defined by 

w;;;$ {f(t) : s) =$ j-,; (r - s)~‘- ’ s;[ztP(t - ~)~]fft) dt, (1.6) 

where SF[x] denotes a general class of polynomials introduced by 
Srivastava (cf. [16, p. 1, Eq. (l)]): 

s;[x] = y1 kp AH*,xi (n=O, 1, 2, . ..). (1.7) 
j=O 
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Here, and in what follows, (A), = f(A + v)/r(A), m is an arbitrary positive 
integer, and the coefftcients A,j (n, j 2 0) are arbitrary constants, real or 
complex (see also Srivastava and Singh [20] and Srivastava and 
Garg [ 171). 

For n=O and Ao,o= 1, (1.6) would reduce immediately to the familiar 
Weyl fractional integral (cf., e.g., [S, Vol. II, Chap. 131; see also [ 121). 
Moreover, (1.6) with p = cr corresponds to the one-dimensional case of the 
generalized Weyl fractional integral considered elsewhere by us [22]. 

The following result involving the classical Laplace transform will be 
required in our investigation (cf. [9, p. 24, Entry 3.221; see also [S, Vol. I, 
p. 139, Entry 4.3(22) with b = 01): 

~{t~(t+~)“:S}=~(C(+1)~(~+~Y)/2S-I-(~+~)/2eiS/2 

W+r),2, (1 +“+p),z(b) (1.8) 

(Re(s) > 0; Re(p) > - 1; 1 arg([)l < 71). 

Making use of (1.8) and the definition (1.7), it is fairly straightforward to 
deduce 

LEMMA 1. Let 

min { Re(s), Re(p + pj), Re(a)} > 0 

[n/m]; n = 0, 1, 2, . . . . m = 1, 2, 3, . ..). (j = 0, 1, . ..) 
(1.9) 

Suppose also that 1 arg([)l < rc. 
Then 

dp{ t”-‘(t + [)p fqztqt + 1)-“1 : s} 

= ,w ;gl ( -J;L qp + pj) A,,jzi[P(A ~ I/zs -B(i) ~ W 

’ wuCiL PC,,(~s)~ (1.10) 

where, for convenience, 

a(j)=1(1-cl-~-(p+o)j}, P(j)=i{p-n+(P-a)j}. (1.11) 

We shall also require two important properties of the classical Laplace 
transform (1.1). For the sake of ready reference, we recall these properties 
as Lemma 2 and Lemma 3 below. 

LEMMA 2 (cf., e.g., Erdelyi et al. [S, Vol. I, p. 129, Entry4.1(8)]). 
Suppose that the Laplace transform of each of the functions f (k’(t) 
(k = 0, 1, . ..) N) exist. Also let 

F(s)=Y{f(t):s}. (1.12) 

409.‘153.:2-8 
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Then 

N-I 

Lz{f’N’(t) : s} =sNF(s)- c sN-k-‘f(k)(0) 

k=O 

(1.13) 

for every nonnegative integer N, an empty sum being interpreted as zero. 

LEMMA 3 (The Parseval-Goldstein Theorem [6, p. 106, Eq. (S)]). Let 
F(s) be given by ( 1.12), and suppose that 

G(s)=Z{g(t):s}. (1.14) 

Then 

j-f(t) G(t) dt = j-= F(t) s(t) dt, 
0 0 

(1.15) 

provided that each integral involved is absolutely convergent. 

2. THE MAIN RESULT 

We begin by stating our main result contained in the following 

THEOREM. Under the hypotheses of Lemma 2, let 

f(O)=f'(O)= . . . =f'"-"(O)=o, (2.1) 

where N is a positive integer. Suppose that the hypothesis (1.9) of Lemma 1 
holds true, and let a(j) and /I(j) be defined by Eq. (1.11). 

Then 

w;;;;,“(tN-V(t) : s} 

(N=O, 1, 2, . ..). (2.2) 

providedfurther that each member of (2.2) exists. 

Proof. In view of the hypothesis (2.1), Lemma 2 immediately yields 

sNF(s)=~{f(N)(t):s} (N=O, 1, 2, . ..). (2.3) 

where F(s) is given by (1.12). 
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By appealing appropriately to Lemma 1, we also have 

Lqr”(t-T)~“S~[zt-“(t-T)“]H(t-T):s} 

. wzCi), Pain (T 2 01, (2.4) 

where H(t) denotes the Heaviside unit function, and a(j) and b(j) are 
given by Eq. (1.11). 

Now make use of the Laplace transform pairs (2.3) and (2.4) in 
Lemma 3, and we obtain 

t’-(f-~)~(-’ S;[zt-“(t-T)~] H(t-r)F(t)dz 

s 

cc 
= r(P + Pj) Att,jz" 

0 

e 42f(N)( t) y ( -p, 
/=o . 

.T~(‘)- 1’2t--B(j)- 1’2Wzc.i,,Bcjj(~t) dt, 

or, equivalently, 

t 
N-i.(t-~)“-l s;[zt-"(t-r)"] F(‘(t)dt 

[n/m 1 

= jgo ten)n7j (P)pj An,jf-: 

(2.5) 

(2.6) 

e -yTt) p(i’-“2 t-2B’jlf(N)(t) Wacj,,scj,(~‘) dt 

(N=O, 1, 2, . ..). 

provided that the integrals involved converge absolutely. 
The assertion (2.2) follows when we interpret this last result (2.6) by 

means of the definitions (1.5) and (1.6), and the proof of the theorem is 
thus completed. 

3. APPLICATIONS AND ILLUSTRATIVE EXAMPLES 

The relationship (2.2) asserted by the theorem can be suitably applied 
not only to deduce several (known or new) results connecting simpler 
integral operators, but also to evaluate the generalized Weyl fractional 
integrals of various special functions. First of all, setting A= ~7 = 0 in the 
theorem, and applying the first reduction formula in (1.4), we get 
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COROLLARY 1. Under the hypothesis (2.1) of the theorem, let F(s) be 
defined by Eq. ( 1.12). 

Then 

provided that each member of (3.1) exists. 

For N = 0, the assertion (2.2) immediately yields 

COROLLARY 2. Zf F(s) is defined by Eq. (1.12), and u(j) and p(j) are 
given by Eq. (1.1 1 ), then 

[n/ml 
W-;;$;,“{t-lF(t) :s} = c (-n), (/&j&j; 

j=O 

'~(j,,a(,,{t-2""'f(t) Is}, (3.2) 

provided that each member of (3.2) exists. 

Finally, upon setting 

n=O and A,,, = 1 

in the theorem, we obtain the following known relationship between the 
familiar Weyl fractional integral and the Varma (or special Whittaker) 
transform (1.5): 

COROLLARY 3 (cf. Pathan [ 10, p. 885, Theorem I]). Under the hypothesis 
(2.1) of the theorem, let F(s) be defined by Eq. (1.12). 

Then 

w N~“F(t) :S)=~/;,~,_,,,2,(V-j.)/2(f’~~ftf(N’(t):S) 

(N=O, 1,2, . ..). 
(3.3) 

provided that each member of (3.3) exists. 

The relationship (2.2), as well as its special cases (3.1), (3.2), and (3.3), 
can be used (for example) to evaluate the Weyl fractional integrals of 
various special functions by computing the corresponding simpler integral 
transforms involved. We illustrate this aspect of applicability of our results 
by considering the following examples. 
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EXAMPLE 1. Let 

f(t) = t”e-i’ (taO;Re(v)>O). (3.4) 

Then 

F(s)=L.Y{t”e~i’:s}= 
T(v+ 1) 

(s+i)“” 
(Re(v)> -l;Re(s+[)>O). (3.5) 

Furthermore, by the Leibniz rule for derivatives, we have 

which shows that the hypothesis (2.1) of the theorem is satisfied when 

Re(v) > N- 1 (N= 1, 2, 3, . ..). (3.7) 

Substituting these values off(t) and F(S) in the theorem, and evaluating 
the resulting Varma (or specid Whittaker) transform on the right-hand 
side of (2.2) by means of a well-known integral formula (cf. [S, Vol. I, 
p. 216, Entry 4.22(16)]; see also [9, p. 189, Entry 17.105]), we obtain 

tmn)mj (P)pj (-i)Npk 

.A +-v-A+(P-o)j+k-, r{n-p+v-(p-@)j-k+l} zi 
%J qv+2+aj-k+ 1) j! 

F v-k+l,A-p+v-((p-a)j-k+l; < 
‘2 1 v+A+oj-k+l; --I S ’ (3.8) 

provided that 

Re(s+[)>O;Re{l-p+v-((p-a)j-k+l}>O; 

Re(v-k+l)>O(j=O, l,..., [n/m];k=O, l,..., N; (3.9) 

n, N= 0, 1, 2, . . . . m = 1, 2, 3, . ..). 

The k-series involved in (3.8) can be expressed in a closed form by 
appealing to the special case p = q = 1 of the hypergeometric identity: 

c-k, a, -k, . . . . a,--; 
b, -k, . . . . b, - k; 

z ZN-k 1 
= IIT= 1 r( Oj - N) 

n;=, I’(hi-N)P+lFq 
c, a, -N, . . . . ap -N; 

6, -N, . . . . b, - N; ’ 1 (3.10) 
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or, equivalently, 

N N nip=, b,)k 
k=O k rIy= 1 (bilk ‘+lFy c(> 

c + k, a, + k, . . . . up + k; 
b,+k,...,b,+k;Z Zk 1 

F 
c + iV, al, . . . . a,; 

=p+1 y b, , . . . . b,; ’ 1 ’ 
(3.11) 

which can indeed be deduced from the Leibniz rule in view of the derivative 
formulas 

1 
and 

(3.12) 

We thus find from (3.8) that 

w~;~,${t”-“(t+~)-I’-’ :s} 
Cnlm 1 

,Sp-Y-,l+(P-6),+N-, r{~-P++-((P-“)j-N+ 1) 
r(v+A+cJj-N+ 1) 

F v+l,A-p+v-(p-o)j-N+l; [ 
‘2 1 

L v+A+oj-N+l;-s ’ I 

(3.14) 

which holds true under the constraints listed in (3.9). 

EXAMPLE 2. In terms of the modified Bessel function Z,(z), we put 

f(t) = Z,(Ct) (t>O;Re(v)>O), (3.15) 

so that [S, Vol. I, p. 195, Entry 4.16(l)] 

F(s) = i’(s + J--w 
Jq 

(Re(v) > - 1; Re(s) > 1 Re([)l). (3.16) 
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It also follows easily from the Leibniz rule that 

(3.17) 

Thus the hypothesis (2.1) is satisfied when the constraint (3.7) holds true. 
Upon evaluating the Laplace transform resulting on the right-hand side 

of (3.1) by means of a known formula [S, Vol. I, p. 196, Entry 4.16(8)], 
Corollary 1 yields 

“w;;;;;{fN(t2-p-“2 (t+Jiqyh) 
Cdml N 

=2-y-v c 1 
,=O k=O 

T(v-I*-pj+2k-N+l)(s2-12)(“+Pj~‘)’ZpN,r~~ 
(JT) 

,I 2 , 

(3.18) 

in terms of the associated Legendre function, provided that 

Re(s) > 1 Re([)l; Re(v - p -pj+ 2k - N+ 1) > 0; 

Re(v)>N-1 (j=O, l,..., [n/m];k=O, l,..., N; 

n, Iv= 0, 1, 2, . . . . m = 1, 2, 3, . ..). 

(3.19) 

EXAMPLE 3. As an interesting generalization of Example 1, we take 

(t>O;Re(v)>O), (3.20) 

which reduces immediately to (3.4) when p = q = 0. It is easily seen that 

where, for the validity of the hypothesis (2.1), the constraint (3.7) is 
assumed to hold true. 

We also have [S, Vol. I, p. 219, Entry 4.23(17)] 

1 
(Re(v)> -l;pdq;Re(s)>Oifp<q; 

Re(s + [) > 0 if p = q). 

(3.22) 
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Upon making use of the known integral formula [S, Vol. I, p. 216, Entry 
4.22( 16)] once again, the assertion (2.2) of the theorem yields the following 
generalization of (3.14): 

In/ml 
= j;o (-n),i(p)pj~,,~s”~v~;+(Y~u)j+N-l 

z-{A-p+v-((p-rT)j-N+ l} 
T(v+A+crj-N+l) 

F 
v+ 1, A-/A++-((p-a)j-N+ l,a,, . ..) a,; { 

‘p+2 q+l v+A+oj-N+l,b,,...,b,; --I s ’ 
(3.23) 

provided that 

p<q;Re(s)>Oifp<q;Re(s+[)>Oifp=q;Re(v-N+l)>O; 

Re{l-p+v-((p-o)j-N+l}>O(j=O, l,..., [n/m]; (3.24) 

n, N,p,q=O, 1,2 ,... ;m=l,2, 3 ,... ). 

In its special case when p = q = 0, this last result (3.23) reduces at once 
to (3.14). With a view to giving a similar generalization of Example 2, we 
note that 

I”(Z) = g$+) OF, [;; iZ’]> (3.25) 

which naturally motivates the choice 

f(t) = tvpFq 4” ::I’ 2: f;2t2] (t>O; Re(v)>O). (3.26) 
19 9 4’ 

Then it is readily observed that 

pyt)= Uv+l) 
T(v-N+ 1) 

.f-N F 
42;v+kz,,...,a,;, 22 

p+2 q+2 , 

4(2;v-N+l),bl,...,b,; 
~5 t 1 (3.27) 

where, for convenience, A(m; A) abbreviates the array of m parameters 

/I A+1 A+m-1 -- 
m ’ m ’ “” 

(m = 1, 2, 3, . ..). 
m 
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it being assumed that the constraint (3.7) holds true in order to validate 
the hypothesis (2.1) of the theorem. 

We also have [.5, Vol. I, p. 219, Entry 4.23(18)] 

F(s) = sI1+I 
F(v+l) F 

Pf2 Y 
[ 

A(2; v + I), a,, .,., ap; ~2 

b b,;? 1 , . . . . J 

(Re(v)> -l;pdq-l;Re(s)>Oifp<q-1; 

Re(s) > 1 Re([)l ifp = q - 1). 

(3.28) 

Upon substituting these values for f( t) and F(s) in the assertion (2.2) of 
the theorem, and evaluating the resulting Varma (or special Whittaker) 
transform as above, we finally have 

“#“y.p; [N-V-l-t F 
6(2;v+l),a,,...,a,;12 . . 

i 
F+2 9 

i 
:S b,, . . . . 6,; tz 1 

[n/m 1 
= jTo (-n),,(~)p,A,i~s~-‘~“+(P-““+.I 

T(R-@+v-(p-o)j-N-t 1) 

I-(v+A+cJj-fv+ 1) 

F 
4(2;v+l),d{2;1-I*+v-(p-o)j-N+l},a,,...,a,;12 

‘p+4 q+2 1 ~(2;v+i+aj-N+1),b,,...,bq;SZ ’ 

(3.29) 

provided that 

p < q - 1; Re(s) > 0 ifp < q - 1; Re(s) > 1 Re(c)l ifp = q - 1; 

Re(v-TV+l)>O;Re(i-p++-((p-a)j-N+l)>O(j=O, I,..., In/m); 

n, N,p=O, 1, 2, . . ..m. q= 1,2, 3, . ..). (3.30) 

In view of the relationship (3.25), a special case of our result (3.29) when 
p = q - 1 = 0 would correspond to (3.18) if we further set CT = 0, 

Numerous other examples leading to the generalized Weyl fractional 
integrals of the various classes of multivariable hypergeometric functions 
(cf. [ 18,231) can be given in a manner illustrated above. 
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