Leighton's Bounds for Sturm-Liouville Eigenvalues

Alan L. Andrew
Mathematics Department, La Trobe University, Bundoora, Victoria, 3083, Australia

Frank R. de Hoog

Division of Mathematics and Statistics, CSIRO, Canberra, ACT, Australia

AND

Peter J. Robb

Mathematics Department, Swinburne Institute of Technology, Hawthorn, Victoria, 3122, Australia

Submitted by Alex McNabb

An error is pointed out in a method of W . Leighton for computing two-sided bounds for the eigenvalues of the Sturm-Liouville problem $\left(r y^{\prime}\right)^{\prime}+\lambda p y=0, y(a)=$ $y(b)=0$. The error is corrected, the underlying theory is examined and the method is generalized.

1. Introduction

Leighton [3] has suggested a simple numerical method for computing twosided bounds for the eigenvalues of the Sturm-Liouville problem

$$
\begin{align*}
& \left(r y^{\prime}\right)^{\prime}+\lambda p y=0, \tag{1.1a}\\
& y(a)=y(b)=0, \tag{1.1b}
\end{align*}
$$

where r and p are continuous and positive on $[a, b]$. Leighton's idea was to divide $[a, b]$ into n subintervals and on each subinterval solve the equation with p and r replaced by constants. In addition to (1.1b), boundary conditions are imposed at the ends of the subintervals by imposing certain continuity conditions on y. Similar ideas have been used by others ([4] and the references given there) to obtain estimates, but, except in [1], not bounds, for eigenvalues. Leighton illustrated his ideas by a numerical example with the interval divided into four subintervals.

In this paper, an important error in [3] is pointed out. It is shown that when, in Leighton's numerical example, the number of subintervals is increased, the upper bounds given by his Eq. (2.9) (subsequently referred to as (L2.9)) become lower than the true eigenvalues. This error is corrected, the underlying theory is examined and the method is generalized.

The error arises from Leighton's choice of continuity conditions for $y . \mathrm{He}$ imposes the condition

$$
\begin{equation*}
y \in C^{1}[a, b] \tag{1.2}
\end{equation*}
$$

It is shown in Section 2 that the appropriate condition to impose on the solution of (1.1) when r has jump discontinuities is

$$
\begin{equation*}
\left.y \in C[a, b], \quad r y^{\prime} \in C \mid r ; a, b\right] \tag{1.3}
\end{equation*}
$$

where the notation $u \in C[r ; a, b]$ means that there exists a function $u_{1} \in C[a, b]$ such that $u(x)=u_{1}(x)$ for all $x \in[a, b]$ except perhaps the points of discontinuity of r. In general, y^{\prime} will not exist at jump discontinuities of r. The error in [3] may have arisen because (L2.9) is derived for the special case when $r \equiv 1$ and then used ($p .386$), without the appropriate modifications (see Section 3 below), for problems with a non-constant r. This difficulty does not affect the work of Day [1], who, like many others, considered only the Liouville normal form (in which $r \equiv 1$).

2. Theory

Leighton stated that his Theorem 3.1 was an immediate consequence of the Sturm-Picone theorem and that this theorem remained valid when r and p have a finite number of finite discontinuities. Since most references consider only the case $r \in C[a, b]$ (when (1.2) and (1.3) are identical), the relevant theory is developed here for completeness.

We first introduce some notation. Let $x_{0}<x_{1}<\cdots<x_{m}$ and let $P C\left[x_{0}, x_{m}\right]$ denote the class of functions in

$$
C\left[x_{0}, x_{1}\right) \cap C\left(x_{1}, x_{2}\right) \cap \cdots \cap C\left(x_{m-1}, x_{m}\right]
$$

for which left and right hand limits exist at x_{1}, \ldots, x_{m-1}.
Theorem 2.1. For $j=1,2$ let
(i) $r_{j}, r_{j}^{\prime}, q_{j} \in P C\left[x_{0}, x_{m}\right]$;
(ii) $y_{j} \in C\left[x_{0}, x_{m}\right], r_{j} y_{j}^{\prime} \in C\left[r_{j} ; x_{0}, x_{m}\right]$;
(iii) $\left(r_{j} y_{j}^{\prime}\right)^{\prime}+q_{j} y_{j}=0$ on $\left(x_{i-1}, x_{i}\right), i=1, \ldots, m$;
(iv) $y_{j}\left(x_{0}\right)=\alpha_{j},\left(r_{j} y_{j}^{\prime}\right)\left(x_{0}\right)=\beta_{j},\left|\alpha_{j}\right|+\left|\beta_{j}\right|>0$;
(v) $r_{1} \geqslant r_{2} \geqslant r_{0}$ (const.) $>0, q_{2}>q_{1}$ on $\left(x_{i-1}, x_{i}\right), i=1, \ldots, m$; and
(vi) if $\alpha_{1} \neq 0$, then $\alpha_{2} \neq 0$ and $\beta_{1} / \alpha_{1} \geqslant \beta_{2} / \alpha_{2}$.

Let y_{1} have $k(\geqslant 0)$ zeros in $\left(x_{0}, x_{m}\right]$. Then y_{2} has at least k zeros in $\left(x_{0}, x_{m}\right]$ and the sth $(s \leqslant k)$ zero of y_{2} is less than the sth zero of y_{1}. Furthermore, if y_{1} and y_{2} have the same number of zeros in $\left(x_{0}, x_{m}\right)$ then $y_{1}\left(x_{m}\right) \neq 0$ and if in addition $y_{2}\left(x_{m}\right) \neq 0$, then $\left(r_{1} y_{1}^{\prime} / y_{1}\right)\left(x_{m}\right)>\left(r_{2} y_{2}^{\prime} / y_{2}\right)\left(x_{m}\right)$.

Proof. Induction on m shows that this follows from the first and second comparison theorems for the continuous case as given in Ince [2, pp. 228, 229].

Theorem 2.2. For $j=1,2$, let
(i) $r_{j}, r_{j}^{\prime}, p_{j}, q_{j} \in P C\left[x_{0}, x_{m}\right]$;
(ii) $y_{j} \in C\left[x_{0}, x_{m}\right], r_{j} y_{j}^{\prime} \in C\left[r_{j} ; x_{0}, x_{m}\right]$;
(iii) $\left(r_{j} y_{j}^{\prime}\right)^{\prime}+\left(\lambda^{(j)} p_{j}-q_{j}\right) y_{j}=0$ on $\left(x_{i-1}, x_{i}\right), i=1, \ldots, m$;
(iv) $\alpha_{j}\left(r_{j} y_{j}^{\prime}\right)\left(x_{0}\right)=\beta_{j} y_{j}\left(x_{0}\right), \quad\left|\alpha_{j}\right|+\left|\beta_{j}\right|>0, \quad \gamma_{j}\left(r_{j} y_{j}^{\prime}\right)\left(x_{m}\right)=\delta_{j} y_{j}\left(x_{m}\right)$, $\left|\gamma_{j}\right|+\left|\delta_{j}\right|>0 ;$
(v) $p_{2} \geqslant p_{1} \geqslant p_{0}$ (const.) $>0, r_{1} \geqslant r_{2} \geqslant r_{0}$ (const.) >0 and $q_{1} \geqslant q_{2}$ on $\left(x_{i-1}, x_{i}\right), i=1, \ldots, m ;$
(vi) if $\alpha_{1} \neq 0$, then $\alpha_{2} \neq 0$ and $\beta_{1} / \alpha_{1} \geqslant \beta_{2} / \alpha_{2}$; and
(vii) if $\gamma_{1} \neq 0$, then $\gamma_{2} \neq 0$ and $\delta_{1} / \gamma_{1} \leqslant \delta_{2} / \gamma_{2}$.

Then,
(a) the above eigenvalue problems each have a countable infinity of eigenvalues $\lambda_{1}^{(j)} \leqslant \lambda_{2}^{(j)} \leqslant \cdots$ and the eigenfunction corresponding to $\lambda_{k}^{(j)}$ has exactly $(k-1)$ zeros in $\left(x_{0}, x_{m}\right)$, and
(b) $\lambda_{k}^{(1)} \geqslant \lambda_{k}^{(2)}$ for all $k \in \mathbf{N}$ for which $\lambda_{k}^{(1)}\left(p_{1}-p_{2}\right) \leqslant 0$.

Proof. (a) The proof is the same as that of Theorem II in Ince [2, p. 233] except that it uses Theorem 2.1 above instead of Sturm's original comparison theorems.
(b) Suppose $\lambda_{k}^{(1)}<\lambda_{k}^{(2)}$ although $\lambda_{k}^{(1)}\left(p_{1}-p_{2}\right) \leqslant 0$. Then $\left(\lambda_{k}^{(1)} p_{1}-q_{1}\right)-$ $\left(\lambda_{k}^{(2)} p_{2}-q_{2}\right)=\left(\lambda_{k}^{(1)}-\lambda_{k}^{(2)}\right) p_{2}+\lambda_{k}^{(1)}\left(p_{1}-p_{2}\right)+q_{2}-q_{1}<0$. Hence, it follows from (a) and Theorem 2.1 that $y_{k}^{(1)}$ and $y_{k}^{(2)}$ cannot both satisfy the boundary conditions.

The condition $\lambda_{k}^{(1)}\left(p_{1}-p_{2}\right) \leqslant 0$, required in Theorem 2.2 b , is satisfied if at least one of the following is true:
(i) $p_{1}=p_{2}$ (as in all problems in Liouville normal form) or
(ii) $\lambda_{k}^{(1)} \geqslant 0$.

The latter condition is satisfied for all k if, for example, $q_{1} \geqslant 0$ and $\alpha_{1} \beta_{1} \geqslant$ $0 \geqslant \gamma_{1} \delta_{1}$, as is the case in (1.1). A similar proof shows $\lambda_{k}^{(2)} \geqslant 0$ to be a sufficient condition.

Discussion of the algorithm is facilitated by yet more notation. Let

$$
R_{i}^{+}=\sup _{\left(x_{i-1}, x_{i}\right)} r, \quad R_{i}^{-}=\inf _{\left(x_{i}-x_{i}\right)} r
$$

and

$$
r^{+}(x)=R_{i}^{+} \quad \text { when } x_{i-1}<x \leqslant x_{i}, i=1, \ldots, n \text { with } r^{+}\left(x_{0}\right)=R_{1}^{+}
$$

and define numbers $P_{i}^{+}, P_{i}^{-}, Q_{i}^{+}$and Q_{i}^{-}and functions r^{-}, p^{+}and p^{-} similarly. In Leighton's method, (1.1a) is replaced by

$$
\begin{equation*}
\left(R_{i} y^{\prime}\right)^{\prime}+\lambda P_{i} y=0 \quad \text { on }\left(x_{i-1}, x_{i}\right), i=1, \ldots, n \tag{2.1}
\end{equation*}
$$

where $a=x_{0}<x_{1}<\cdots<x_{n}=b$. Theorem 2.2 shows that (2.1), with boundary conditions given by (1.1b) and (1.3), will give lower bounds, λ_{k}^{*}, for the eigenvalues, λ_{k}, of (1.1) if

$$
\begin{equation*}
R_{i}=R_{i}^{-}, \quad P_{i}=P_{i}^{+}, \quad i=1, \ldots, n \tag{2.2a}
\end{equation*}
$$

and upper bounds, λ_{k}^{+}, if instead

$$
\begin{equation*}
R_{i}=R_{i}^{+}, \quad P_{i}=P_{i}^{-}, \quad i=1, \ldots, n \tag{2.2b}
\end{equation*}
$$

Indeed since

$$
0<\rho_{3} r \leqslant r^{-} \leqslant r \leqslant r^{+} \leqslant \rho_{1} r \quad \text { and } \quad 0<\rho_{4} p \leqslant p^{-} \leqslant p \leqslant p^{+} \leqslant \rho_{2} p
$$

where

$$
\begin{array}{ll}
\rho_{1}=\sup _{\{a, b]} r^{+} / r, & \rho_{2}=\sup _{\{a, b\}} p^{+} / p, \\
\rho_{3}=\inf _{\{a, b]} r^{-} / r, & \rho_{4}=\inf _{\{a, b\}} p^{-} / p,
\end{array}
$$

Theorem 2.2 shows that, for all $k \in \mathbf{N}$,

$$
\begin{equation*}
\rho_{1} \lambda_{k} / \rho_{4} \geqslant \lambda_{k}^{+} \geqslant \lambda_{k} \geqslant \lambda_{k}^{-} \geqslant \rho_{3} \lambda_{k} / \rho_{2} \tag{2.3}
\end{equation*}
$$

If p and r are continuous (or cven in $P C\left[x_{0}, x_{m}\right]$ for some fixed partition, $a=x_{0}<x_{1}<\cdots<x_{m}=b$) and bounded away from zero then $\rho_{j} \rightarrow 1, j=$ $1, \ldots, 4$, as the partition is refined with $\max \left|x_{i}-x_{i-1}\right| \rightarrow 0$. Convergence of the bounds follows from (2.3). Indeed Taylor's theorem shows that if n equal subintervals are used and p and r are in $C^{1}[a, b]$, then $\rho_{j}=1+O\left(n^{-1}\right)$,
$j=1, \ldots, 4$ so that in this case convergence of λ_{k}^{+}and λ_{k}^{-}to λ_{k} is of order n^{-1}. Theorem 2.2 also shows that for successive refinements of the partition of $[a, b]$ the convergence is monotonic. Analogous results may be proved for the more general problem considered in Section 3.

Similar arguments show that if (as recommended in [3]) the boundary conditions (1.1b) and (1.2) are used, then the eigenvalues of (2.1) will converge, as $\max _{i}\left|x_{i}-x_{i-1}\right| \rightarrow 0$, to the eigenvalues of

$$
\begin{equation*}
r y^{\prime \prime}+\lambda p y=0, \quad y(a)=y(b)=0 \tag{2.4}
\end{equation*}
$$

Applying the transformation $y=r^{-1 / 2} u$ to (1.1) then shows that whenever $\left(r^{-1 / 2} r^{\prime}\right)^{\prime}>0$, a condition satisfied by Leighton's numerical example, the "upper" bounds given by his algorithm will be lower than the true eigenvalue whenever $\max _{i}\left|x_{i}-x_{i-1}\right|$ is sufficiently small.

In [3] Leighton used similar ideas to obtain bounds for conjugate points. When the method is used for this purpose, Theorem 2.1 shows that the continuity requirement is again (1.3) and not (1.2). This does not affect the single numerical example given in [3, Sect. 4] as this has $r \equiv 1$.

3. The Modified Algorithm

Consider the eigenvalue problem

$$
\begin{gather*}
\left(r y^{\prime}\right)^{\prime}+(\lambda p-q) y=0 \quad \text { on }\left(x_{i-1}, x_{i}\right), i=1, \ldots, n, \tag{3.1a}\\
\alpha\left(r y^{\prime}\right)\left(x_{0}\right)+\beta y\left(x_{0}\right)=\gamma\left(r y^{\prime}\right)\left(x_{n}\right)+\delta y\left(x_{n}\right)=0, \tag{3.1b}\\
|\alpha|+|\beta|>0, \quad|\gamma|+|\delta|>0, \\
r, r^{\prime}, p, q \in P C\left[x_{0}, x_{n}\right], \quad y \in C\left[x_{0}, x_{n}\right], \quad r y^{\prime} \in C\left[r ; x_{0}, x_{n}\right], \tag{3.1c}
\end{gather*}
$$

where $r \geqslant r_{0}$ (const.) $>0, p \geqslant p_{0}$ (const.) >0 on $\left[x_{0}, x_{n}\right]$. Theorem 2.2(b) may be used to give bounds for the k th eigenvalue, λ_{k}, of (3.1) whenever at least one of the following conditions is satisfied:
(i) $p \equiv 1$ (as in all problems in Liouville normal form) or
(ii) $\lambda_{k} \geqslant 0$ or
(iii) the k th zero of (3.2) below is nonnegative.

This requirement, which is satisfied for all k in the special cases studied in $[1,3]$, is assumed henceforth.

Using calculations analogous to those in $[1,3]$ it can be deduced from Theorem 2.2 that a lower bound for λ_{k} will be given by the k th zero of

$$
\begin{equation*}
f(\lambda)=0 \tag{3.2a}
\end{equation*}
$$

where

$$
\begin{align*}
f(\lambda) & \left.=\gamma c_{n}\left[1-z_{n} \tan w_{n}\right]+\delta \mid z_{n}+\tan w_{n}\right], & & \text { if } \quad \lambda P_{n}>Q_{n}, \\
& =\gamma c_{n}\left[1+z_{n} \tanh w_{n}\right]+\delta\left[z_{n}+\tanh w_{n}\right], & & \text { if } \quad \lambda P_{n}<Q_{n}, \tag{3.2b}
\end{align*}
$$

and, for $i=2, \ldots, n-1$,

$$
\begin{align*}
z_{i+1} & =\frac{c_{i+1}\left(z_{i}+\tan w_{i}\right)}{c_{i}\left(1-z_{i} \tan w_{i}\right)}, \quad \text { if } \quad \lambda P_{i}>Q_{i} \\
& =\frac{c_{i+1}\left(z_{i}+\tanh w_{i}\right)}{c_{i}\left(1+z_{i} \tanh w_{i}\right)}, \quad \text { if } \quad \lambda P_{i}<Q_{i} \tag{3.2c}
\end{align*}
$$

and

$$
\begin{align*}
z_{2} & =\frac{c_{2}\left(\beta \tan w_{1}-\alpha c_{1}\right)}{c_{1}\left(\beta+\alpha c_{1} \tan w_{1}\right)}, \\
& =\frac{c_{2}\left(\beta \tanh w_{1}-\alpha c_{1}\right)}{c_{1}\left(\beta-\alpha c_{1} \tanh w_{1}\right)}, \quad \text { if } \quad \lambda P_{1}>Q_{1}<Q_{1} \tag{3.2~d}
\end{align*}
$$

where, for $i=1, \ldots, n$,

$$
\begin{equation*}
c_{i}=\mid R_{i}\left(\lambda P_{i}-Q_{i}\right)^{1 / 2} \quad \text { and } \quad w_{i}=c_{i}\left(x_{i}-x_{i-1}\right) / R_{i} \tag{3.2e}
\end{equation*}
$$

when, in the notation of Section 2,

$$
\begin{equation*}
R_{i}=R_{i}^{-}, \quad Q_{i}=Q_{i}^{-}, \quad P_{i}=P_{i}^{+}, \quad i=1, \ldots, n \tag{3.3}
\end{equation*}
$$

Similarly it can be deduced from Theorem 2.2 that if (3.3) is replaced by

$$
\begin{equation*}
R_{i}=R_{i}^{+}, \quad Q_{i}=Q_{i}^{+}, \quad P_{i}=P_{i}^{-}, \quad i=1, \ldots, n \tag{3.4}
\end{equation*}
$$

then the k th zero of (3.2) will give an upper bound for λ_{k}. The (very rare) circumstance $\lambda P_{l}=Q_{i}$ can be handled by making a small perturbation of the trial value of λ in the iterative solution of (3.2), as recommended in [5] for the special case given in [1].

Clearly (1.1) is the special case of (3.1), with $r, p \in C\left[x_{0}, x_{n}\right]$, obtained by putting $q \equiv 0$ and $\alpha=\gamma=0$. Leighton also made the restriction $x_{i}-x_{i-1}=$ $\left(x_{n}-x_{0}\right) / n, i=1, \ldots, n$. Equation (3.2) simplifies in this case, but not to (L2.9), which lacks a factor $\boldsymbol{R}_{i} / R_{i \ldots 1}$ in the equation for $z_{i}, i=2, \ldots, n$. (Note that only the first alternative in (3.2b)-(3.2d) is needed in this case since $q \equiv 0<\lambda p$.)

The use of an arbitrary partition here adds some flevibility to the scheme. It is immediately applicable to the case in which p, q and r have a finite number of jump discontinuities as these discontinuities may be chosen as
grid points, x_{i}. Moreover if (as is the case in most applications) p, q and r are piecewise monotonic, the x_{i} may be chosen so that p, q and r are all monotonic on each subinterval $\left(x_{i-1}, x_{i}\right)$, thereby greatly simplifying the calculation of P_{i}, Q_{i} and R_{i}.

4. Numerical Results

Leighton's numerical results concerned the eigenvalue problem

$$
\begin{gather*}
\left((2 x+1)^{-1} y^{\prime}\right)^{\prime}+\lambda(2 x+1) y=0 \\
y(0)=y(1)=0 \tag{4.1}
\end{gather*}
$$

In Table I, bounds for the first and fourth eigenvalues of (4.1) given by (L2.9) and by (3.2) with $n=4,16,64,256$ and 1024 equal subintervals are compared. Note that results given by (L2.9) with $n=4$ agree with those given in [3]. Spurious bounds are marked *.

The two-sided bounds obtained by (3.2) have two important advantages over those obtained by many other methods. As predicted by (2.3), their relative accuracy (though not their absolute accuracy) is approximately the same for all eigenvalues (whereas many methods give much less accuracy for higher eigenvalues) and the true eigenvalue is close to the average of the upper and lower bounds, especially when the grid spacing is small. Although

TABLE I
Bounds for Eigenvalues of (4.1) from (3.2) and (L2.9)

n	4	16	64	256	1024
$\lambda_{1}=\pi^{2} / 4=2.46740110027233965 .$.					
(3.2)	1.9496	2.3201	2.4293	2.45779	2.464993
	3.2227	2.6292	2.5064	2.47707	2.469812
(L2.9)	1.8330	2.1687	2.2646	2.28947	2.295737
	2.9200	2.4370*	2.3317*	2.30623*	2.299925*
$\lambda_{4}=4 \pi^{2}=39.478417604357434 .$.					
(3.2)	31.193	37.122	38.869	39.3247	39.43989
	51.564	42.066	40.103	39.6331	39.51700
(L2.9)	32.313	36.857	38.589	39.0377	39.15098
	52.036	41.710	39.801	39.3407*	39.22673*

the difference between the upper and lower bounds is of order n^{-1} (with n equal subintervals), the difference between the mean, $\mu_{k}(n)$, of the upper and lower bounds and the eigenvalue, λ_{k}, which they bound is of order n^{-2}. Indeed Table II indicates that the error in the estimates

$$
v_{k}(n)=\left|16 \mu_{k}(4 n)-\mu_{k}(n)\right| / 15
$$

obtained by h^{2}-extrapolation, is of order n^{-4}, with $\lambda_{k}>v_{k}(n)$ in each case computed.

Table II was compiled from bounds computed to 15 significant figures using double precision (18 D) arithmetic on the DEC10 computer at La Trobe University, although, for ease of tabulation, only the most significant figures are shown in Table I. Since all results repeated in single precision ($8 D$) showed no change in the first 7 significant figures, all 15 figures of the double precision results may be assumed correct.

Leighton also gave estimates for the first nine eigenvalues of (4,1) obtained by (L2.9) with $a_{i}^{2}=P_{i} / R_{i}$, where

$$
\begin{equation*}
P_{i}=p\left(\frac{x_{i-1}+x_{i}}{2}\right), \quad R_{i}=r\left(\frac{x_{i-1}+x_{i}}{2}\right) . \tag{4.2}
\end{equation*}
$$

Again the appropriate condition is not (1.2) but (1.3), which again leads to (3.2) with P_{i} and R_{i} given by (4.2) (and of course $Q_{i}=\alpha=\gamma=0$). Using this formula, we obtained an astonishing 13 correct significant figures in the estimates of the first five eigenvalues using only four equal subintervals. The accuracy obtained with (4.2) in this case is not likely to be typical since it exceeds accuracy reported by others using similar methods. Nevertheless the contrast with Table II of [3] is remarkable.

Bounds given by (3.2) and by (L2.9) for the first five eigenvalues of (4.1) and of some other cases of (1.1) are given (to five significant figures) in [5], where they are compared with bounds obtained by some other methods. See also [6].

TABLE II
Errors, $\lambda_{k}-v_{k}(n)$, in Extrapolated Estimates

		n		
k	4	16	64	256
1	$1.927 E-4$	$7.364 E-7$	$2.873 E-9$	$1.122 E-11$
4	$3.083 E-3$	$1.178 E-5$	$4.596 E-8$	$1.795 E-10$

References

1. W. B. Day, More bounds for eigenvalues, J. Math. Anal. Appl. 46 (1974), 523-532.
2. E. L. Ince, "Ordinary Differential Equations," Dover, New York, 1956.
3. W. Leighton, Upper and lower bounds for eigenvalues, J. Math. Anal. Appl. 35 (1971), 381-388.
4. J. Paine and F. de Hoog, Uniform estimation of the eigenvalues of Sturm-Liouville problems, J. Austral. Math. Soc. Ser. B 21 (1980), 365-383.
5. P. J. Robs, Computation of two-sided bounds for eigenvalues of Sturm-Liouville problems, M.Sc. thesis, La Trobe University, September 1979.
6. P. J. Robs, Wendroff's bounds for Sturm-Liouville eigenvalues, submitted.
