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Abstract

A new integration technique is presented for systems of linear partial differential equations
(PDEs) for which syzygies can be formulated that obey conservation laws. These syzygies come for
free as a by-product of the differential Gr¨obner basis computation. Compared with the more obvious
way of integrating a single equation and substituting the result in other equations the new technique
integrates more than one equation simultaneously and therefore introduces temporarily fewer new
functions of integration that in addition depend on fewer variables. Especially for high order PDE
systems in many variables the conventional integration technique may lead to an explosion of the
number of functions of integration which is avoided with the new method. A further benefit is that
redundant free functions in the solution are either prevented or that their number is at least reduced.
© 2003 Elsevier Science Ltd. All rights reserved.

1. A critical look at conventional integration

In this paper a new integration method is introduced that is suitable for the computerized
solution of systems of linear partial differential equations (PDEs) that admit syzygies. In
the text we will call the integration of single exact differential equations, i.e. equations
which are total derivatives, the ‘conventional’ integration method (discussed, for example,
in Wolf, 2000). To highlight the difference with the new syzygy based integration method
we have a closer look at the conventional method first. About notation: to distinguish
symbolic subscripts from partial derivatives we indicate partial derivatives with a comma,
for example,∂xyei = ei ,xy.

To solve, for example, the system

0 = f ,xx (1)

0 = x f ,y + f ,z (2)
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for f (x, y, z) one would, at first, integrate(1) with two new functions of integration
g(y, z), h(y, z), then substitute

f = xg+ h (3)

into (2), do a separation with respect to different powers ofx to obtain the system

0 = g,y

0 = g,z + h,y

0 = h,z

and solve that to get the solution

f = x(az+ b) − ay + c, a, b, c = constant.

The main gain of information on which the overall success was based did happen after
the substitution at the stage of separating(2) into three equations. The integration of(1)
itself did not provide new information. The equation 0= f ,xx is more compact than
f = xg + h and equally well usable in an ongoing elimination process (Gr¨obner basis
computation). (Similarly, in this sense,f (x) = a sin(x) + bcos(x) would not provide
new information compared to 0= f ′′ + f as sin and cos are only defined as solutions
of this ordinary differential equation (ODE).) The main conclusion is:the integration of a
single equation does not necessarily imply progress in the solution of a system of PDEs,
especially if a direct separation does not become possible as the result of substituting a
computed function.

This is the case in the example

0 = f ,yzz (=:e1) (4)

0 = f ,xx + f ,z (=:e2) (5)

discussed in more detail in the next section. Integration of(4) to f = g1(x, y)+zg2(x, y)+
g3(x, z) and substitution into(5) does not yield a separable equation and is therefore not
as straightforward to utilize as in the first example.

There is another problem with the conventional method which seems insignificant at
first sight but becomes severe for high order PDE systems in many independent variables,
for example in the application inSection 9.

Substituting f = g1(x, y) + zg2(x, y) + g3(x, z) into (5) as is done inSection 2.2
and finding the general solution forg1, g2, g3 is, strictly speaking, a different problem
from finding the general solution forf of (4) and (5)! The general solution forg1, g2,
as determined inSection 2.2, will involve among other functions the two essential free
functionsg6(x), g7(x). From the point of view of the original system(4) and(5) these are
redundant functions as they can be absorbed byg3. Redundancy is an inherent problem
of the conventional integration method which has nothing to do with how efficient the
remaining system after integration and substitution is solved. InSection 6this issue is
discussed in more detail.

With the new syzygy based integration the situation is very different. Here the decision
whether to integrate is based on syzygies, i.e. on relationsbetweenequations, like

0 = (∂2
x + ∂z)e1 − ∂y∂

2
z e2
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in the last example and is not based on the form of asingleequation. This extra information
content coming from the syzygies allows the method to perform useful integrations for
systems like(4) and(5) with an instantly useful result. As will be explained further below,
syzygy based integration does not only integrate one single equation at a time, but in a
sense, it performs an integration which is compatible with all the equations involved in the
syzygy. (More exactly, it integrates all equations 0= Pi simultaneously wherePi are the
components of the conserved current of the conservation law of the syzygies.)

This restrictive ‘compatibility constraint’ has the effect that the integral involves fewer
new functions of integration which furthermore depend on fewer variables. Consequently
fewer new functions have to be computed later on which shortens the computation. Also,
fewer redundant functions are generated which not only avoids the explosion of the
number of intermediately generated functions but also simplifies the final solution. These
effects are especially important for high order PDEs in many variables as explained in
Section 6.

The above distinctions between both integration techniques are not purely academic.
Section 9.2describes how integrations can be combined with eliminations. To apply
integrations early in the solution process is not new. This strategy has been pursued by
the program CRACK for nearly two decades. What is interesting and new is how much
more beneficial the syzygy based integration proves to be compared with conventional
integration. InSection 9.2such a comparison has been made. One problem has been
solved three times with a combination of different modules, including elimination and
conventional and syzygy based integration. The three runs differ only in the priority of
applying these modules and were compared by their running times as well as the number
of redundant functions in the final solution.

About the remainder of the paper

In Section 3the algorithm is described in general and an overview is provided.

Using the information content of syzygies in the form of conservation laws seems to be
the most direct and useful way but it is not the only one possible. InSection 4a variation
of the algorithm is explained which is based on vanishing curls of syzygies.

Different aspects of the computation of conservation laws for syzygies are the subject
of the following section.

The redundancy problem mentioned above is looked at in detail inSection 6.

Even though conservation laws of syzygies might be known, it may not be advantageous
to use them if the aim is the exact solution of the original PDE-system. InSection 7
examples are given.

A short description of how syzygies are recorded inSection 8is followed bySection 9
introducing the ‘real-life’ application which led to the development of syzygy based
integration. In three computer runs it is shown that this integration method and elimination
can be naturally combined for the solution of linear PDE systems.

In the following section the introductory example is continued and both integration
methods are compared.
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2. An introductory example

We continue the above example to explain the basic mechanism of syzygy based
integration. A more complex example is given inSection 9.

2.1. Treated with the new method

In applying integrability conditions for PDEs systematically, i.e. in computing a
differential Gröbner basis, identities between equations 0= ea will result that take the
form of differential expressions with theea as dependent variables.

We consider the simple system(4) and(5), i.e.

0 = f ,yzz (=e1)

0 = f ,xx + f ,z (=e2).

Assuming, for example, a total ordering>o of derivatives that implies∂x >o ∂z and
∂y >o ∂z, a differential Gröbner basis computation would first eliminatef ,xxyzzthrough
cross-differentiation:

0 = e2,yzz− e1,xx = f ,yzzz (=:e3) (6)

then a substitution off ,yzzusinge1 yields

0 = e3 − e1,z

and a substitution ofe3 using(6) provides the identity

0 = e2,yzz− (e1,xx + e1,z). (7)

The choice of ordering does not matter here. Any ordering would have resulted in identity
(7).

In this paper we concentrate ourselves to the integration of syzygies, like(7), which
either have the form of a divergence or can be combined linearly to give a divergence
0 = Di Pi with suitable vector componentsPi (ek) that are differential expressions in the
ek. Only in Section 4we outline a variation of this principle to deal with a vanishing curl
of syzygies.

The computation of conservation laws of syzygies has several aspects: how to do it in
general, why the computation of conservation laws for syzygies is a relatively simple task
and how to do it in less generality but much faster. In the interest of a compact example we
postpone this discussion toSection 5.

There are different ways to write(7) as a divergence. We choose any one with as few
as possible components (here two:Px, Pz). This preference is justified towards the end of
this section belowEq. (20). The question how conservation laws with fewer components
are computed is described inSection 5as well.

We obtain:

0 = − e1,xx + (e2,yz − e1),z (8)

= Px,x + Pz,z (9)

= (− f ,xyzz),x + ( f ,xxyz),z. (10)
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In the following we will use the vectorPi in two representations, first in terms ofei , in our
example from the syzygy(8):

Px = −e1,x, Pz = e2,yz − e1 (11)

and second the representation ofPi in terms of the functionf , in our example from the
identity (10):

Px = − f ,xyzz, Pz = f ,xxyz. (12)

With P satisfying the conservation law condition(9) we can writeP as a 2-dim. curl

Px = −Q,z, Pz = Q,x (13)

for some potentialQ. Using forPi the representation(12)we identify

Q = f ,xyz.

The existence of differential expressions in unknowns, sayf α, for the potentialQ is
guaranteed because all syzygies and all their consequences like 0= Di Pi are satisfied
identically for any f α . In the Appendix Ban algorithm DIV INT is given that computes
potentialsQij ( f α) in general for an arbitrary number of independent variables.

To do the next step in this example, we are reminded that expressionsPi (ej ) are linear
homogeneous in theej and that they therefore must be zero, i.e.Px = Pz = Q,x = Q,z = 0.
This means thatQ is independent ofx, z, giving Q = c1(y) and the new equation

0 = Q − c1 = f ,xyz − c1 (=:e4) (14)

with the new function of integrationc1 = c1(y).
Apart from the integral(14)we also get new syzygies. Having on one hand expressions

for Pi in terms ofe1, e2 due toEqs. (11)and on the other handPi in terms ofQ, j from
Eqs. (13)andQ in terms ofe4 from Eqs. (14)we get two new identities

0 = Px + Q,z = −e1,x + e4,z (15)

0 = Pz − Q,x = e2,yz − e1 − e4,x. (16)

As equatione1 turns up algebraically in at least one of the new identities, this equation
0 = e1 is redundant and can be dropped. Redundancy of an original equation due to
integration need not always be the case but it is the case in this example because at least
one ofPx andPz happens to be algebraic ine1 (in this casePz). Identity(16)already has
conservation law form. Substitutinge1 from identity(16) into (15)preserves this form:

0 = (−e4,x),x + (e2,xy − e4),z. (17)

This completes one syzygy based integration step. Because the new system of equations
0 = e2 = e4 obeys the syzygy(17) which has a conservation law form with only two
componentsPx, Pz we can start another integration stepwithout having to do a differential
reduction or cross differentiation step. It turns out there are in total three more very similar
syzygy integration steps to be performed which are summarized inAppendix A. After these
three steps the remaining system to solve consists of the two equations

0 = f ,xx + f ,z (=e2) (18)

0 = f ,y + x3

6
c1 − x2

2
c2 − xzc1 + zc2 − xc3 − c4 (=e7) (19)
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which satisfy the identity

0 = −e2,y + e7,xx + e7,z. (20)

This is a divergence too but now in three differentiation variables. With three non-vanishing
Pi the condition 0= Di Pi has the solutionPi = Dj Qi j with more than one non-
vanishingQij and the condition 0= Pi = Dj Qi j has the solutionQij = Rijk ,k with free
functionsRijk (xn) = R[i j k ](xn) where[i j k ] stands for total antisymmetrization. In three
dimensions this introduces one new functionR(xn) = Rxyz throughQxy = R,z, Qyz =
R,x, and Qzx = R,y. By performing a syzygy based integration again we would solve
the remainingEqs. (18)and(19) for one functionf but also introduce one new unknown
functionRof all variables and therefore not make real progress. This is demonstrated in the
first example inSection 7. These considerations explain why we try to find conservation
laws of syzygies with as few as possible non-zeroPi .

We return to our example and decide to integrate 0= e7 (i.e. (19)) conventionally
because

• identity (20)cannot be written as a divergence with only two terms and
• Eq. (19) can be integrated conventionally with respect toonly one integration

variable, so we will not introduce redundant functions as discussed in the
introduction and inSection 6.

To y-integrateEq. (19)we introduce four new functionsd1(y), . . . , d4(y) throughci =
di ,y and one new functiond5 = d5(x, z) and obtain

f = −x3

6
d1 + x2

2
d2 + xzd1 − zd2 + xd3 + d4 + d5 (21)

with the only remainingEq. (18)now taking the shape

0 = d5,xx + d5,z. (22)

A single equation does not have syzygies and the method cannot be applied further. What
we achieved is the integration ofEq. (4)and the change ofEq. (5) for three independent
variables intoEq. (22)for two variables.

2.2. The same example in a conventional treatment

For comparison, we solve the system(4) and(5) again, this time in the conventional
direct way. After integrating(4) to

f = g1(x, y) + zg2(x, y) + g3(x, z) (23)

and substitution off , Eq. (5)reads

0 = g1(x, y),xx + zg2(x, y),xx + g3(x, z),xx + g2(x, y) + g3(x, z),z. (24)

In Eq. (24)there is no function that does depend on all variables and each variable does
occur in at least one function. An algorithm for such ‘indirectly separable equations’ (ISEs)
is contained in the package CRACK (seeWolf, 1996 and Section 9.2). These equations
undergo a series of differentiations and divisions (producing a list of divisors)
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• to eliminate all functions of some variable,

• to do a direct separation with respect to this variable, and

• to use the same list of divisors now in reverse order as integrating factors to back-
integrate the equations which resulted from direct separation.

In the case ofEq. (24) a single y-differentiation eliminatesg3 and allows a directz
separation (asg1, g2 are independent ofz) giving 0 = g2(x, y),xxy, 0 = g1(x, y),xxy +
g2(x, y),y and through back-integration with respect toy further

0 = g2(x, y),xx + g4(x) (25)

0 = g1(x, y),xx + g2(x, y) + g5(x) (26)

0 = g3(x, z),xx + g3(x, z),z − zg4(x) − g5(x) (27)

with new functions of integrationg4, g5. Renamingg4 = g6(x),xxxx, g5 = g7(x),xx and
integratingEqs. (25)and(26)gives

g2 = −g6(x),xx − xg8(y) − g9(y) (28)

g1 = g6(x) + x3

6
g8(y) + x2

2
g9(y) + xg10(y) + g11(y) − g7(x) (29)

0 = g3(x, z),xx + g3(x, z),z − zg6(x),xxxx − g7(x),xx (30)

f = g3(x, z) + g6(x) + x3

6
g8(y) + x2

2
g9(y) + xg10(y) + g11(y) − g7(x)

− z(g6(x),xx + xg8(y) + g9(y)). (31)

The solution(31) is identical to(21) and the remaining condition(30) is identical to(22)
if we drop the redundant functionsg6, g7 which can be absorbed byg3 and substitute
g8 = −d1, g9 = d2, g10 = d3, g11 = d4, g3 = d5. A method to recognize redundancy
is described inWolf et al. (1999). It involves the solution of an over-determined system of
equations which involves even more effort.

The introduction of redundant functionsg6, g7 in the conventional method was
unavoidable because after reaching system(25)–(27) with the task to computeg1, . . . , g5
the information was lost that, strictly speaking, not the most general expressions for
g1, . . . , g5 need to be computed but only the most general expression forf = g1(x, y) +
zg2(x, y) + g3(x, z). Settingg6 = g7 = 0 would be a restriction forg2 andg1 in (28),
and(29)but is not a restriction forf in (31).

3. The algorithm in general

In our notationxi , i = 1, . . . , p are the independent variables andf α are the unknown
functions which do not need to depend on allxi . These functions satisfy equations
0 = ea(xn, f α

J ) whereJ is a multi-index (standing, for example, for112, i.e. ∂2
x1∂x2) and

where f α
J stands for a possible dependence onf α and any partial derivatives off α . Total

derivatives appear asDi . Summation is performed over identical indices.
The following description is summarized in the overview underneath. The number(s) at

the start of each item refer to the line number of the corresponding step in the overview.
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(32), (33): For a given system of differential equations(32) the investigation of
integrability conditions (e.g. Gr¨obner basis computation) yields identities(33),
called syzygies. In these syzygies theek take the role of dependent variables. The
program CRACK has been used to compute syzygies for examples presented in
this paper but many other computer algebra programs are available (for example,
RIF (Reid et al., 1996), diffalg (Boulier et al., 1995; Hubert, 1999; 2000), diffgrob2
(Mansfield, 1996)) although only few generate syzygies automatically.

(34): To find conservation laws of syzygies one can either perform a more expensive
but general search by using the package CONLAW (Wolf, 2002) or other computer
algebra software, or one can do a more specialized, less general but faster
computation as described inSection 5.3. In the conservation laws as in the syzygies
the dependent variables are theek.

In order to introduce as few as possible new functions through a syzygy based
integration, one aims at conservation laws with as few as possible non-zeroPi (see
discussion towards the end ofSection 2.1). Possible methods to achieve this are
described inSection 5.2.

Most often syzygies are very simple expressions and already have a conservation
law form. Computing conservation laws is not fully algorithmic but it is argued
in Section 5.1that this task is relatively simple for under-determined systems of
syzygies.

(35): If a conservation law for the syzygies is known then the following steps can definitely
be performed. The question is only whether it is beneficial for the purpose of the
computation. If one has found a conservation law with only two componentsPi then
the integration will introduce just one new constant and will always be beneficial. If
the conservation law has three or more componentsPi then at least one new function
of all variables will be introduced. In that case, if the purpose of the integration is
the solution of the PDE system(32) then one would have to balance how many
functions one can solve for due to the new integratedEq. (39)against how many
new functions are introduced and possibly decide not to continue. Examples for
syzygy based integrations which are useful from the point of solving PDE-systems
and others that are not are shown inSection 7. If usefulness cannot be decided at
this stage then the integration should be performed and decided afterwards. The
computational complexity of the integration, i.e. of the algorithm DIV INT is very
low.

(36): In the computed conserved currentsPi (x, ek) we replace the equation namesek by
their expressions(32) in terms ofx, f α .

(37): The resultingPi (x, f α) in (36)are the input to the algorithm DIV INT (given in the
Appendix B) to compute a special solution for the potentialsQij = Q[i j ](x, f α)

satisfying Pi = Dj Qi j . Here again[i j ] stands for antisymmetrization. DIV INT

works because the kernel of a divergenceDi Pi is a curlDj Qi j with Qij = −Qji

and because 0= Di Pi is satisfied identically in allf α and their derivatives.

(38): Because the syzygies 0= Ωm(x, ek) are linear homogeneous expressions in the
ek, thereforeDi Pi being a linear homogeneous expression in theΩm is also a
linear homogeneous expression in theek. Hence thePi are linear homogeneous
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expressions in theek. Consequently, we have 0= Pi in the space of solutions of
the original equations1.

(39): On the other hand, the algorithm DIV INT computes expressionsQij satisfying
Pi = Dj Qi j identically and therefore 0= Dj Qi j in the space of solutions of
the original equations. The general solution of this condition for theQij is shown
in (39) and is the result of the whole computation. Its form depends on the number
p of non-vanishing componentsPi : for p = 2 a single constant of integrationR is
introduced forp > 2 one or more functionsRijk (x) are introduced.

(40): The formal integration of 0= Dj Qi j gives new equations whose right-hand sides
are abbreviated byei j .

(41): We are instantly able to formulate syzygies which these new equations 0= ei j

satisfy.
(42), (43): If any one of them can be solved for oneem (as indicated in(42)) thenem = ω

can be substituted in other syzygies and the original equation 0= em(x, f α) can be
deleted as it is a consequence of the equationsek, ei j in ω(x, ek, ei j , j ).

(44): 1. As new syzygies have been generated in(41) there is a chance that any one of
them already has a conservation law form, like(15).

2. The substitution of a redundant equation in step(42)may also lead to a syzygy
in conservation law form, either in the other newly generated syzygy or in any
other syzygies.

3. Finally, there is always the possibility that the new syzygies combined with other
syzygies take a conservation law form. This would have to be found out by a
computation, for example using the program CONLAW.

Given system: 0= ek(x, f α) (32)

CRACK → Syzygies: 0= Ωm(x, ek) (33)

CONLAW → Cons. law form: 0= Di Pi (x, ek), (34)

Is CL useful? If not then stop. (35)

Conserved current: Pi = Pi (x, ek)|ek→ek(x, f α)

= Pi (x, f α) (36)

DIV INT → New potentials: Pi (x, f α) = Dj Qi j with

Qij = Q[i j ](x, f α) (37)

Integration of: 0= Pi = Dj Qi j (38)

To new integral(s): Qij (x, f α) =




R = constant in 2 dim

Rijk ,k with

Rijk = R[i j k ](x)

in >2 dim

(39)

1 When computing a differential Gr¨obner basis the equations in the final basis are also only differential
consequences of the initial equations and one would not want to delete them. Here the situation is different.
0 = em has been integrated and can be deleted ifem occurs algebraically in other syzygies.
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New equation names: 0=
{

Qij (x, f α) − R
Qij (x, f α) − Rijk ,k

}
=: ei j (40)

New syzygies: → 0 = Pi (x, ek) − ei j , j (41)

Redundancies? em = ω(x, ek, ei j , j ) → (42)

− substitution ofem = ω

in any syzygy (43)

− deleting equation 0= em

Return to the determination of conservation

laws for syzygies (44)

The continuation of the introductory example inAppendix A is itemized similar to the
description above. This allows the reader to go through an example and compare it with
the overview step by step.

4. An integration based on curls of syzygies

The described ansatz of extracting information out of syzygies in order to do
integrations is not the only possible way. In this section we want to provide a different
integration method, this time based on vanishing curls of syzygies. We will see that it
is even more effective than divergence based integration but the required structure of the
system of syzygies is more special which is the reason why it has not been implemented in
CRACK. Also, the computation of conservation laws for syzygies was implemented so far
because computer programs, like CONLAW, are available to compute conservation laws
and because the existence of conservation laws is a relative weak condition for syzygies.
The method based on curls is shown in the following overview.

Given system: 0= ek(x, f α)

Syzygies: 0= Ωm(x, ek)

Vanishing curl cond.: 0= Dj Pi j with Pi j = P[i j ](x, ek),

Curl free tensor: Pi j = Pi j (x, ek)|ek→ek(x, f α) = Pi j (x, f α)

New potentials: Pi j (x, f α) = Dk Qi jk with Qijk = Q[i j k ](x, f α)

Integration of: 0= Pi j = Dk Qi jk

To new integral(s): Qijk (x, f α) =
{

R = constant in 3 dim

Rijkl ,l with Rijkl = R[i j kl ](x) in >3 dim

New equation names: 0=
{

Qijk (x, f α) − R

Qijk (x, f α) − Rijkl ,l

}
=: ei jk

New syzygies: → 0 = Pi j (x, ea) − ei jk ,k

Redundancies? em = ω(x, ek, ei jk ,k) → substitution ofem

− substitution ofem = ω in any syzygy

− deleting equation 0= em

Return to the determination of vanishing curls or divergences for syzygies



T. Wolf / Journal of Symbolic Computation 35 (2003) 499–526 509

The superficial difference between divergence and curl based integration is thatP, Q, R
have one extra index for the curl based method. This method also needs at least
three independent variables. The following two examples involve each four independent
variables and allow a closer comparison of both methods.

A typical example:

For four unknown functionsa, b, c, d depending onx, y, z, t a system of six equations

0 = d,z −c,t (=:exy), 0 = b,t −d,y (=:exz), 0 = c,y −b,z (=:ext)

0 = d,x −a,t (=:eyz), 0 = a,z −c,x (=:eyt), 0 = b,x −a,y (=:ezt)

is given. It has syzygies

0 = exy,y + exz,z + ext,t

0 = −exy,x + eyz,z + eyt,t

0 = −exz,x − eyz,y + ezt,t

0 = −ext,x − eyt,y − ezt,z

which take the form of a vanishing curl: 0= Dj Pi j for Pi j = ei j leading to potentials
Qijk

Qxyz = d, Qtxy = c, Qxzt = b, Qytz = a

and a single new free function of integrationRxyzt = g(x, y, z, t). The resulting integrals
are

a = g,x, b = g,y, c = g,z, d = g,t .

A related example for a conservation law syzygy:

In comparison, the typical example using a conservation law syzygy in four independent
variables would involve six unknown functionsa, b, c, d, f, g and four equations, so a less
over-determined system:

0 = a,y +b,z +c,t (=:e1), 0 = −a,x +d,z + f,t (=:e2)

0 = −b,x −d,y +g,t (=:e3), 0 = −c,x − f,y −g,z (=:e4).

The conservation law 0= e1,x + e2,y + e3,z + e4,t givesPi = ei and potentials

Qxy = a, Qxz = b, Qxt = c, Qyz = d, Qyt = f, Qzt = g.

The resulting integrals are

a = r ,z − s,t , b = u,t − r ,y, c = s,y − u,z, d = r ,x − w,t ,

f = w,z − s,x, g = u,x − w,y

with new arbitrary functionsr, s, u, w.
If both methods would be applicable, i.e. if the system of syzygies would provide a

vanishing divergence and a vanishing curl then one would prefer the curl based integration
because it makes use of more syzygies.
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The last two examples look very artificial but one could exchange the unknown
functionsa, b, c, . . . by any functionally independent expressions, each of them involving
at least one different function, and the computations and results would be unchanged.

The remainder of the paper is concerned with divergence based integration.

5. How to find conservation laws of syzygies

In order to find a combination of syzygies that is a divergence one could apply computer
algebra programs CONLAW as described inWolf (2002), Wolf et al. (1999)by regarding
the syzygies as the equations and theea as unknown functions. In the following subsections
we discuss why computing conservation laws of syzygies is simpler than computing
conservation laws in general, how one can find conservation laws with fewer components
than independent variables and how conservation laws for syzygies are determined in
CRACK.

5.1. Under-determination of syzygies

If one interprets syzygies as PDEs for unknownsek, then the original equations
ek = ek(xi , f α

J ) are special solutions of these syzygies where thef α play the role of
arbitrary functions in these solutions. Because at least one of thef α depends on all
variablesxi (otherwise the original system consists only of ISEs to be treated differently,
not by checking integrability conditions), the syzygies must be an under-determined PDE-
system for the unknownsek. Computing conservation laws for under-determined systems
of PDEs is an even more over-determined problem. The conservation law conditions have
to be satisfied identically in a jet space with coordinatesxn, ea and all partial derivatives
of all ea. The moreea occur in the syzygies the more restrictive are their conservation
law conditions. Another way to see this is that conditions for integrating factors to give
conservation laws are obtained by applying the variational derivative (Euler–Lagrange
operator) to the product of integrating factors and syzygies (seeOlver, 1986). Because
there is one Euler operator for eachea we get as many conditions as there are different
ea. Finally, the more over-determined a system of conditions is, the easier it is to solve.
Therefore the subtask of computing conservation laws of systems of syzygies is usually
not a problem.

5.2. Choosing between different syzygy conservation laws

The integration of a syzygy 0= Di Pi with two derivatives 0= Dx Px + Dy Py is
always useful but not necessarily the integration of a syzygy with more than two derivatives
because there is at least one new function of integration of all variables (see the example in
Section 7). Sometimes there is a choice allowing to write a syzygy in different forms, for
example

0 = e1,x + (e2,x)y + e3,z

can also be written as

0 = (e1 + e2,y),x + e3,z.
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To find out whether a conservation law with fewer derivatives exists one has two
options. First, one can make an ansatz for the conservation law with fewer derivatives
and solve the resulting conditions (for example, with the programs CONLAW1 or
CONLAW3). Alternatively, one computes the most general conservation law involving
arbitrary functions. If a conservation law exists which doesnot contain derivatives
Dj P j , j = m, . . . , p then 0 = Dj (C Pj ), j = 1, . . . , m − 1 is a conservation law
with an arbitrary functionC = C(xm, . . . , x p). Conversely, finding a conservation law
involving an arbitrary functionC(xm, . . . , x p) can be exploited to derive a conservation
law involving no derivatives with respect toxm, . . . , x p as it is described inWolf (1999).

5.3. A faster method to find conservation laws

Methods described above decide whether a conservation law can be built from syzygies,
i.e. whether there is one in the differential ideal of the syzygies. Computations to decide this
general question are potentially much more expensive than the other steps of the syzygy
based integration which are all very quick. In the program CRACK therefore a different,
less general but much faster approach is taken. Instead of determining whether a linear
combination of syzygies exists that makes up a conservation law, the program checks each
individual syzygy whether it can be written as a divergence.

This is done by using conventional integration to integrate the syzygy with respect to
the first variable, sayx to obtain Px, then integrating the remainder with respect to the
second variable, sayy to obtainPy and so on. A divergence is obtained when no remainder
remains after the last variable. To find whether the syzygy can be written as a divergence
with only two Pi the above integration is tried at first with all pairs of two independent
variables. For example, in the case of syzygy(7)

0 = e2,yzz− (e1,xx + e1,z)

an x-integration givesPx = −e1,x. The remaindere2,yzz − e1,z cannot be completely
y-integrated butz-integrated toPz = e2,yz − e1.

6. The redundancy problem

Redundant functions are unavoidably generated as soon as an equation is conventionally
integrated with respect to at least two different variables, for example, in the integration
of 0 = A,x1x2 to 0 = A + g(x1) + h(x2) whereg, h depend in addition on all other
independent variables occurring in the expressionA. If A containsn variablesx1, . . . , xn

then the arbitrariness ofg and ofh overlap to the extent of one function ofx3, . . . , xn.
In other words, ifg andh are computed from further equations then there will be one
redundant function ofn − 2 variables in the solution of the original problem.

Let us work out an estimate of how much redundancy is generated when integrating
high order equations. If the conventional method integrates

0 = A,(x1)m1,...,(xn)mn
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to

A =
n∑

i=1

mi −1∑
j =0

gi j (x
i ) j

where gi j are free functions of all variables apart fromxi then any two functions
gia, gib, a �= b have no overlap as their termsgia (xi )a, gib (xi )b involve different powers
of xi . Any other pairs of functionsgab, gcd, a �= c overlap. In total there is an overlap
within pairs of functionsgi j equivalent to

n−1∑
i=1

n∑
j =i+1

mi × mj (45)

functions ofn − 2 variables. In the introductory example the integration of 0= f ,yzzgave
rise to 1×2 = 2 redundant functions of 3−2 = 1 variable and in the ‘real-life’ application
in Section 9the integration of 0= c4,x3x3y2y3 for c4(t, r, x1, x2, x3, y1, y2, y3) generates
an overlap within pairs of functions equivalent to 2×1+2×1+1×1 = 5 functions of six
variables and for 0= c4,x1x2x3x3x3y1y2y2 even an equivalent of 21 functions of six variables.
The overlap of two functions is partially also an overlap with other, third, functions and so
on and should not be counted twice when trying to account exactly for all the redundancy.
But this correction concerns the arbitrariness content equivalent to functions of less than
n − 2 variables so the above formula(45) is a good initial approximation of redundancy.
Keeping in mind that typically a few hundred such integrations may be necessary, the
severity of the problem becomes obvious.

Is the redundancy problem an artifact of the chosen examples?

If one determines higher order symmetries of PDEs then the symmetry conditions
may be linear PDEs in, say, 30 independent variables (coordinates in jet space).
Usually the general solution of this overdetermined linear PDE-system involves constants
(corresponding to individual symmetries) which means that 30 conventional ‘successive
layers’ of integrations would have to be done, each ‘layer’ containing integrations that
express a function ofn variables through functions inn − 1 variables. In total at least
several hundred integrations may become necessary. From this point of view the above-
mentioned application inSection 9to computec4 is typical.

Could redundancy be prevented otherwise?

PDEs may contain symmetries involving arbitrary functions but if not then the general
solution of the symmetry conditions contains only constants. In that case choosing a
strictly lexicographical ordering of derivatives in the elimination process the differential
Gröbner basis will involve ODEs. They may not be in the form of total derivatives
but at least in the case they could be integrated, the redundancy problem would not
appear as each ODE is integrated with respect to only one independent variable. The
drawback is that Gr¨obner basis computations are well known to be computationally
much more expensive when performed with a lexicographical ordering of variables than
when performed using a total degree ordering of variables. A total degree ordering will
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provide shorter equations of lower differential order but with mixed derivatives, leading to
redundancy with conventional integration. The conclusion is that even in the special cases
where the general solution of the linear PDE system contains essentially only constants, the
syzygy based integration is superior allowing to use elimination schemes with total degree
orderings that are more efficient than schemes using strictly lexicographical ordering and
still being able to reduce the redundancy problem.

Does syzygy based integration cure the redundancy problem completely?

In the course of one syzygy based integration all equations 0= Pi are integrated
simultaneously one time. If 0= Pi (ej ) is equivalent to the whole system 0= ek, or,
like in the introductory examples(4) and(5) where successive syzygy based integration
integrates the system, then redundancy is avoided. If, on the other hand, only a subsystem
of equations 0= ek is involved in 0= Pi (ej ) and the result of a syzygy based integration
has to be substituted in other equations then redundancy may still appear as recorded in
Table 1in Section 9.2but to a clearly lesser extent.

Is there another way to determine redundant functions or constants in order to delete them?

In computations where each free constant in the solution of an overdetermined PDE-
system corresponds to a symmetry or to a conservation law one is interested to determine
and drop redundancy in order to get an accurate account of their number. For this purpose
a method has been developed (seeWolf et al., 1999) but this requires the solution of an
overdetermined PDE-system on its own and may therefore be expensive.

7. Cases when a syzygy based integration is not useful

When applying the new integration method to solve a PDE-system it not only matters
whether all steps are algorithmic but also whether its execution is beneficial. Information
contained in syzygies is useful if it provides a factorization of differential operators. If they
do not factorize (for example, if they are of first order) then a syzygy based integration
can still be useful if more functions are solved for than new functions are introduced. If
the divergenceDi Pi contains more than two derivatives, i.e. the conserved currentPi has
more than two components, then the integral equation(s)(39) contains at least one new
function Rijk of all variables and we may not gain new information from the integration
if we cannot solve for at least two functions. This is demonstrated in the following series
of three examples with successively more functions to be solved for and an increasing
usefulness of the integration.

Example

When computing the Gr¨obner basis of the two equations

0 = f ,x + f ,y (=:e1) (46)

0 = f ,z (=:e2) (47)
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for a function f = f (x, y) (and in doing that confirming that they are already a Gr¨obner
basis) one will generate the identity

0 = e2,x + e2,y − e1,z. (48)

From identifyingPx = e2 from (48) and the general formulaPx = Dy Qxy + DzQxz

together with(47) we identify Qxy = 0, Qxz = f, Qyz = f . With the new function
Rxyz = c(x, y, z) substituted into the formulaQij = Rijk ,k the new equations are

0 = c,z (49)

0 = f − c,x (50)

0 = f + c,y. (51)

After a substitution off from (50) into (51) they are identical to the original set(46) and
(47), only now for a functionc instead of f . No progress was made. In contrast, for the
following two similar examples the integration of syzygies is advantageous.

Example

For the equations

0 = f ,x + g,y (=:e1) (52)

0 = f ,z (=:e2) (53)

0 = g,z (=:e3) (54)

the identity

0 = e2,x + e3,y − e1,z (55)

results. Integrated in the above manner it gives

0 = c,x + g (56)

0 = −c,y + f (57)

0 = c,z (58)

leaving onlyEq. (58)for c = c(x, y, z) to be solved, an improvement compared to the
original system(52)–(54). In the next example no equations remain to be solved.

Example

For the equations

0 = h,y − g,z (=:e1) (59)

0 = f ,z − h,x (=:e2) (60)

0 = g,x − f ,y (=:e3) (61)

the identity

0 = e1,x + e2,y + e3,z (62)
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leads to

0 = f + c,x (63)

0 = g + c,y (64)

0 = h + c,z (65)

with an arbitrary functionc = c(x, y, z) and no remaining equation.
In order to incorporate this method of integration into a general program for solving

over-determined systems the usefulness of integration has to be judged automatically based
on the number of derivatives in the divergence and the number of functions solved for. But
also other adjustments to the whole program have to be made. These are discussed in the
following short section.

8. Implementation

Apart from the implementation of the algorithm DIV INT as shown in theAppendix B,
also changes to the package CRACK were needed in order to automate syzygy based
integrations. When checking integrability conditions in a Gr¨obner basis computation the
program had to keep track of any resulting identities (syzygies). This was done in the
following way which is conceptually the same as the extended Buchberger algorithm (see,
for example, the booksBecker and Weispfenning, 1993andKreuzer and Robbiano, 2000).

To each equation, for examplee3 in (6), we will assign not only a value, likef ,yzzz, but
also, what we will call a ‘history-value’ or short ‘history’, i.e.e2,yzz−e1,xx. This history of
an equation expresses one equation in terms of other equations, i.e. how it was historically
computed doing the algebraic or differential Gr¨obner basis computation. At the beginning
the history of each equationea is ea itself. Whenever a new equation is computed then not
only its value but also its history is calculated. For example, when in this examplef ,yzzz

is eliminated fromEq. (6)using(4) then a new equation 0= e4 is generated wheree4
has the value 0 (as all terms cancel) and has the history valuee3 − e1,z wheree3 ande1
are replaced by their history values. The history ofe1 is e1 whereas the history ofe3 is
e2,yzz− e1,xx giving for e4 the historye2,yzz− e1,xx − e1,z as is shown in(7).

In the next section a substantial application is described which is suitable to demonstrate
the advantages of the new integration method.

9. The application that led to the development of the syzygy based integration

9.1. The problem

A problem introduced to the author by Stephen Anco concerns the computation of all
conservation laws of the radial SU(2) chiral equation in two spatial dimensions where the
integrating factors are of at most 2nd order. The equation can be written as a first order
system for two 3-component vectorsj(r, t), k(r, t):

k,t = j,r + j × k (66)

j,t = (r k),r /r. (67)
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Eq. (67)is already in conservation law form:

(r j),t + (−r k),r = 0

and the only other known conservation law (of energy) has zeroth order integrating factors:

r k · [k,t − j,r − j × k] + j · [j,t − (r k),r /r ] =
( r

2
(j · j + k · k)

)
,t

+ (−r j · k) ,r = 0. (68)

The existence conditions for conservation laws below were generated with the
program CONLAW2 described inWolf (2002). It generates conditions for 6 integrating
factors Q1, . . . , Q6 (like the multipliers rk1, rk2, rk3, j1, j2, j3 on the left-hand side
of (68)). Each of the Qi is an unknown function of 20 independent variables
t, r, j, k, l (=j,r ), m (=k,r ), u (=j,rr ), w (=k,rr ). The system consists of 18 conditions
of the form

0 = Q1,u1 − Q4,w1r

and six conditions of the form

0 = Q3, j1l1r 2 + Q3,l1u1r 2 + Q3, j2l2r 2 + Q3,l2u2r 2 + Q3, j3l3r 2 + Q3,l3u3r 2

+ Q3,k1m1r 2 + Q3,m1w1r 2 + Q3,k2m2r 2 + Q3,m2w2r 2 + Q3,k3m3r 2

+ Q3,m3w3r 2 + Q3,r r 2 − Q6, j1 k1r 2 − Q6, j1m1r 3 + Q6,l1k1r
− Q6,l1m1r 2 − Q6,l1w1r 3 − 2Q6,u1k1 + 2Q6,u1m1r − Q6,u1w1r 2

− Q6, j2 k2r 2 − Q6, j2m2r 3 + Q6,l2k2r − Q6,l2m2r 2 − Q6,l2w2r 3

− 2Q6,u2k2 + 2Q6,u2m2r − Q6,u2w2r 2 − Q6, j3k3r 2 − Q6, j3m3r 3

+ Q6,l3k3r − Q6,l3m3r 2 − Q6,l3w3r 3 − 2Q6,u3k3 + 2Q6,u3m3r
− Q6,u3w3r 2 − Q6,k1l1r 3 − Q6,k1 j2k3r 3 + Q6,k1 j3k2r 3 − Q6,m1u1r 3

− Q6,m1 j2m3r 3 − Q6,m1l2k3r 3 + Q6,m1 j3m2r 3 + Q6,m1l3k2r 3

− Q6,w1 j2w3r 3 − 2Q6,w1l2m3r 3 − Q6,w1u2k3r 3 + Q6,w1 j3w2r 3

+ 2Q6,w1l3m2r 3 + Q6,w1u3k2r 3 + Q6,k2 j1k3r 3 − Q6,k2l2r 3 − Q6,k2 j3k1r 3

+ Q6,m2 j1m3r 3 + Q6,m2l1k3r 3 − Q6,m2u2r 3 − Q6,m2 j3m1r 3

− Q6,m2l3k1r 3 + Q6,w2 j1w3r 3 + 2Q6,w2 l1m3r 3 + Q6,w2u1k3r 3

− Q6,w2 j3w1r 3 − 2Q6,w2l3m1r 3 − Q6,w2u3k1r 3 − Q6,k3 j1k2r 3

+ Q6,k3 j2k1r 3 − Q6,k3l3r 3 − Q6,m3 j1m2r 3 − Q6,m3l1k2r 3

+ Q6,m3 j2m1r 3 + Q6,m3l2k1r 3 − Q6,m3u3r 3 − Q6,w3 j1w2r 3

− 2Q6,w3l1m2r 3 − Q6,w3u1k2r 3 + Q6,w3 j2w1r 3 + 2Q6,w3l2m1r 3

+ Q6,w3u2k1r 3 − Q6,t r 3 − k1Q2r 2 + k2Q1r 2.

After introducing new unknown functionsxi , yi throughui = xi + yi , wi = xi − yi

the 18 short equations took the form of a total derivative and each one could be integrated
on its own but when the computed functions were substituted only ISEs like(22) were
obtained2.

Despite the initial success in performing these integrations all attempts to complete
the solution of the over-determined system failed with the 1999 version of CRACK.

2 Although each of the ISEs is over-determined on its own, this over-determination cannot be utilized easily
because there is no independent variable which occurs only explicitly that would lead to direct separations.
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That this was not simply a matter of lacking computing power became obvious after
extracting a small subsystem of equations for only one of the unknown functions3

c4(t, r, x1, x2, x3, y1, y2, y3) where some of the equations are easy to integrate:

0 = c4,x3x3y2y3 = c4,x1x2y1y3y3 = c4,x1x2y1y1y3 = c4,x1x2x3y1y1 = c4,x2x3x3x3y1y1y3

= c4,x1x2x3x3x3y1y2y2 = c4,x1x2x2x3y1y1y2y2 = c4,x1x2x3x3y3y3y3 − c4,x2x3x3x3y1y3y3

= c4,x1x2x3x3y1y2y2 − 2c4,x1x2x2x3y1y2y3 = c4,x1x2x3x3y1y2 − 2c4,x1x2x2x3y1y3

− c4,x1x2x2x3x3y1y3x3

= c4,x1x2x3x3x3y1y3x1 − c4,x1x2x3x3y3y3 + c4,x2x3x3x3y1y3

= c4,x3x3x3y1y3x1 + c4,x3x3y1y3y3 y1 − c4,x3x3y3y3

= c4,x1x2x3x3y1y2y2y2 y3 + 2c4,x1x2x2x2y1y2y3 − 2c4,x1x2x2x3y1y2y2

+ c4,x1x2x2x3x3y1y2y2x3

= c4,x1x2x3x3y1y2y2 y3 + 2c4,x1x2x2x2x3y1y3x3 + 2c4,x1x2x2x2y1y3

− 2c4,x1x2x2x3y1y2

= c4,x1x2x3x3x3y1y2x1x3 − 3c4,x1x2x3x3y1y2x1 + 6c4,x1x2x2x3y1y3x1

− c4,x1x2x2x3x3y3y3x2
3 + c4,x2x2x3x3x3y1y3x2

3. (69)

Even the solution or at least simplification of this subsystem was not possible. The problem
was not to find equations with the form of a total derivative and to integrate them. The
problem was the growing number of new functions of integration (which did still depend
on seven variables) and the appearance of too many only ISEs.

Since 1999 the module for handling ISEs has been improved considerably. The
current version of CRACK (Dec. 2001) can simplify the above system quickly using
the conventional integration of total derivatives. Nevertheless, by adding the ability of
performing syzygy based integrations the computation speeds up further and the solution
involves fewer redundant arbitrary functions. Tests described below show that syzygy
based integrations are well suited to be performed along the computation of a differential
Gröbner basis without the negative side effect of introducing too many redundant functions.
By that Gröbner basis computations can be cut short and the risk of a memory explosion
be lowered.

9.2. A comparison of three computer runs

Before describing the details of three different computer runs, a few comments about the
setup have to be made. The package CRACK for solving and simplifying over-determined
PDE-systems contains about 30 modules for different actions to be taken either with
individual equations or with groups of equations of the system. Modules used to solve
systems like(69)are

1. Direct separation of an equation with respect to some variable that occurs only
explicitly in the equation.

3 New constants and functions of integration are all calledci in CRACK with successively increasing subscript.
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Table 1
A comparison of three different runs on the system(69)

Run Priority list # of Time # of terms # of redundant functions
of actions steps in s inEq. (71) Of 6 var. Of 5 var. Of 4 var. Of 3 var.

1 1 2 3 4 8 9 7 10 1077 124 6 7 16 2 0
2 1 2 3 4 7 8 9 10 1175 122 12 4 45 23 5
3 1 2 3 4 5 8 6 9 7 10 362 23 8 2 19 2 0

2. Substitution of a functionf either by zero or by at most two terms and only if other
functions occurring in these two terms depend on fewer variables thanf .

3. Integration of an equation if it consists of a single derivative with respect to only one
variable.

4. Elimination of a functionf from any equation iff occurs only algebraically and
linearly and if f depends on all variables occurring in this equation. Substitution of
f in all other equations.

5. Deletion of any redundant equations as described at the bottom of the overview in
Section 3.

6. Integration based on a syzygy in conservation law form.

7. Conventional integration of a PDE but only if sufficiently many integrations are
possible such that the integrated equation can be used for a substitution.

8. Indirect separation of an equation (ISE). (This is a complex step which can invoke
other direct separations and indirect separations of resulting equations.)

9. Reduction of the leading derivative of one equation with the help of another equation
or formulation of an integrability condition between two equations. (This is a typical
step in a Gr¨obner basis computation.)

10. Any integration of any equation even if not complete.

These modules are called in a specific sequence which can be chosen by specifying a list of
numbers, each number representing one module. For example, if inTable 1, column 2 the
priority list of run 1 is chosen to be 1 2 3 4 8 9 7 10 then the modules as numbered above
are tried in this order until one module is successful and then they are again tried beginning
with 1 and so on. This is only a simplified description of the operation of CRACK but it is
sufficient for the purpose of this section.

In Table 1three computer runs are compared. Column 3 gives the number of successful
calls of the modules in the priority lists. Times shown in column 4 have been measured
in a session of the computer algebra system REDUCE version 3.7 with 120 MB memory
(although only a few megabytes are needed for this computation) on a 1.7 GHz PC Pentium
4 under Linux. Column 5 gives the number of terms in the single unsolved equation
which in the solution(70) below isEq. (71). In the remaining four columns the number
of redundant functions of 6, 5, 4, or 3 variables is shown. For example, if two functions
f (x, y, z) andzg(x) occur always together such that a substitutionf + zg → f has the
same effect asg → 0 theng can be set to zero without loss of generality.
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9.3. Conclusions from the test

The central issue in these runs is, whether integrations (modules 6 and 7) are given
a higher priority than the formulation of integrability conditions (module 9) or a lower
priority. If integrability conditions have a higher priority than integrations, as in run 1, then
at first a complete differential Gr¨obner basis is computed before integrations start. The
benefit is that the differential order of equations is as low as possible when integrations start
(assuming a total degree ordering is used in the differential Gr¨obner basis computation).
Consequently fewer integrations are necessary and fewer functions will be generated which
turn out later to be redundant. The disadvantage is that the computation of integrability
conditions may take very long and blow up the systems size, or may even be practically
impossible.

One can attempt to give integrations a higher priority at the price of more redundant
functions in the solution. This was done in run 2. The benefit may be considerable,
only in our small system(69) is the Gröbner basis computation not at all expensive, so
the advantage of early integrations does not become obvious here. But the disadvantage
becomes obvious. Integrating higher order equations generates more new functions with
many of them turning out to be redundant at the end.

Finally, in the third run we get the best of both previous runs. Here, early integrations
use syzygies in conservation law form as soon as they become available. The lowered
differential order of equations reduces the complexity of the remaining Gr¨obner basis
computation. Also, because with each integration at least two equations 0= Pi are
satisfied, the number of new functions of integration is low and the number of variables
these functions depend on is reduced. Consequently, only few functions turn out to be
redundant in the computed solution as seen in columns 6–9 ofTable 1.

The following solution is obtained in run 3 after redundant functions have been deleted
(by hand) leaving 11 functions of six variables, eight functions of five variables and two
functions of four variables. It is equivalent to the solutions returned in runs 1 and 2.

c4 = c100,x2x3y1y2 + 1
2c100,x3x1y2

3 + c125, x2x2
3y1 + c125,y2x3y1y3

+ c133,x2x3y1 + c133,y2 y1y3 + c213,x3x1 + c213,y3 y1 + c100y1y3

− c109x2x3y1 + c170+ c172+ c173x3 + c181y3 + c191− c192

− c193x3 − c194+ c200+ c205− 1
2c65x2

3 y3 − c81x3 − c83. (70)

All functions depend ont, r and in addition on further variables in the following way:

c83(x2, x3, y1, y2), c81(x2, y1, y2, y3), c173(x1, x2, y2, y3),

c172(x1, x2, y2, y3), c170(x1, x2, x3, y2), c194(x1, x3, y1, y3),

c193(x1, y1, y2, y3), c192(x1, y1, y2, y3), c191(x1, x3, y1, y2),

c205(x2, y1, y2, y3), c200(x1, x2, y1, y2), c100(x1, x2, x3),

c125(x1, x2, y2), c133(x1, x2, y2), c181(x1, x2, x3),

c213(x2, x3, y3), c230(x1, y1, y3), c229(x1, y1, y3),

c228(x1, x3, y1), c65(x2, y1), c109(x1, y2).

The functionc194 has to satisfy the condition

0 = c194,x3y1x1 + c194,y1y3 y1 − c194,y3 − c228− c229 − c230x3, (71)
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all other functions are free. The result of the conservation law investigation for the SU(2)
chiral equation in the form(66)and(67)is that no other conservation laws with integrating
factors of at most 2nd order exist.

More remarks concerning the collaboration of modules:

• Syzygy based integration cannot replace conventional integration. If equations
become decoupled then no integrability conditions apply and the equations have to
be integrated conventionally if possible.

• The usefulness of conventional integration relies very much on the efficiency of a
module for the indirect separation (module 8 in the above list). The corresponding
implementation in CRACK will be described elsewhere.

• The issue of avoiding redundant functions is serious when a system like(69) is
only a subsystem of a larger system and the solution of the smaller system is to
be substituted in the larger one. Redundant functions would complicate the solution
of the larger system unnecessarily. On the other hand, the identification and deletion
of redundant functions using a method described inWolf et al. (1999), is difficult
and may be more expensive than the solution/simplification of the system itself. This
method does not prevent redundancy, it can only identify it in the solution.

The package CRACK is distributed together with the computer algebra system RE-
DUCE. A newer version can be down-loaded fromhttp://lie.math.brocku.ca/twolf/crack.

10. Summary

An integration method has been proposed that is applicable for linear PDE-systems
that admit syzygies, i.e. systems which are overdetermined as a whole or contain an
overdetermined subsystem. It therefore cannot replace the straightforward integration of
exact PDEs but when applicable it has a number of advantages:

• The information on which the integration is based is taken from syzygies in
conservation law form. Syzygies are a by-product of the computation of differential
Gröbner basis.

• Because not a single equation is integrated but a number of equations(0 = Pi )

simultaneously, fewer functions of integration depending on fewer variables are
introduced in the process.

• The problem of conventional integration to introduce redundant functions when
integrating with respect to different variables is either prevented or significantly
reduced.

• The new integration also produces apart from integrated equations new syzygies
which are often the basis for continuing the integration further without having to
compute new syzygies through a new Gr¨obner basis computation.

• Syzygy based integration, conventional integration and elimination complement
one another well in solving overdetermined linear PDE-systems if given the right
priorities.

http://lie.math.brocku.ca/twolf/crack
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Appendix A. Continuation of the introductory example

In this appendix we continue the introductory example by performing three more syzygy
based integration steps. The computation is broken up into items. The number(s) at the start
of each item refer to the line number of the corresponding step in the overview at the end
of Section 3.

(32): The remaining system to solve consists of

0 = f,xx + f,z (=e2)

0 = f,xyz−c1 (=e4).

(33), (34): satisfying the identity in conservation law form

0 = (−e4,x),x + (e2,xy − e4),z

(35): with only two derivatives.
(36): Proceeding as in the first integration step we now identify as the conserved current

P̂x = −e4,x = − f ,xxyz= −Q̂,z (72)

P̂z = e2,xy − e4 = f ,xxxy+ c1 = Q̂,x (73)

(37): and as the new potential̂Q we either identify or compute using algorithm DIV INT

in Appendix B

Q̂ = f ,xxy + xc1

(39), (40): giving the new equation

0 = Q̂ − c2 = f ,xxy + xc1 − c2 (=:e5) (74)

with the new function of integrationc2 = c2(y).
(41), (42): Equatione4 is redundant as it turns up purely algebraically in

0 = P̂z − Q̂,x = e2,xy − e4 − e5,x.

(43): Substitution ofe4 in (72)gives the new identity

0 = −e2,xxy + e5,xx + e5,z. (75)

(36): This is also a divergence with only two terms

P̄x = −e2,xy + e5,x = − f ,xyz+ c1 = −Q̄,z (76)

P̄z = e5 = f ,xxy + xc1 − c2 = Q̄,x (77)

(37): and the new potential̄Q

Q̄ = f ,xy + x2

2
c1 − xc2 − zc1

(39), (40): giving the new equation

0 = Q̄ − c3 = f ,xy + x2

2
c1 − xc2 − zc1 − c3 (=:e6) (78)

with the new function of integrationc3 = c3(y).
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(41), (42): Now, equatione5 is redundant as it turns up purely algebraically in

0 = P̄z − Q̄,x = e5 − e6,x.

(43): Substitution ofe5 in (76)gives the new identity

0 = −e2,xy + e6,xx + e6,z. (79)

(36): This is a divergence as well and we will perform the integration cycle one more time
with

P̌x = −e2,y + e6,x = − f ,yz + xc1 − c2 = −Q̌,z (80)

P̌z = e6 = f ,xy + x2

2
c1 − xc2 − zc1 − c3 = Q̌,x (81)

(37): and the new potentiaľQ

Q̌ = f ,y + x3

6
c1 − x2

2
c2 − xzc1 + zc2 − xc3

(39), (40): giving the new equation

0 = Q̌ − c4 = f ,y + x3

6
c1 − x2

2
c2 − xzc1 + zc2 − xc3 − c4 (=:e7) (82)

with the new function of integrationc4 = c4(y).
(41), (42): Now, equatione6 is redundant as it turns up purely algebraically inP̌z in (81)

0 = P̌z − Q̌,x = e6 − e7,x.

(43): Substitution ofe6 in (80)gives the new identity

0 = −e2,y + e7,xx + e7,z. (83)

The conclusion of this example is shown inSection 2.1below Eq. (20). As argued there
the syzygy based integration ofEq. (83)is not advantageous as(83)has a conservation law
form with three derivatives instead of two. Instead one rather integrates(82) with respect
to y and substitutesf in the remainingEq. (5).

Appendix B. The algorithm DIVINT

The following algorithm computes expressionsQij (xn, f α
J ) = Q[i j ] that satisfy

Dj Qi j = Pi . The givenPi = Pi (xn, f α
J ) are assumed to satisfyDi Pi = 0 identically in

all f α
J .

1 Algorithm DIV INT

2 Input variables:xn, functions: f α and conserved current:Pi = Pi (xn, f α
J )

3 Output Qij (xn, f α
J ), j > i % satisfyingDj Qi j = Pi ,

4 E, F % E: list of new additional equations
5 % F : list of new additional functions
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6 Body % no summation over double indices below
7 E := {}, F := {}, Qij := 0, with i , j ∈ 1, . . . , p, j > i
8
9 % Integrate all terms with functionsf α depending on all variables

10 for i := 1 to (p − 1) do
11 for j := i + 1 to p do

12 while Pi contains a termai J ∂ j f α
J do % i.e. while any derivative

of any f α

13 % occurs that involves∂ j

14 Pi → Pi − Dj (ai J f α
J )

15 P j → P j + Di (ai J f α
J )

16 Qij → Qij + ai J f α
J

17
18 % Integrate all derivatives involving functionsf α not depending on all

variables
19 for i := 2 to p do
20 for j := 1 to i − 1 do

21 while Pi contains a termai J ∂ j f α
J do % i.e. while any derivative

of any f α

22 % occurs that involves∂ j

23 Pi → Pi − Dj (ai J f α
J )

24 Qji → Qji − ai J f α
J

25
26 % Integrate remaining terms
27 for i := 1 to p do
28 if Pi �= 0 then
29 % integrate each termai J f α

J of Pi with respect to any onex j �= xi

30 % preferably onex j with ∂ j f α = 0 in the following way:
31 if ∂ j f α = 0 then
32 q := f α

J

∫
ai J dx j

33 Pi → Pi − Dj q
34 if j > i then Qij → Qij + q
35 else Qji → Qji − q
36 else
37 Introduce a new functionf β(x1, . . . , xi−1, xi+1, . . . , x p)

38 F → F ∪ { f β}
39 E → E ∪ {0 = ∂ j f β − ai J f α

J }
40 Pi → Pi − ai J f α

J
41 if j > i then Qij → Qij + f β

42 else Qji → Qji − f β

43 return Qij (xn, f α
J ), E (list of new equations),F (list of new functions)
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Explanation of the algorithm

Lines9–16

This part of the procedure is sufficient if the input expressionsPi (xn, f α
J ) do only

contain functionsf α depending on allp independent variablesx1, . . . , x p.
A typical example: If an expressionPy contains a termf ,z thenDy Py (no summation)

contains∂y f ,z which has to be cancelled by−∂z f ,y from DzPz (no summation) to give
0 = Dk Pk (summation) identically in allfJ . This meansPz contains− f ,y. In this short
example the lines 14–16 would subtractf ,z from Py, subtract− f ,y from Pz and addf to
Qyz. There is no principal difference betweenPy containing a termf ,z or Py containing
ai J ∂z f α

J .
As both,Pi andP j are updated in lines 14 and 15,j does not run over indices 1. . . i −1.

BecauseQii = 0 (Qij is antisymmetric) there is no need to integrate ani -derivative inPi

and thereforej starts fromi + 1 in line 11.
If all terms in all Pi contain a functionf α of all variables then any term in anyQij

occurs twice, once with anx j -derivative inPi and once as a negativexi -derivative inP j .
When the program completed lines 10–16, allPi have the value zero and the solutionQij

is found (fori < j , values forQji follow from the antisymmetry).

Lines18–42

The only possibility that after completing lines 10–16 not allPi are already zero occurs
if some f α do not depend on all variables. That is, for example, the case if functions
entered the problem due to running DIV INT previously in earlier integrations. In general,
if terms remain in somePi which necessarily depend on less than all variables then one
can always complete the integrations by introducing new functions (collected in a listF in
line 38) that have to satisfy additional equations (collected in a listE in line 39). In order
to minimize the number of additional functions and additional equations the lines 19–24
integrate terms that arex j -derivatives inPi ( j �= i ) and lines 31–35 integrate terms by
changing the explicit appearance ofx j . This is shown in the following examples.

Example

Independent variables:x, y, z, initial values:

Px = A(y, z),y + B(y, z),z + C(y, z) + D(y) + G(z)

Py = H (x, z),x + K (x, z),z + L(x) + M(x, z) + N(z)

Pz = R(x, y),x + S(x, y),y + T(x) + U(y) + W(x, y)

Qxy = Qxz = Qyz = 0

containing undetermined functionsA, B, C, D, G, H, K , L, M, N, R, S, T,U and W.
After completing the program up to line 18 the values are

Px = C(y, z) + D(y) + G(z)

Py = H (x, z),x +L(x) + M(x, z) + N(z)

Pz = R(x, y),x +S(x, y),y +T(x) + U(y) + W(x, y)
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Qxy = A(y, z)

Qxz = B(y, z)

Qyz = K (x, z).

After completing the program up to line 26 the values are

Px = C(y, z) + D(y) + G(z)

Py = L(x) + M(x, z) + N(z)

Pz = T(x) + U(y) + W(x, y)

Qxy = A(y, z) − H (x, z)

Qxz = B(y, z) − R(x, y)

Qyz = K (x, z) − S(x, y).

The loop beginning in line 27 will integrate the remaining terms inPi . The lines 32–35
will integrate the termsD, G, L, N, T,U and lines 37–42 the termsC, M, W to obtain

Px = Py = Pz = 0

Qxy = A(y, z) − H (x, z) + yG(z) − x N(z) + F1(y, z)

Qxz = B(y, z) − R(x, y) + zD(y) − xU(y) − F3(x, y)

Qyz = K (x, z) − S(x, y) + zL(x) − yT(x) + F2(x, z)

with a list F of new additional functionsF1(y, z), F2(x, z), F3(x, y) and list E of new
additional equations

F1(y, z),y = C(y, z)

F2(x, z),z = M(x, z)

F3(x, y),x = W(x, y)

each in less than three variables.
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