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a b s t r a c t

Changes in industrial water use are of the utmost significance in rapidly developing countries. Such coun-
tries are experience rapid industrialization, which may stimulate substantial increases in their future
industrial water use. Local governments face challenges in formulating industrial policies for sustainable
development, particularly in areas that experience severe water shortages. This study addresses the fac-
tors driving increased industrial water use and the degrees to which these factors contribute, and deter-
mines whether the trend will change in the future. This study explores the options for quantitative
analysis that analyzes changes in industrial water use. We adopt both the refined Laspeyres and the
Logarithmic Mean Divisia Index models to decompose the driving forces of industrial water use.
Additionally, we validate the decomposition results through a comparative study using empirical analy-
sis. Using Tianjin, a national water-saving city in China, as a case study, we compare the performance of
the two models. In the study, the driving forces of changes in industrial water use are summarized as out-
put, technological, and structural forces. The comparative results indicate that the refined Laspeyres
model may be preferable for this case, and further reveal that output and technology have long-term,
stable effects on industrial water use. However, structure may have an uncertain influence on industrial
water use. The reduced water use may be a consequence of Tianjin’s attempts to target water savings in
other areas. Therefore, we advise the Tianjin local government to restructure local industries towards
water-saving targets.
� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Changes in industrial water use are of the utmost significance in
rapidly developing countries such as China (Geng et al., 2012). The
fast growth in industrial output (annual rate of 10%), is expected to
exponentially increase the use of industrial water, even after
accounting for a drastic reduction in water use per unit of output
(Shang et al., 2016a). However, we have reason to doubt the accu-
racy of such a prediction. According to the experience of developed
countries, industrial water use will not continue to increase (Jia,
2001). Specifically, when an economy reaches to a certain stage
of development, industrial water use will stop rising and exhibit
a downward trend. For example, industrial water use began to
decline in Sweden in 1964, in Japan in 1974, and in the US in
1981. China also experienced a decline in industrial water use in
some of its economically developed areas, although the nation
remains in state of rapid industrialization (Shang et al., 2016b).
Wang et al. (2012) predicted a continued increase in global indus-
trial water use, and these results were confirmed by Flörke et al.
(2013) using the Water Global Assessment and Prognosis (Water-
GAP) model. Based on the results of water demand forecasting,
the development of many the water conservancy projects for stor-
age, diversion, pumping, and transfer is required in the future to
provide incremental water supplies (Wang et al., 2012). Research-
ers have reach a consensus that the promotion of water saving and
an increase in investment in water conservancy projects are mea-
sures that have helped the developed countries to overcome the
constraints of limited water resources on their socioeconomic
development (Jia et al., 2006). However, such projects may entail
huge investments, which challenges developing countries charac-
terized by poverty (Wang et al., 2015). Therefore, developing coun-
tries attempt to solve water shortage crises through administrative
legislation rather than building water conservancy projects (Fujii
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et al., 2012). For example, China has implemented strict control
over total water use by industries (Zuo et al., 2014), and shows
remarkable results proving the controls to be effective but far from
sufficient. Additional efforts to improve levels of water saving and
water use efficiency are required (Alnouri et al., 2014).

Industries produce large amounts of wastewater during their
production processes while the discharge of wastewater can be
reduced by increasing water use efficiency. Industrial wastewater
discharge typically increases with an increase in industrial water
use (Kirkpatrick et al., 2011), and the discharge to rivers without
treatment will inevitably cause serious water pollution (Englert
et al., 2013). Extensive sewage treatment requires considerable
money and energy (Arani et al., 2012), and industrial wastewater
in developing countries is often directly discharged into rivers
without treatment (Yi et al., 2011), which further exacerbates
water shortages. To increase the amount of available water for
industrial purposes, recent literature on industrial water use has
been focused on planning methods for coordinated development
between industries and water resources, regulatory policies to
improve water use efficiency, or specific techniques to reduce pol-
lution. Lévová and Hauschild (2011) developed a planning
approach to determine the maximal development scale of the bio-
tech industry based on the lifecycle evaluation of water use. Pham
et al. (2016) found that a current water management system was
not conductive to industrial water savings using a case study of
an industrial park in Vietnam. This study recommended ‘‘reducing
wastewater discharge” and ‘‘improving water reuse,” to address
the high water use by industries. Agana et al. (2013) posited that
effective integrated management of industrial water use could
contribute towards targets including minimizing wastewater dis-
charge and improving water use efficiency. To promote the reuse
of industrial waters, Marianne et al. (2012) optimized the water
supply network using the mixed-integer linear programming
approach.

The above-mentioned studies mainly focused on the assess-
ment of available industrial water, regulatory policies to mitigate
water shortage, or specific techniques to reduce pollution. The
studies consider water a factor of industrial production and con-
duct quantitative analyses of the scale of industrial development
or industrial wastewater discharge using input–output or similar
static models. However, the industrial structure of a city is by no
means static; rather, it constantly undergoes change (Bao and
Fang, 2012). The structure includes industries that will be elimi-
nated, new industries that will be included, and other traditional
industries that will be transformed. Therefore, a dynamic analysis
of the driving forces of changing industrial structure is required.
Researchers have realized that changes in industrial structure are
driven by multiple factors (Saboori et al., 2012), and all of the driv-
ing forces may substantially influence industrial water use (Yoo
et al., 2007; Shang et al., 2016c). Although a complete understand-
ing of the nexus between industries and their water use has not yet
been achieved (He et al., 2014), a linkage was found between
industrial development and industrial water use, which can be
depicted by the Kuznets curve (Tate, 1986; Muhammad et al.,
2012; Foster, 2015). Merrett (1997) pioneered the use of Kuznets
curves to describe the relationship between continuous socioeco-
nomic development and the demands for water resources and
found that, with continuous socioeconomic development, the
demand for water grows, then exhibits zero growth and, finally
declines. Shang et al. (2016c) introduced a ‘‘partiality to high water
use” method to describe the influence of industrial structural
adjustment on industrial water use. Shang et al. (2016c) found that
the decline may be attributed to a combination of a reasonable
industrial structure and high water use efficiency. Reynaud
(2003) studied the changes in industrial water use though field
investigation and data analysis. The study found that regulation
policy can significantly influence industrial water use, and the
price of water may also provide powerful water-savings incentives.
Steven (2005) suggested the use of economic instruments within a
legal framework to promote industrial water savings. Shang et al.
(2016b) may have been the first to introduce the Laspeyres model
to decompose industrial water use. In their study, the factors
affecting and contributing to the change of industrial water use
was quantitatively analyzed. However, quantitative analyses of
the contribution of different factors to incremental industrial
water remain limited, although the quantitative analysis methods
have been widely used in various fields of economics and social
studies (Armknecht and Silver, 2014; Zhang and Da, 2015). Most
studies are restricted to a qualitative description of the laws of
industrial water use and the broad exploration of influencing
factors.

The Laspeyres model and the logarithmic mean divisia index
(LMDI) model are the two typical approaches for quantifying the
driving forces behind change (Ang et al., 2015). Among the
approaches, the Laspeyres model may be the most widely used
because it is simple and easy to use (Richard, 2012; Kieran et al.,
2013). However, the model is unable to fully decompose all factors,
and the remainder (or residual error) of the decomposition results
increases with factors. When a factor significantly changes in the
short term, the remainder can be significantly large and, if ignored,
can undermine the model’s accuracy (Ang and Zhang, 2000). To
achieve complete decomposition, Sun (1998) proposed a refined
method to optimize the Laspeyres model. In the refined model,
all the remainders were assigned to their source items under the
‘‘jointly created and equally distributed” principle (Zhang et al.,
2009). Through a comparative study, Ang (2004) argued that the
LMDI model was superior because it allows the complete decom-
position of factors by building a log-mean formula. The main pur-
pose of this paper is to explore additional options for quantitatively
analyzing the driven changes of industrial water use. This study
adopts both the refined Laspeyres and LMDI models to quantita-
tively assess the factors influencing industrial water use changes.
We selected Tianjin, ‘‘national water-saving city” of China, as the
study area to verify the results of the models. In addition to model
verification, we also provide a theoretical basis and supporting
data required to help China build more water-saving cities. Fig. 1
shows the location of Tianjin in China.

China has been known to have scarce water resources; this is
particularly true for Tianjin. Tianjin records the lowest per capita
water resources at 182 m3/a in mainland China, equivalent to
one-fifteenth of the national average and significantly less than
the internationally recognized poverty line of 500 m3/a. This water
scarcity has hindered socioeconomic development and further
aggravated the ecological environment in Tianjin. To ease the
increasingly prominent water shortage crisis, Tianjin has set tar-
gets for water use efficiency that must be achieved within a given
period (Xinhua, 2015). This regulatory policy showed remarkable
results. In 2013, water use per 10,000 yuan of gross domestic
product (GDP) was reduced to 17.52 m3 (less than one-sixth of
the national average,) and water use per 10,000 yuan of
industrial added value was lowered to 8.3 m3, which represents
the highest level of national water use efficiency (Shang et al.,
2015). The remainder of this paper is structured as follows:
Section 2 introduces the modeling methods and data used in this
study; Section 2.1 discribes Laspeyres model and derives the
LMDI model; Section 2.2 gives an overview of the data; Section 2.3
introduces industrial water use in Tianjin, China; Section 3
analyzes the results; Section 3.1 compares the decomposition
results of the two models; Section 3.2 qualitatively analyzes the
statistic of Tianjin’s industrial water use; Section 3.3 validates
the two modeling methods using a case study. Section 4 concludes
the paper.



Fig. 1. The location of Tianjin in China.
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2. Methodology and data

2.1. Decomposition models

2.1.1. Laspeyres model
The Laspeyres decomposition model was first proposed by

Lasperyers in 1864, and was improved by Sun (1998). Shang
et al. (2016b) extended the use of the refined model to decompose
the driving forces of changes in industrial water use. The refined
Laspeyres model described here is derived by Shang et al. (2016b).

For complete decomposition, we explicitly assume that indus-
trial water use is subject to three factors including industrial out-
put, water use per unit of output, and the three factors equally
contribute to industrial water use. Therefore, the resulting decom-
position formula can be written as:

Q ¼
Xn
i¼1

li �M � qi ð1Þ

where Q represents the total quantity of industrial water use; n is
the number of total industrial sectors, and i starts from 1; M is
the total industrial output of Tianjin; qi represents water use per
unit of output in sector i, and li is the proportion of sector i within
total industrial output.

For the interval [0, t], when Q changes from Q0 to Qt , the
amount of change in DQ can be written as follows:

DQ ¼ DQM þ DQq þ DQl ð2Þ
in which,

sDQM ¼
Xn
i¼1

M0q0
i Dli þ

1
2
Dliðq0

i DM þM0DqiÞ þ
1
3
DliDMDqi ð3Þ

DQl ¼
Xn
i¼1

l0
i q

0
i DM þ 1

2
DMðq0

i Dli þ l0
i DqiÞ þ

1
3
DliDMDqi ð4Þ

DQq ¼
Xn
i¼1

l0
i M

0Dqi þ
1
2
DqiðM0Dli þ l0

i DMÞ þ 1
3
DliDMDqi ð5Þ
where DQ represents the change in industrial water use; DQM rep-
resents the change in industrial water use because of output, which,
in other words, is the increment of decrement of industrial water
use along with the change in industrial scale or output; DQq repre-
sents the change in industrial water use brought about by technol-
ogy. Specially, DQq refers to the amount of water savings from the
changes in water use efficiency and the application of water-
saving technique; DQl represents a change in industrial water use
brought about by industrial structure or, specially, the increment
of decrement of industrial water use along with the adjustment to
the share of industrial sectors; M0 is the value of industrial output
in the previous year; q0

i is water use per 10,000 yuan of industrial
added value in industrial sector i in the previous year, and l0

i is
the proportion of Tianjin’s total industrial output value that came
from industrial sector i in the previous year. DM, Dqi, and Dli refer
to the changes in industrial output value, water use per
10,000 yuan, and the output proportion of industrial sector i,
respectively.
2.1.2. LMDI model
Mahony Tadhg (2013) applied the LMDI model to decompose

carbon emissions, where the three driving forces including policy,
population, and economy factors were considered respectively.
Our study extends the use of this model to the field of industrial
water use. The derivation of the LMDI model is given as follows.

Here, we define industrial water use in the previous year as Q0

and in the tth year as Qt , and the industrial water use in year t can
be expressed using the following formula:

Qt ¼
Xn
i¼1

Qt
i ¼

Xn
i¼1

Mt � lt
i � qt

i ¼
Xn
i¼1

Mt �Mt
i

Mt �
Qt

i

Mt
i

ð6Þ

where Mt is the total industrial output in year t, that is, output-
driven force.Mt

i and Qt
i are industrial output and water use of sector

i. lt
i stands for the percentage of sector i in total industrial output,

that is, structure-driven force. qt
i is water use per 10,000 yuan of

output in sector i, or technology-driven force.
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First, we apply a differential calculus for time to formula (6);
then, the formula can be written as follows:

dQt

dt
¼
Xn
i¼1

dMt

Mt
� Qt

i

dt
þ dlt

i

lt
i

� Qt
i

dt
þ dqt

i

qt
i

� Qt
i

dt

 !
ð7Þ

We apply the integral calculation for time period [0, t]. The change
in industrial water use for the interval [0, t] are, therefore,
expressed as follows:

DW ¼Wt �W0 ¼
Xn
i¼1

Z t

0
dlnMt �Qt

i þ
Z t

0
dlnlt

i �Qt
i þ
Z t

0
dlnqt

i �Qt
i

� �

ð8Þ
Finally, we apply the integral mean value theorem to formula

(8) and obtain the following formula:

DQ ffi
Xn
i¼1

ut
i ln

Mt

M0
þ ln

lt
i

l0
i

þ ln
qt
i

q0
i

� �
ð9Þ

where ut
istands for the weight of sector i.

According to Ang (2004), ut
i can take the following form:

ut
i ¼

Qt
i � Q0

i

lnQt
i � lnQ0

i

ð10Þ

Therefore, the change in industrial water use for the tth year can be
rewritten as follows:

DQ ¼ DQM þ DQl þ DQq ð11Þ
in which,

DQM ¼
Xn
i¼1

Qt
i � Q0

i

lnQt
i � lnQ0

i

ln
Mt

M0
ð12Þ

DQl ¼
Xn
i¼1

Qt
i � Q0

i

lnQt
i � lnQ0

i

ln
qt
i

qt
0

ð13Þ

DQq ¼
Xn
i¼1

Qt
i � Q0

i

lnQt
i � lnQ0

i

ln
qt
i

lt
0

ð14Þ
1 For interpretation of color in Fig. 2, the reader is referred to the web version o
this article.
2.2. Data source

In this study, water use data for Tianjin are sourced from the
Tianjin Water Resources Bulletin (Tianjin Water Authority, 1995 to
2013). The statistics on water use by industrial sectors are adopted
from the Tianjin Industrial Energy Efficiency Guide (Tianjin
Development and Reform Commission, 2004 to 2013) and the
Tianjin Municipal Bureau of Statistics, and the statistics on output
are from Tianjin Statistical Yearbook (1995–2013) (Statistical Bureau
of Tianjin, 1995 to 2013).

Industrial water use refers to water supply for plant workers
and water used in (or during) the industrial production process,
for example, in boilers and manufacturing, processing, cooling,
air conditioning, and washing. Industrial water mainly consists of
surface water, groundwater, recycled wastewater, and desalinated
water. However, seawater directly used in industrial production is
excluded. To avoid errors caused by price fluctuations between
years and to facilitate the longitudinal comparisons, industrial out-
put data are converted according to the 1990 constant prices
before being incorporated into the model.

2.3. The change in industrial water use in Tianjin, China

Fig. 2 shows that total industrial output increased more than 10
times from 173.82 billion yuan in 1994 to 2.41 trillion yuan in
2012, while industrial water use showed significant segment fea-
tures with turning points in 1999 and 2008. Fig. 2 shows a gradual
increase in Tianjin’s industrial water use after a period of rapid
increase (1994–1999) and slow decline (1999–2012), and the
trend is indicated in Fig. 2 by a red1 dashed line. Specifically, indus-
trial water use decreased during the period 1999–2003 and gradu-
ally increased during the period 2008–2012. The trend is indicated
in Fig. 2 by a black dashed line.

We used long time series of industrial output and water use
data to find the relationship between industrial output and indus-
trial water use. Fig. 3 shows no obvious linear relationship between
industrial output and industrial water use. However, three distinct
correlation stages can be observed based the level of industrial out-
put. For low level output, industrial water use is negatively corre-
lated with industrial output. That is, industrial water use decreases
as industrial output increases, indicating that substantial water
savings are generated during industrial restructuring processes.
For intermediate levels of output, the amount of water use does
not changes significantly while industrial output increases signifi-
cantly, indicating that an increase in water use from expansion in
industrial scale may be counteracted by a water use decrease from
improvements in water use efficiency. For high levels of output,
water use is positively correlated with industrial output, implying
that industrial water use will remain level with industrial output
growth. This may indicate that there is little room for
improvement in water saving from improvements in water use
efficiency.

As analyzed above, a change in industrial water use may be sub-
ject to multiple driving forces. The water availability is a strict con-
straint for industrial development. Additionally, a change in
industrial water use could be considered a joint effect from indus-
trial scale expansion, technological advances, and industrial
restructuring. At different periods, these driving forces exert effects
to varying extents, leading to complex changing trends in indus-
trial water use. Only by decomposing the driving forces, can we
accurately grasp this trend and make a scientific pre-judgment.
3. Results and analysis

3.1. Differences in the calculation results of different models

This study chronologically decomposes water use change using
the refined Laspeyres and LMDI models. Both models have passed
time reversal and factor reversal checks, which proved the
decomposition effective. Moreover, no residual items are observed
in the Laspeyres and LMDI decomposition results. Therefore the
decomposition results of synergies are entirely consistent, indicat-
ing that the decomposition results could reflect the actual situation
of Tianjin’s industrial water use. Table 1 shows the decomposition
results.

Table 1 shows that the two models produce consistent decom-
position results with a small difference of 1–2% for most years. This
implies that the decomposition results produced by the two mod-
els agree, although anomalies were found for the years 2009, 2010,
2011, and 2012. The difference in model results for those years
may exceed 10%. The level of difference is attributed to drastic
changes in the share of industrial sectors or water use efficiency.
There may be statistical errors because change for both the share
of industrial sectors and water use efficiency should not be exces-
sive. Fig. 4 provides a clearer display of the decomposition results
for the effects of output, technology, and structure in each year
plotted as x and y values in Cartesian coordinates.
f



Fig. 2. Industrial output and industrial water use in Tianjin (1994–2012).

Fig. 3. Diagram of the correlation between industrial output and water use.

Table 1
Decomposition of Tianjin’s industrial water use using the refined Laspeyres and LMDI models Unit: 10,000 m3.

Year Output Technology Structure Synergies Total water use

Laspeyres LMDI Laspeyres LMDI Laspeyres LMDI

2003 48,600
2004 9732 9589 �5349 �5273 �2283 �2216 2100 50,700
2005 7960 7715 �14,367 �14,007 823 708 �5584 45,116
2006 6744 6686 �5160 �5136 �2500 �2467 �917 44,199
2007 6866 6787 �10,627 �10,513 1536 1500 �2226 41,973
2008 6930 6842 �9386 �9278 �1387 �1407 �3843 38,130
2009 6874 6818 �2118 �2021 616 575 5372 43,502
2010 89m26 8529 �9336 �10,521 4493 6074 4082 47,584
2011 8662 8610 �5682 �5591 �464 �503 2516 50,100
2012 7294 6489 �9564 �8599 3057 2897 787 50,887
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(a) Output

(b) Technology

(c) Structure

Fig. 4. Laspeyres–LMDI comparison of decomposition results :(a) output; (b)
technology; (c) structure.
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Fig. 4 also shows the performance differences between the two
models. The figure shows that the decomposition results for output
using the two models scatter near, mostly below, the straight line
x = y. The values obtained using the Laspeyres model are slightly
larger than those derived using the LMDI model. For technology,
the values obtained mostly scatter above the straight line x = y
and, thus, the values from the Laspeyres model are marginally
smaller than those of the LMDI model (except during the period
of 2009–2010). For structure, the values obtained are located on
the straight line x = y (except during the period 2011–2012), which
implies a small difference in the decomposition results of the two
models.

3.2. Empirical analysis of driving forces

To validate the decomposition results and further compare the
performance of the two models, this study conducted qualitative
analysis based on statistics. This study focuses on the period from
2001 to 2012, with particular attention to industrial adjustment
during the period 2003–2012). We also analyze data for the earlier
period of 1994–2002 to better grasp the law of long-term indus-
trial development in Tianjin.

3.2.1. Empirical analysis of output-driven force
Total industrial output is introduced as an indicator to describe

the scale of industrial development in Tianjin, producing output-
driven force. A rise in output is the most direct driving force in
the upward trend of water use. In the absence of other driving
forces, industrial water use is directly proportional to industrial
output. The greater the effect of the output-driven force the more
obvious the linear correlation with industrial water use. Fig. 5
shows the correlation of industrial water use with total industrial
output for the period 1994–2012.

Fig. 5 shows that the correlation can be divided into two stages.
Before reaching 1 trillion yuan (1994–2007), industrial output
gradually increased with an average annual increment of 67.3 bil-
lion yuan, and its impact on industrial water use was not obvious.
Although the industrial production increased annually, industrial
water use exhibited a clear downward trend. From 1995 to 2006,
industrial water use fell from 740 million m3 to 420 million m3

while industrial output quadrupled from 190 billion yuan to
890 billion yuan. This indicates that, at this stage, the driving force
of output in water use was offset by the water-saving effect of
other factors. After reaching 1 trillion yuan (2008–2012), industrial
output markedly expanded with an annual increment of 273.8 bil-
lion yuan and the coefficient of the positive correlation with indus-
trial water use was up to 0.81. This implies rigid growth in
industrial water use in this stage driven by industrial scale
expansion.

3.2.2. Empirical analysis of technology-driven force
Technology-driven force refers to the reduction of water use per

unit of product caused by the advancement of water-saving tech-
nologies, the use of water-saving devices, water-saving publicity,
and system development. The force is manifested in improvements
in water use efficiency and expressed by water use per 10,000 yuan
of output. Improvements in water use efficiency can restrict
increases in industrial water use. In the absence of other driving
forces, water use efficiency is inversely proportional to industrial
water use. The greater the effect of a technology-driven force, the
more obvious the inverse proportion. In terms of industrial water
use efficiency, Tianjin has been taking the lead in China since
2006. This can be attributed to the small proportion of



Fig. 5. Correlation between total industrial output and industrial water use in Tianjin (1994–2012).

Fig. 6. Correlation between water use per 10,000 yuan of industrial output and industrial water use in Tianjin (1994–2012).
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water-consuming industries in the overall industrial structure and
importantly, to technological and process improvements in the
industrial sectors and the implementation of water-saving mea-
sures. Fig. 6 shows the correlation of industrial water use with
water use per 10,000 yuan of output in Tianjin during 1994–2012.

Fig. 6 shows a significant linear correlation between water use
per 10,000 yuan of output and industrial water use in Tianjin,
and the positive correlation coefficient is up to 0.83. The correla-
tion can be divided into three stages. The first stage is the rapid
increase in water use efficiency and a fast decline in industrial
water use. During 1994–2001, the water use per 10,000 yuan of
output plummeted from 40 m3 to 13 m3 with an average annual
decline of 3.8 m3, implying rapid improvements in water use effi-
ciency. Industrial water use also fell sharply to 450 million m3 from
700 million m3. This indicates that technology played a key role
among all the driving forces and significantly curbed the rise in
industrial water use. The second stage is the slow increase in water
use efficiency and the slight decline in industrial water use. During
the period 2002–2008, water use efficiency gradually improved
with water use per 10,000 yuan of output down by 1.5 m3 on an
annual basis and industrial water use dropped from 450 million m3

to 380 million m3. Here, although the technology-driven force



Fig. 7. Partiality of Tianjin’s industrial structure to high water use (2003–2012): Data are adapted from Shang et al. (2016c).
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began to weaken, it was not overshadowed by the other forces. The
third stage is stagnant water use efficiency and increasing indus-
trial water use. There was little room to improve water use effi-
ciency after water use per 10,000 yuan of output reached 3 m3 in
2008. With the expansion in industrial scale, industrial water use
began to gradually rise. In this case, the technology-driven force
was overshadowed by the other forces.

3.2.3. Empirical analysis of structure-driven force
Structure-driven force mainly refers to the effect that changing

structures of different industrial sectors exert on industrial water
use. To visually characterize this impact, Shang et al. (2016c) intro-
duced the indicator (p) of partiality of industrial structure to high
water use. A p-value closer to one indicates more partiality to high
water use, and a value closer to zero denotes higher partiality to
low water use. Fig. 7 shows the partiality of Tianjin’s industrial
structure to high water use during the period 2003–2012. Fig. 7
shows that the p-value remained below 0.5 throughout the period
of 2003–2012, indicating that the current industrial structure is
ideal for water savings. In terms of the curve’s trend, the partiality
first declined and then increased during the period 2003–2012.
Specifically, the partiality decreased by 27.3% during the period
2003–2006 and increased by 26.1% during the period 2006–2012
to the pre-2003 level.

Fig. 8 shows a weak positive correlation between partiality and
industrial water use, indicating that structure-driven force has a
limited effect on industrial water use. Figs. 7 and 8 show that the
constraint of water resources is not a dominant factor in Tianjin’s
industrial restructuring. The reform accounts for energy saving,
efficiency improvement, and economic development. Industrial
restructuring is not necessarily directed toward water conserva-
tion. Noticeably, the size of water-intensive industries demon-
strated the tendency to expand after 2007.

3.3. Validation and application of decomposition results

From 2003 to 2012, Tianjin’s industrial water use first exhibited
a trend of decline, then a rise. Specifically, industrial water use
shrank by 21.5% from 48.6 million m3 to 381.30 million m3 during
2003–2008 but later rebounded to 508.87 million m3 in 2012.
Based on the decomposition results illustrated in Table 1, we con-
ducted a driving force analysis of this time span.

For the study period from the year 2003 to the year 2012, indus-
trial output stimulated industrial water use in Tianjin and
accounted for an average annual growth of 77 million m3, which,
on average, was 76 million m3 before 2008 and 79 million m3 after
2008. This indicates that, driven by fast industrial scale expansion,
industrial water use grew consistently after 2008, which is in line
with the correlation analysis results in Fig. 5. Technology, on the
other hand, inhibited industrial water use in Tianjin and con-
tributed to an average annual reduction of 79 million m3. Notably,
technology-driven reduction registered at 90 million m3 before
2008 and 67 million m3 after 2008. This implies that the improve-
ment in industrial water use efficiency slowed down and stagnated
after 2008, which is consistent with the analytical results in Fig. 6.
The effect of structure on industrial water use was not stable; that
is, structure could serve as a promoting factor in some years and an
inhibiting factor in others. In the study period, promotion and inhi-
bition occurred alternately, but promotion stood out after 2008,
indicating increasing partiality of industrial structure to high water
use. These results are also consistent with the results described in
Figs. 7 and 8.

Based on the analytical results of Tianjin’s industrial water use,
we further compared the performance of the two decomposition
models. As mentioned in Section 3.2, after 2008, industrial output
grew markedly with an annual increment of 273.8 billion yuan,
and industrial water use showed a positive correlation with output
with a coefficient of up to 0.81. The industrial water use per
10,000 yuan of output, already low at 3 m3 in 2008, indicated lim-
ited room for further improvement in water use efficiency. Conse-
quently, with the expansion of industrial scale, industrial water use
tended to gradually increase. In this case, technology-driven force
is overshadowed by the other forces. From this viewpoint, a larger
value of output and smaller value of technology should be reason-
able at this stage. The Laspeyres decomposition results show that,
during the period 2009–2012, the cumulative effect of output and



Fig. 8. Correlation between partiality and industrial water use (2003–2012): Data are adapted from Shang et al. (2016c).
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technology was 317.56 million m3 and 267 million m3 and, accord-
ing to the LMDI decomposition results, these numbers were
304.46 million and 267.32 million. Therefore, the Laspeyres
decomposition results seem more reasonable.

In summary, the decomposition results obtained for the two
models are consistent with analytical results obtained from quan-
titative analysis, justifying the validation of the two models. More-
over, the decomposition methods show superiority in analysis
because they provide accurate numerical results rather than
descriptive sentences that are typically used in quantitative
analysis.
4. Conclusion and discussion

The Laspeyres model and the LMDI model are the two typical
approaches for quantifying driving forces behind change. In this
study, we used both models to decompose industrial water use
and further validated the models through empirical analysis. The
accuracy of the decomposition results is ensured because both
refined Laspeyres model and LMDI model pass the time reversal
and factor reversal checks. Additionally, the decomposition results
of the two models agree with each other, with obvious differences
for certain years. Nevertheless, the refined Laspeyres model for the
case of Tianjin presents more reasonable results according to the
qualitative analysis of industrial water use.

This study analyzed factors driving industrial water use in Tian-
jin during the period 2003–2012 and described changes in their
effects at different stages in the recent decade, clarifying the con-
tributions of industrial scale, structure, and water use efficiency.
In terms of time scale, two distinct stages before and after 2008
were observed. Before 2008, technology was the primary factor
causing changes in industrial water use, and its hindrance to the
growth of industrial water use outbalanced the stimulating effect
of output. In addition to structure inhibiting water use, industrial
water use as a whole exhibited a downward trend. After 2008,
however, output became the main factor influencing industrial
water use, and its stimulation to industrial water use overshad-
owed technology-caused inhibition. At the same time, the impro-
per adjustment of industrial structure increased water use.
Overall, industrial water use showed an upward trend during this
stage. The decomposition results of this study change the initial
opinion that Tianjin has considered the rise in water use efficiency
to be the primary goal of local industry restructuring over the past
decade. Reduced water use may have resulted from Tianjin’s devel-
opment towards targets other than water savings. The availability
of water resources are a major constraint factor to industrial devel-
opment but in many cases, various factors including GDP growth,
energy conservation, and emission reduction are considered in
the adjustment of industrial structure. Hence, industrial restruc-
turing is not necessarily oriented to saving water. When the share
of water-intensive industries increases, restructuring can stimulate
water use growth and, when the share decreases, restructuring can
hinder water use growth. Considering the current water scarcity in
Tianjin, this study advices the Tianjin local government to restruc-
ture local industries towards water-saving targets.

The change in the industrial water use can be attributed to
changes in industrial output, water use per unit of output, and
industrial structure. Therefore, this study summarized those con-
tributors as output, technological, and structural factors. For
empirical analysis, the output factor is expressed by industrial out-
put. The larger the industrial scale, the larger the total industrial
output and, thus the stronger the demand for industrial water.
Industrial scale is an uncontrollable factor. The scale of local indus-
tries is expected to continually increase along with local socioeco-
nomic development. The technological factor involves production
technology and water use efficiency of industrial sectors. For
empirical analysis, it is typically expressed by water use per unit
of output, which varies significantly between industrial sectors.
The greater the water use per unit of output, the more water is
demanded. However, the water use efficiency is a controllable fac-
tor and can be improved by adopting water saving production
techniques and strengthening total water use controls. The struc-
tural factor refers to adjustment of industrial structures, which is
described by the proportion of different industrial sectors. Because
the water use efficiency varies between sectors, any adjustment to
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the proportion of industrial sectors will lead to a change in water
use. Industrial structure is controllable, and the shutdown or recti-
fication of water-intensive industries and encouragement of low-
water industries can be conducive to water saving.
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