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Abstract 

Higham, D.J., Monotonic piecewise cubic interpolation, with applications to ODE plotting, Journal of 
Computational and Applied Mathematics 39 (1992) 287-294. 

Given a set of solution and derivative values, we examine the problem of constructing a piecewise cubic 
interpolant which reflects the monotonicity present in the data. Drawing on the theory of Fritsch and Carlson 
(19801, we derive a simple algorithm that, if necessary, adds one or two extra knots between existing knots in 
order to preserve monotonicity. The new algorithm is completely local in nature and does not perturb the 
input data. We show that the algo:-ithm is particularly suited to the case where the data arises from the 
discrete approximate solution of an ODE. 
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1. Introduction 

Piecewise cubic Hermite interpolation is a popular method for fitting a continuously 
differentiable curve through a discrete set of solution and derivative data. One minor defect in 
this approximation technique is that monotonicity present in the data will not necessarily be 
reflected by the interpolant. For this reason several authors have derived algorithms which 
“massage” the derivative data, thereby guaranteeing that monotonicity will be preserved 
[1,4,6,7,10]. In this work, we present an alternative algorithm which, if necessary, adds one or 
two new knots in each subinterval. The resulting technique is completely local and does not 
alter the input data. We argue that this approach is particularly suited to the special case where 
the numerical solution of an ODE is to be plotted. The relevant theory of Fritsch and Carlson 
[7] is introduced in the next section, and in Section 3 we derive the new algorithm. The 
subproblem of plotting ODE data is discussed briefly in Section 4. 
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2. The results of Fritsch and Carlson 

Suppose we are given a set of knots x, < X2 < - - * <x,, and corresponding function and 
derivative data {J+};= 1 and (di}:= 1. We may then define the unique piecewise cubic Hermite 
interpolant p(x) E C’[ Y ,, x,] that satisfies 

(i) p(x,) = yi, 1 < i G n; 
(ii) p’(Xi) = di, I < i < ti; 

(iii) p(x) is a cubic polynomial on [xi, xi+ i], 1 < i G n - 1. 
On the interval [xi, xi+i] we denote the secant slope by Aj := (yi+ 1 - Y,)/(xi+ 1 -xi), and we 
say that the data is monotone on this interval if 

di ditl 
-20, - 

Ai Ai 

2 0, 

when A@0 or if Ai=di=d;+, = 0. In many applications it is desirable that monotonicity of 
the data should be reflected in the interpolant. Necessary and sufficient conditions for p(x) to 
be monotonic on [xi, xi+ ,] were determined by Fritsch and Carlson [7] and are summarked in 
the following lemma. 

Lemma. Zf Ai = dj = d,, 1 = 0, then p( x) is monotonic on [xi, xi,, 1. ( In this case p( x1 reduces to 
a constant firnction.) Zf Ai + 0, then letting 

di di+l 

ai=I’ 
Pi= F9 

1 

p(x) is monoi-onic OII [Xi, Xi+ 1] if and only if (Cyi, pi) ~6, where the monotonic&y region Jl is 
shown in Fig. 2.1. Formally, .&= {(a, /?I 1 c#&x, p) >, 0) U {(a, p) 10 < a! < 3, 0 <p < 3}, where 
&IY, p> = a! - (2ac + p - 3j2/(3((u + p - 2)). 

Note that for Aj # 0, the condition for the data to be monotonic is that ((Y,, pi) lies in the 
first quadrant of Ii&*. Hence it is clear that there exists monotonic data for which the 
corresponding cubic Hermite interpolant is not monotonic (for example, if Cyi > 4 or Pi > 4). To 

a Xl Gew 22 

Fig. 2.1. The monotonicity region M. Fig. 3.1. Quantities in parentheses are tangent slopes. 
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avoid this problem, Fritsch and Carlson proposed an algorithm for perturbing the derivative 
data di so that the monotonicity of the data is unchanged, and is reproduced in the interpolant. 
To apply the algorithm, a region 9Y.M satisfying 

(a,P)-- =$ (cy*,p*)EY, forO<a”<cr, O<p*<p, 

must be chosen. The algorithm ensures that the new data {Xi, yi, di*) satisfies 
{dF/Ai, dF+l/Ai} E 9,1< i < II - 1. 

Fritsch and Carlson had in mind the application where the derivative data {di) is not 
supplied directly, but rather is computed from the function data { yi) by the use of, for example, 
three point difference formulas. In this case it is natural to consider altering the {di} values in 
order to produce a monotonic cubic spline. We point out that the algorithm may “unneces- 
sarily” perturb the data, since it ensures that the (pi, pi) pairs lie in Y rather than M. 
Alternative techniques for perturbing the di values have since been proposed in [l&5,10]. 

In this work, we are concerned with the application where the data arises from the discrete 
solution of an initial-value ODE problem 

Y’(X) =f(x, Y(X)), y(a) =Ya7 a dx d. 

Here we are given approximations yi =r y(Xi) and di := f( Xi, yi) ~ y’(.Ui). (In the case of a 
system of ODES we consider each component of the solution separately.) In this situation we 
will generally have an equal amount of confidence in the solution data yi and the derivative 
data di, since if f satisfies a Lipschitz condition, the asymptotic order of accuracy of di is the 
same as that of yi. Hence it seems undesirable to change the derivative values. Note that 
altering di also re!a.. vcs the condition that the residual p’(x) - f( x, p(x)) be zero at the knots. 

The main purpose of this work is to present an alternative algorithm for preserving 
monotonicity in cubic splines. With this algorithm, if the original cubic Hermite does not 
preserve monotonicity in an interval, then we insert one or two extra knots, with corresponding 
solution and derivative data. As pointed out by Fritsch and Carlson, two disadvantages of 
adding knots are that the amount of extra storage required for the data, and the amount of 
search time needed to evaluate the spline will both be increased. However, as we will see in 
Section 4, the percentage of intervals [Xi, Xi+ 1] on which the cubic Hermite fails to preserve 
monotonicity is typically very small in the case of ODE data. Also, the storage requirements of 
the original spline cannot be determined a priori, since the number of knots n depends on both 
the differential equation and the accuracy requirement. 

We mention that other shape-preserving techniques which use the idea of adding knots have 
appeared in the literature; see, for example, [l,ll]. In the former reference, by altering the 
derivative data the {(yi, Pi} values are forced into a region which contains A, and theri, if 
necessary, an extra knot is added in each interval. (The algorithm proposed here differs in that 
it is completely local and does not change the {di} data.) 

3. An algorithm for adding knots 

We now develop an algorithm for adding knots in those intervals where the data is 
monotone, but the corresponding cubic polynomial is not. For simplicity of notation, we label 
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the data (x,, y,, d,; x2, y,, d,) and we let 

JCL, -h *! 4 
Ly=- =- 

X2 -X1 A’ p A’ 

(We may assume that A f 0, since if A = 0, then the cubic Hermite is monotone if and only if 
the data is monotone.) For the moment we assume that the data is monotonic increasing with 
a>,@. If (ac, @E then we hope to add a new knot, xnew, with corresponding data y,,, and 

d,, so that Y, <Y,,, <y2, d,,, H > 0 and the cubic Hermites on [xl, x,,,] and [xnea, x2] are 
both monotonic increasing. Figure 3.1 illustrates the situation. We let A, and A, denote the 
secant slopes on the left and right intervals; that is, 

A,= Ynew-y1, AR= 
Y2 - Klew 

9 
X new -X1 x2 -Xnew 

and we write x,,, =x, + rZ, where Z =x2 -x1, and 0 < r < 1. The new data is completely 
specified by AL, r and d,,, . We also define 

4 d d d2 

aL 
=- 

AL’ 

p,=fx, aR=f, PR=h 

L R R 

to be the alpha and beta values on the new left and right intervals. We aim to make 

((yL9 BL) and (t+, &) Since (a, p) EM and ac > p, we must have a! > 3 (see Fig. 2.1). 
In other words, the derivative value d, is more than three times as large as the secant slope A. 
To alleviate this, we must choose AL > A, say AL = KA for some K > 1. For reasons which will 
become clear shortly, we choose _K > fa, so that cyL < 3. The monotonic&y condition, ynew <. y2, 
then implies that r must be chosen to satisfy r < l/K. From Fig. 3.1 we see that AR < A and 
hence & > p. Since (a,, &) Ed= & < 4, we cannot hope for the algorithm to succeed 
unless 0 < 4. Assuming p < 4, and using the fact that 

it follows that by choosing r < (4 - P)/(4K - /3) we force & < 4. (Notice that this represents a 
stronger restriction on r than the monotonicity constraint r < l/K.) It is clear from Fig. 2.1 

that given any & < 4 there exists a value aR E [1,3] such that (aR9 &) EL After choosing 
such a value for CXR, we set d,,, =aRAR = aRA(l - rK)/(l -r). Since AR < AL, we have 

PL = dnew/AL < dnew/AR = aR < 3. Finally, since we have forced cyL < 3, it follows that 
(CQ, PL) C@* 

The resulting algorithm for addkg a kmt is straightforward: 
(i) choose K > $Q, and P < (4 - @/(4K - fi>; 

(ii) choose aR E [I, 31 such that ((YR, p(1 - r)/(l .- rk)? Ed; 
(iii) let x,,, --x1 + rZ, y,,, =y, + rZKA, d,,, = c~,A(i‘~ &J(l - r). 
The search in (ii) could be performed, for example, by deci%-.&~~a, from 3 to 1 in steps of 

0.1. k is guaranteed to finish at, or before, aR = 1. It can be shown chat this algorithm also 
handles monotonic decreasing data for which a! 2 ~3 and p < 4. A corre&+ding technique for 
the case p > cy and (Y < 4 can be derived in a similar way. The two “i~$+rs, with specific 
choices for K and r, are summarised as Algorithm 1. 

i 1 . 
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Algorithm 1. For the case min{cu, fi} < 4. 
(Generates a new knot in order to preserve monotonicity.) 

Algorithm 1A. For (x 2 p: 
(i) let K = l.la/3 and r = 0.8(4 - @/(4K - /3); 

(ii) choose an E [l, 31 such that (an, p(1 - r)/(l - rK)) EL; 
(iii) let xnew =x1 + rl, y,,, =y, + rIKA, d new = cunA( 1 - rK)/(l - r). 

Algorithm 1B. For p > LY: 
(i) let K = 1.1/3/3 and r = 0.8(4 - cu)/(4K - a): 

(ii) choose &_ E [l, 31 such that Ml - r)/(l - rK), &_) u; 
(iii) let x,,, =x1 + (1 - r)L y,,, =y, +(l -rK)1A, d,,,=&_k(l -rK)/(l -r). 

It is clear from the derivation of Algorithm 1 that with min{cr, p} 2 4 it is not possible to 
preserve monotonicity by adding a single knot. However, we show below that in this case two 
extra knots will suffice. The basic idea is to pre-process the interval into the form required by 
Algorithm 1. 

Again, for definiteness, we suppose that the data is monotonic increasing, and we refer to 
Fig. 3.1. Suppose now that a! > p >, 4. Our aim is to add the knot xnew and data y,,,, d,,, so 
that ((Ye, &) EM and an < 3. We may then apply Algorithm 1B to the interval [xnew, xJ. It 
also seems desirable to avoid an unnecessarily large & value, so we will aim to keep & Q 2p. 
As before, we will develop a method for choosing K, r and d,,,. We may choose A, = KA 
where K > $, which ensures that (Ye < 3. The monotonicity constraint y,,, < y, then reduces 
to r < l/K. The additional constraint fin < 2p actually imposes the more severe restriction 
r < 1/(2K - 1). Finally, choose d,,, so that 0 < an < 3, that is, 0 <d,,,,, < 3A(l - rK)/(l - r). 
Since 0 < An < AL, it follows that &_ < CYR < 3, so (CQ, &_) EM as required. This leads to the 
following strategy: 

(i) choose K > $a, and r < 1/(2K - 1); 
(ii) let xnew =x1 + rl, ynew = y1 + rIKA, d new = 03A(l - rK)/(l - r), for some 8 E [0, 11. 

The method also works for monotonic decreasing data, and there is an analogous version for 
the case where p 2 a > 4 which inserts a knot so that (an, &) EM, &_ < 3 and ~~ S 2a. 
Algorithm 2 gives the two versions, with specific choices for K, r and 6. (Note that the choice 
r = 1/(2K - 1) below makes (1 - rK)/( 1 - r) = 0.5 in (ii).) 

Algorithm 2. For the case min{a, p} > 4. 
(Generates two new knots in order to preserve monotonicity.) 

Algorithm 2A. For a! >, p: 
(i) let K = l.la/3 and r = 1/(2K - 1); 

(ii) let x”,, =x, + t-1, y,,, =y, + rZKA, d,,, = 0.8 X 3A X 0.5; 
(iii) apply Algorithm 1B to [x,,,, x2]. 

Algorithm 2B. For p > CC 
(i) let K = l.lp/3 and r = 1/(2K - 1); 

(ii) let xnew =X1 + (1 -r)i, Ynew =y, + (1 - rK)ZA, d,,, = 0.8 X 3A X 0.5; 
(iii) apply Algorithm 1A to [x,, x.,,“]. 
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As a practical point, we mention that it may be undesirable to insert a knot too close to an 
existing knot (in a relative sense). Since r < 0.8 in Algorithm 1, and Y < 0.52 in Algorithm 2, 
x new can onb be close to one tnd of the current interval if r is small. In Algorithm 1 it is easy 
to show that r =r 0 if either min(rr, /3} is close to 4, or max{a, 0) is large. For example, in 
Algorithm IA, we see from (i) that if E is a small positive quantity, then 

r=0.8c * 
4-P 4(1 -EK) 

4K-fi 
=c a p= 

l--E 
=4-4E(K-- 1). 

The difficulty caused by min{a, /3j = 4 is easily overcome - switch to Algorithm 2, inserting 
two new knots rather than one. With Algorithm 2, a tiny r value can only arise if max{cw, p} is 
large. In such cases, the secant slope differs greatly from one of the derivative values, and 
hence the data may be regarded as somewhat inconsistent. In this situation the monotonicity 
constraint on y,, makes close knots unavoidable. 

We conclude this section with two numerical examples. In both cases we interpolate over a 
single interval. The two sets of (xi, yj, di} data that we use are Set A = {{0, 1, lo}, {l, 3, 6}}, for 
which a=XP=3,andSet S=({-3,0, -6),(-2, -1, -6.l&forwhich a!=6,fi=6.1.The 
data, which was chosen artificially, may be considered rather extreme in the sense that the 
cubic interpolants are far from monotone. On set A, Algorithm 1A adds a new knot at 
x new = 0.185 with y,,, = 1.68 and d,, = 3.25. On set B, Algorithm 2B gives xnew = -2.29, 
Y new = - 0.36 and d,,, = 
d 

- 1.20, and then Algorithm 1A gives x,, = - 2.94, yne, = - 0.13 and 
new = -0.82. “Before and after” plots of the cubic Hermite interpolants are presented in Figs. 

3.2 and 3.3. 

4. Discussion 

In this section we focus on the case of shape-preserving interpolation for ODES, and 
mentitin some reMed work [2,8]. In [2] Brankin and Gladwell used standard software to solve a 
range of stiff and nonstiff ODES taken from the package [5]. Among the statistics that they 
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Fig. 3.2. Cubic Hermite interpolants for data set A. 
(Dotted Iine = before Aigorithm l& solid line = after 

Algorithm 1A.I 
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Fig. 3.3. Cubic Hermite interpolants for data set B. 
(Dotted line = before Algorithm 2B; solid line = after 

Algorithm 2B.) 
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Table 4.1 
Proportion of intervals where cubic Hermite preserved monotonicity 

Relative local error tolerance lo- ’ lo-’ 1O-3 IO+ 

Nonstiff test set 0.98 0.99 0.99 1.0 
Stiff test set 0.92 0.94 0.96 0.98 

recorded were the proportion of intervals [xi, xi+ 1 ] on which the cubic Hermite interpolant 
preserved monotonicity. These values are reproduced (from the technical report [2] with 
permission) in Table 4.1. The fact that the proportion of “successful” intervals increases as the 
error tolerance decreases is not surprising. As the tolerance is reduced, the data {y,, di} 
becomes more accurate, and the corresponding cubic Hermite interpolant converges to the true 
solution, inheriting the same shape. However, even at the lax tolerances of 10-i and 10m2 we 
see that the cubic Hermite interpolant would preserve monotonicity on the vast majority of 
steps. 

A technique for preserving monotonicity in ODE interpolants is presented in [8]. This 
strategy makes use of the rational quadratic interpolant of [9] which interpolates to solution 
and derivative values and guarantees to preserve monotonicity in the data on each interval 

1 xi, xi+J. Gladwell et al. [8] recommend the use of the rational quadratic on intervals where 
the data is monotonic, and the cubic Hermite on the remaining intervals (since if the data is not 
monotonic, the rational quadratic may have a pole). Since the standard cubic Hermite 
interpolant is cheaper to use than the rational function [2, Section 41 and will be successful on 
most intervals, the technique proposed here of using one cubic per interval by default and two 
or three cubits per interval in the exceptional cases seems to be a reasonable alternative from 
the points of view of efficiency and ease of use. 

Another important characteristic of an ODE interpolant is the local order of accuracy. 
Defining the local solution Ui(X) over [xi, xi+,] by 

Uf( X) = f (X7 uj(x)), Ui(xi) =YiY 

we say that an interpolant p(x) has local order 4 if q is the largest integer such that 

Ui(Xi + rhi) -p(Xi + rhi) = O(h~), 

where hi =xi+l -xi, for any fixed 7 E [0, 11. If the data { yi, yi+ ,, di, di+ 1} comes from a 
sufficiently high-order integration method, then the cubic Hcrrriiie interpolant and the rational 
quadratic interpolant both have local order four. Theoretically, the algorithm presented here 
for adding knots will not alter the local order, since, for sufficiently small stepsizes hi, the 
standard cubic Hermite will automatically preserve (strict) monotonicity [8, p.3371. More 
specifically, suppose that as the error tolerance tends to zero WG have yi = y(Xi) + o(hi) and 
hence, for Lipschitzian f, di := f(xi, yi) = f<xi, y(~,)) + o(h,) =Y'(Xi) + Ofhi). Since Ai = 
y ‘(xi) + o(l), it then follows that, for y(x) # 0, (yi = 1 + o(l), and similarly pi = 1 + o(l), 
ensuring that ((yi, pi) ultimately lies inside A. 

We also mention that a more complicated, and more powerful shape-preserving algorithm 
for ODE interpolation is described ~II [2j. This scheme combines the cubic Her-mite and the 
monotonicity/ convexity preserving rational cubic interpolant of [3j. The combination provides 
a monotonic&y- and convexity-preserving interpolant of local order four. 



294 D.J. Higham / Spline interpolation 

As a concluding remark, we point out that it would be useful to have shape-preserving 
interpolation schemes of local order greater than four, since many ODE methcds achieve 
accuracy higher than O(h~) at the knots. 
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