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An error is pointed out in a method of W. Leighton for computing two-sided 
bounds for the eigenvalues of the Sturm-Liouville problem (ry’)’ + Apv = 0, y(a) = 

y(b) = 0. The error is corrected, the underlying theory is examined and the method 
is generalized. 

1, INTRODUCTION 

Leighton [3] has suggested a simple numerical method for computing two- 
sided bounds for the eigenvalues of the Sturm-Liouville problem 

(ry’)’ + Apy = 0, (I.la) 

Y(U) = Y(b) = 0, (l.lb) 

where r and p are continuous and positive on [a, b]. Leighton’s idea was to 
divide [a, b] into n subintervals and on each subinterval solve the equation 
with p and r replaced by constants. In addition to (l.lb), boundary 
conditions are imposed at the ends of the subintervals by imposing certain 
continuity conditions on y. Similar ideas have been used by others ([4] and 
the references given there) to obtain estimates, but, except in [I], not bounds, 
for eigenvalues. Leighton illustrated his ideas by a numerical example with 
the interval divided into four subintervals. 
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In this paper, an important error in (3 ] is pointed out. It is shown that 
when, in Leighton’s numerical example, the number of subintervais is 
increased, the upper bounds given by his Eq. (2.9) (subsequently referred to 
as (L2.9)) become lower than the true eigenvalues. This error is corrected, 
the underlying theory is examined and the method is generalized. 

The error arises from Leighton’s choice of continuity conditions for y. He 
imposes the condition 

,I: E cya, 61. (1.2) 

It is shown in Section 2 that the appropriate condition to impose on the 
solution of (1.1) when r has jump discontinuities is 

y E qa, 61. T’ E qr; a, b], (l-3) 

where the notation u E C(r; a, b] means that there exists a function 
U, E C[a, b] such that U(X) = ui(x) for all x E [a, b] except perhaps the 
points of discontinuity of r. In general, y’ will not exist at jump discon- 
tinuities of r. The error in [3] may have arisen because (L2.9) is derived for 
the special case when I zz 1 and then used (p. 386), without the appropriate 
modifications (see Section 3 below), for problems with a non-constant r. This 
difficulty does not affect the work of Day 111, who, like many others, 
considered only the Liouville normal form (in which r z 1). 

2. THEORY 

Leighton stated that his Theorem 3.1 was an immediate consequence of 
the Sturm-Picone theorem and that this theorem remained valid when r and 
p have a finite number of finite discontinuities. Since most references 
consider only the case r E C[a, b] (when (1.2) and (1.3) are identical), the 
relevant theory is developed here for completerress. 

We first introduce some notation. Let X, < X, < . . . < x, and let 
PClx,, xm] denote the class of functions in 

C[xo,X,)nC(x,,x,)n... nqx,-,,&I 

for which left and right hand limits exist at x1 ,..., x,- , . 

THEOREM 2.1. Forj = 1, 2 let 

(i) rj9 rj, qjE PC[x,, x,1; 

(ii) YjE C[XOYX~], rjY,j E c{rj;xO,x,]; 

(iii) (r,iy,;)’ + qjyi = 0 on (xi- *, xi), i = l,..., m; 
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(iv) Yj(%) = aj9 (rjYj)(x*) =Bj9 lajl + IPjl > O; 
(V) rl > rz > r, (CfftZSt.) > 0, q2 > 41 On (Xi- 1, Xl), i = I,..., m; and 

(vi) if a, # 0, then a2 # 0 and P,/a, >&/az. 

Let y, have k (20) zeros in (x,, x,,,]. Then yZ has at least k zeros in (x,, , xm] 
and the sth (s < k) zero of yZ is less than the sth zero of yl. Furthermore, if 
y, and y, have the same number of zeros in (x0, x,) then yl(x,) # 0 and ifin 
addition Y&J + 0, then (I1 Y:/Y~~> > (r2~2’~AkJ. 

Proof. Induction on m shows that this follows from the first and second 
comparison theorems for the continuous case as given in Ince [2, pp. 228, 
2291. i 

THEOREM 2.2. For j = 1, 2, let 

(i) rj, rj,Pj, qj E pc[xfJ9 x,]i 

(ii) Yje C[XO,X~]Y rjJ$E C[rj;xO,xm]; 
(iii) (rjy,!)‘+(A”‘pi-q,)yj=Oon (Xi-l,Xi), i=l,...,m; 

(iv) aj(rjYi)(xo) =PjYj(xo>~ lajl + I Pjl > Ov Yj(rjYj)(xJ = 6jYj(xm)~ 
IYjl + lsjl > O; 

(v) pz >p, >pO (const.) > 0, rl > rZ > r0 (const.) > 0 and q, 2 q2 on 
(Xi- ,, Xi), i = l,..., m; 

(vi) if a, # 0, then a, # 0 and PI/a, 2 &/a, ; and 

(vii) if y, # 0, then yZ # 0 and 6,/y, < 6,/y,. 
Then, 

(a) the above eigenvalue problems each have a countable infinity of 
eigenvalues Ain < A:j’ < . . . and the eigenfunction corresponding to Af’ has 
exactly (k - 1) zeros in (x0, x,J, and 

(b) Ail’ > ,I;‘@ all k E Nfor which Ay’(p, -pJ < 0. 

Proof (a) The proof is the same as that of Theorem II in Ince [2, p. 2331 
except that it uses Theorem 2.1 above instead of Sturm’s original comparison 
theorems. 

(b) Suppose 2:’ < A(,2) although Iy)(p! -p2) < 0. Then (Ar’p, - ql) - 
(Ap)p, - q2) = (A:‘) - Af))pz + Ar’(p, -pJ + q2 - q, < 0. Hence, it follows 
from (a) and Theorem 2.1 that yp’ and yp’ cannot both satisfy the boundary 
conditions. I 

The condition Ap’(pl -p2) Q 0, required in Theorem 2.2b, is satisfied if at 
least one of the following is true: 

(i) p1 =p2 (as in all problems in Liouville normal form) or 
(ii) A;) > 0. 
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The latter condition is satisfied for all k if, for example, qr > 0 and Q, /I1 & 
0 > y16r, as is the case in (1.1)” A similar proof shows A:’ 2 0 to be a 
sufficient condition. 

Discussion of the algorithm is facilitated by yet more notation. Let 

R+ = sup r, R; = inf r3 
(Xi ,,X,) (Xi ,di) 

and 

r+(x) = R,f when xi-r <x<x,, i= l,...,n with r’@,)=R:, 

and define numbers P,?, Pi-, Q; and Q; and functions Ye, pf and p- 
similarly. In Leighton’s method, (1.1 a) is replaced by 

(Riy’)’ fAPiy=O on (xi-t, xij, i = l,..., n, (2-l) 

where a = x0 < x1 < . . . < x, = b. Theorem 2.2 shows that (2.1), with 
boundary conditions given by (1. lb) and (1.3), will give lower bounds, A;, 
for the eigenvalues, Ak, of (1.1) if 

R,=R;, Pi=P;, i = l,..., n, (2.2a) 

and upper bounds, A:, if instead 

R,= R;, P, = P;, i = l,..., n. (2.2b) 

Indeed since 

where 

h = ;fg r’/c Pz= I""& P’lP, (1. 

P3= inf r-/r, 
lad1 

Theorem 2.2 shows that, for all k E N, 

(2.3) 

If p and r are continuous (or even in PC[x,, x,,,] for some fixed partition, 
a=x,<x,< . .. < x, = b) and bounded away from zero then Pj -+ 1, j = 
1 ,..., 4, as the partition is refined with max \xi - xi-,) + 0. Convergence of 
the bounds follows from (2.3). Indeed Taylor’s theorem shows that if n equal 
subintervals are used and p and r are in C’[a, bj, then pi = 1 + O(n-‘), 
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j= l,..., 4 so that in this case convergence of &!’ and 1; to & is of order n-‘. 
Theorem 2.2 also shows that for successive refinements of the partition of 
[a, b] the convergence is monotonic. Analogous results may be proved for 
the more general problem considered in Section 3. 

Similar arguments show that if (as recommended in [3]) the boundary 
conditions (I.lb) and (1.2) are used, then the eigenvalues of (2.1) will 
converge, as maxi /xi -xi-, ) -+ 0, to the eigenvalues of 

ry” + npy = 0, y(u) = y(b) = 0. (2.4) 

Applying the transformation y = t -“2u to (1.1) then shows that whenever 
(rF112r’)’ > 0, a condition satisfied by Leighton’s numerical example, the 
“upper” bounds given by his algorithm will be lower than the true eigenvalue 
whenever maxi /xi - xi-, 1 is sufficiently small. 

In [3] Leighton used similar ideas to obtain bounds for conjugate points. 
When the method is used for this purpose, Theorem 2.1 shows that the 
continuity requirement is again (1.3) and not (1.2). This does not affect the 
single numerical example given in [3, Sect. 41 as this has r = 1. 

3. THE MODIFIED ALGORITHM 

Consider the eigenvalue problem 

WY + @P - 9)Y = cl on (xi- 1, xi), i = l,..., n, (3. la) 

a(~‘)(%) + PY(-%) = l+Y’)(X”) + JY(X”) = 0, 

lal+lPl>O7 IYI + I4 > 09 
(3.lb) 

r, r’,p, q E PCIXO,X”], y E C[x,, Xn], ry’ E C[r; XcJ,Xn], (3.lc) 

where r > r. (const.) > 0, p ape (const.) > 0 on [x0,x,]. Theorem 2.2(b) 
may be used to give bounds for the kth eigenvalue, I,, of (3.1) whenever at 
least one of the following conditions is satisfied: 

(i) p E I (as in all problems in Liouville normal form) or 
(ii) A,>0 or 

(iii) the kth zero of (3.2) below is nonnegative. 

This requirement, which is satisfied for all k in the special cases studied in 
[ 1,3 1, is assumed henceforth. 

Using calculations analogous to those in [ 1,3 ] it can be deduced from 
Theorem 2.2 that a lower bound for 1, will be given by the kth zero of 

f (1) = 0, (3.2a) 

409/83/l-2 
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where 

f(A) = yc,( 1 -z, tan wn] + d(z, + tan wnj, if hP”>Q,, 

= yc,] 1 t z, tanh w,,] + s[z,, + tanh wnj, if AP,<Q,, 

and, for i = 2 ,..., n - 1, 

‘i+l= 
Ci+ l(Zi + tall Wi) 

Ci( 1 - zi tan Wi) ’ 
if ilPi > Qi, 

= Ci+ l(zi + tad Wi) 
ci( 1 + zi tanh w,) ’ 

if ~Pi<Qi, 

and 

z 2 = c*(Ptafl WI - ac,> 
c,(P + ac, tan WI) ’ 

if AP,>Q,, 

= CAP tar-h w, - a~,) 
c,(p - ac, tanh w,) ’ 

if AP,<Q,, 

where, for i = l,..., n, 

ci = IRiW’i - Qr)l"* and Wi=Ci(Xi-Xi-l)/R*7 (3.2e) 

when, in the notation of Section 2, 

R,= R,, Q,=Q;, P,=P:, i = l,..., n. (3.3) 

(3.2b) 

(3.2~) 

(3.2d) 

Similarly it can be deduced from Theorem 2.2 that if (3.3) is replaced by 

R,=Rf, Q,= Q:, Pi = p;, i = l,..., n, (3.4) 

then the kth zero of (3.2) will give an upper bound for 1,. The (very rare) 
circumstance AF’, = Q, can be ha&ad by m&&g a small perturb&ion of the 
trial value of A in the iterative solution of (3.2), as reeommeuded in IS] for 
the special case given in [ 11. 

Clearly (1.1) is the special case of (3.1), with r,p E C[xo,x,J, &tkmd by 
putting q = 0 and a = y = 0. Leighton also made the res&i&&n xr - xi-, = 
(x, -x,)/n, i = l,..., n. JZqutkm (3.2) sint@bs in this case, but not to 
(L2.9), which lacks a factor RI/RI,, in the 19 i = 2,..., n, (Note 
that only the first alternative in (3.2b)-(3 in this case since 
cf” 0 < dp.) 

The use of an .acbitrary fll here 
It is immediately appGx&le to the case in which p, q and r have a finite 
number of jump discontinuities as these discontineities may be chosen as 
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grid points, xi. Moreover if (as is the case in most applications) p, q and r 
are piecewise monotonic, the x, may be chosen so that p, q and r are all 
monotonic on each subinterval (x/-i, xi), thereby greatly simplifying the 
calculation of P,, Q, and R,. 

4. NUMERKAL RESULTS 

Leighton’s numerical results concerned the eigenvalue problem 

((2x+ 1)-‘y’)‘+1(2x+ l).Y=O, 

y(0) = y( 1) = 0. 
(4.1) 

In Table I, bounds for the first and fourth eigenvalues of (4.1) given by 
(L2.9) and by (3.2) with n = 4, 16, 64, 256 and 1024 equal subintervals are 
compared. Note that results given by (L2.9) with n = 4 agree with those 
given in [3]. Spurious bounds are marked *. 

The two-sided bounds obtained by (3.2) have two important advantages 
over those obtained by many other methods. As predicted by (2.3), their 
relative accuracy (though not their absolute accuracy) is approximately the 
same for all eigenvalues (whereas many methods give much less accuracy for 
higher eigenvalues) and the true eigenvalue is close to the average of the 
upper and lower bounds, especially when the grid spacing is small. Although 

TABLE I 

Bounds for Eigenvalues of (4.1) from (3.2) and (L2.9) 

n 4 16 64 256 1024 

A, = ~‘14 = 2.46740110027233965... 

(3.2) 1.9496 2.3201 2.4293 
3.2227 2.6292 2.5064 

(L2.9) 1.8330 2.1687 2.2646 2.28947 
2.9200 2.4370* 2.3317* 2.30623’ 

A, = 4n’ = 39.478417604357434... 

(3.2) 31.193 37.122 38.869 
51.564 42.066 40.103 

(L2.9) 32.313 36.857 38.589 39.0377 39.15098 
52.036 41.710 39.801 39.3407* 39.22673* 

2.45779 2.464993 
2.47707 2.469812 

39.3247 39.43989 
39.633 1 39.51700 

2.295737 
2.299925* 
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the difference between the upper and lower bounds is of order n-’ (with n 
equal subintervals), the difference between the mean, p,Jn), of the upper and 
lower bounds and the eigenvalue, J.,, which they bound is of order n‘-2. 
Indeed Table II indicates that the error in the estimates 

obtained by h*-extrapolation, is of order n-‘, with ii, > vk(n) in each case 
computed. 

Table II was compiled, from bounds computed to I5 significant figures 
using double precision (18D) arithmetic on the DEC 10 computer at La 
Trobe University, although, for ease of tabulation, only the most significant 
figures are shown in Table I. Since all results repeated in single precision 
(80) showed no change in the first 7 significant figures, all 15 figures of the 
double precision results may be assumed correct. 

Leighton also gave estimates for the first nine eigenvalues of (4.1) 
obtained by (L2.9) with uf = Pi/R,, where 

picp (X,-,Xi)) R,=T (xi-;++) , 14.2) 

Again the appropriate condition is not (1.2) but (1.3), which again leads to 
(3.2) with P, and R, given by (4.2) (and of course Q, = 01= y = 0). Using 
this formula, we obtained an astonishing 13 correct significant figures in the 
estimates of the first tive eigenvalues using only four equal subintervals. The 
accuracy obtained with (4.2) in this case is not likely to be typical since it 
exceeds accuracy reported by others using similar methods. Nevertheless the 
contrast with Table II of [3] is remarkable. 

Bounds given by (3.2) and by (L2.9) for the first five eigenvalnes of (4.1) 
and of some other cases of (1.1) are given (to five significant figures) in [5], 
where they are compared with bounds obtained by some other methods. Bee 
also [6]. 

TABLE II 

Errors, 1, - o,(n), in Extrapolated Estimates 

n 
- 

k 4 16 64 256 
__- 

1 1.927E - 4 7.364E - 7 2.873E - 9 l.l22E- 11 
4 3.0838 - 3 l.l78E-5 4.5966 - 8 1.795E -- 10 
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