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We show how to lift the even intersection equivalence relation from the hyperovals
of PG(2, 4) to an equivalence relation amongst sets of hyperconics in n"PG(2, F ).
Here, F is any "nite or in"nite "eld of characteristic two that contains a sub"eld of
order 4, but does not contain a sub"eld of order 8. Moreover, we are able to determine
the number of points that two hyperconics in n will have in common provided some
projective subplane of order 4 intersects both of them in hexads. ( 2001 Academic Press
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1. INTRODUCTION

Throughout this paper, n denotes the projective plane PG(2, F ), where F is
any "eld, "nite or in"nite, of characteristic two which contains a sub"eld of
order 4, but does not contain a sub"eld of order 8. In n, a hyperconic is a conic
together with its nucleus. A hexad in n is a set of six points that forms
a hyperoval in some projective subplane PG (2, 4) of order 4 of n. Two hexads
are coplanar if they are contained in the same PG (2, 4) subplane of n. The 168
hexads in a "xed PG (2, 4) subplane n

0
of n satisfy the much-studied even

intersection equivalence relation whereby two hexads are equivalent if they
intersect in an even number of points. There are three equivalence classes
each of size 56 amongst the hexads in n

0
. We denote these three classes by

I-hexads, II-hexads, and III-hexads.
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Let H
1

and H
2

be two hyperconics in n such that some PG (2, 4) subplane
n
0

of n intersects them both in hexads, say G
i
"H

i
Wn

0
. Then the number of

common points of H
1

and H
2

depends on the number of common points of
the two hexads G

1
and G

2
. Our main result is that DH

1
WH

2
D is even if and only

if DG
1
WG

2
D is even.

A hexad G in a PG (2, 4) subplane n
0
of n contains six points, each being the

nucleus of the conic through the remaining "ve points. Thus, by extending the
scalars from GF(4) to the "eld F, each hexad can be lifted to give six
hyperconics in n. Using this lifting, the 168 hyperovals in any PG (2, 4)
subplane n can be lifted to give 1008 hyperconics in n. Remarkably, each of
these sets of 1008 hyperconics satis,es an even intersection equivalence relation.
There are many such systems of 1008 hyperconics. In fact, each hyperconic in
PG(2, F )"PG(2, q) is contained in (q`1

3
)/(5

3
) such systems. This is because

a hexad contained in a hyperconic H must contain the nucleus of H, and the
nucleus together with three other points of H determines a unique hexad
contained in H. Hexads are discussed in detail in [11]. Basic facts about the
projective plane of order 4 and its hyperovals can be found in [8] and [7].

2. THE EQUIVALENCE RELATION

THEOREM 2.1. ¸et n"PG(2, F), where F is any ,eld, ,nite or in,nite, of
characteristic two that contains a sub,eld of order 4, but which does not contain
a sub,eld of order 8. ¸et H

1
and H

2
be hyperconics in n and let G

1
and G

2
be

coplanar hexads contained in H
1
and H

2
, respectively. ¹hen DG

1
WG

2
D is even if

and only if DH
1
WH

2
D is even.

COROLLARY 2.2. ¸et n"PG(2, F ), where F is any ,eld, ,nite or in,nite, of
characteristic two that contains a sub,eld of order 4, but which does not contain
a sub,eld of order 8. ¸et n

0
be any projective subplane of order 4 of n. ¹hen the

even intersection equivalence relation amongst the 168 hexads of n
0
can be lifted

to an even intersection equivalence relation amongst a set of 1008 hyperconics
in n.

To prove Theorem 2.1, we consider two coplanar hexads G
1

and G
2

in
a PG (2, 4) subplane n

0
and two hyperconics H

1
"C

1
XMN

1
N,

H
2
"C

2
XMN

2
N in n with G

1
LH

1
and G

2
LH

2
. We wish to show that

DH
1
WH

2
D is even if and only if DG

1
WG

2
D is even. We will consider separately

the cases DG
1
WG

2
D"0, 1, 2, 3, 6. (It is not possible for two hexads to have

exactly four or exactly "ve common points as a quadrangle in n
0

determines
a unique hexad.) For each of these cases, we determine all possible values of
DH

1
W H

2
D. This will be done by a careful coordinatization of n

0
and n so as to

force C
1

to be a nice conic, usually >2"XZ. To do this, we will choose
a certain quadrangle and use the fact that PG¸(3, F ) is transitive on
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quadrangles. Then, when "nding the common points of H
1

and H
2
, the

common a$ne points of C
1

and C
2

can be found from the roots of a poly-
nomial of degree at most four.

Given C
1
:>2"XZ and C

2
: aX2#b>2#cZ2#dX>#eXZ# f>Z"0,

the common a$ne points of C
1

and C
2

are of the form (X, >, 1), where
X">2 and > is a root of the polynomial p (t)"at4#dt3#
(b#e)t2#ft#c. We will call the polynomial p(t) the intersection polynomial
for the conics C

1
and C

2
.

Recall that in any plane n"PG (2, F ), a unique conic can be drawn
through "ve points with no three collinear. Using this, one can show (see
[11]) that, if G is a hexad of a PG(2, 4) subplane n

0
, and H is a hyperconic of

n that contains G, then the nucleus of H is in G.
We are now ready to embark on a proof of Theorem 2.1.

Proof. Let H
i
"C

i
XMN

i
N be a hyperconic consisting of the conic C

i
together with its nucleus N

i
, i"1, 2. Suppose that G

1
and G

2
are coplanar

hexads in the PG (2, 4) subplane n
0
, and suppose that G

1
and G

2
are con-

tained in H
1

and H
2

respectively. We write GF (4)"M0, 1, u, u2N and we will
always coordinatize n

0
and n so that l

=
:Z"0 is the line at in"nity. We

consider separately the cases DG
1
WG

2
D"6, 2, 0, 1, 3.

DG
1
WG

2
D"6: Two hyperconics can have at most six common points

since two conics can have at most four common points. (In [11] it is proved
that if two hyperconics do have six common points, then those six points must
be a hexad in some projective subplane of order 4.) Thus H

1
WH

2
"G

1
WG

2
.

DG
1
WG

2
D"2: The number of common points of H

1
and H

2
will de-

pend on whether N
1

and N
2

are in G
1
WG

2
. We will break up the case

DG
1
WG

2
D"2 into "ve subcases: (i) N

1
"N

2
, (ii) G

1
WG

2
"MN

1
, N

2
N, (iii) one

of N
1
, N

2
(say N

1
) is in G

1
WG

2
, (iv) N

1
, N

2
NG

1
WG

2
and three of MN

1
, N

2
,

P
1
, P

2
N are collinear, where G

1
WG

2
"MP

1
, P

2
N, and "nally (v) N

1
,

N
2
NG

1
WG

2
and N

1
, N

2
together with the two points of G

1
WG

2
from

a quadrangle.
In each of (i), (ii), and (iii), the point N

1
is on G

1
WG

2
. Since PG¸(3, F) is

transitive on quadrangles, we coordinatize n so that N
1
"(0, 1, 0) and the

other point of G
1
WG

2
is (1, 0, 0). Furthermore, if one picks any point P of

G
2
CG

1
, we may choose the coordinates of two other points of G

1
to be (0, 0, 1)

and (1, 1, 1) in such a way that P is on the line through (0, 0, 1) and (0, 1, 0) and
also on the line through (1, 1, 1), (1, 0, 0). This forces one point of G

2
(the point

P) to be (0, 1, 1). In the subcases (i), (ii), and (iii) we have N
1
"(0, 1, 0), and N

2
varies amongst M(0, 1, 0), (1, 0, 0,), (0, 1, 1)N. Thus C

1
:>2"XZ, and the

corresponding equations for C
2

can be determined by using the fact that
(1, 1, 1), (u2, u, 1), and (u, u2, 1) are not points of C

2
. The conic C

2
will have

equation C
2
: aX2#b>2#cZ2#dX>#eXZ#f >Z"0 with nucleus

( f , e, d), for some a, b ,2, f3GF(4).
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(i) With the above coordinatization, if N
1
"N

2
, then we have

C
2
:>2#Z2#XZ"0 giving intersection polynomial p (t)"1. Therefore

the only common points of H
1

and H
2

are those on l
=

and
H

1
WH

2
"G

1
WG

2
.

(ii) With the above coordinatization, if G
1
WG

2
"MN

1
, N

2
N, then we

have C
2
: X2#Z2#>Z"0 giving intersection polynomial p (t)"t4#t

#1. This polynomial has degree 4 and is irreducible over GF (2). Therefore it
has four simple distinct roots in GF(24). Also, on l

=
, H

1
and H

2
both contain

the points (0, 1, 0) and (1, 0, 0). Therefore DH
1
WH

2
D"6 if F contains

a sub"eld of order 16, and H
1
WH

2
"G

1
WG

2
otherwise.

(iii) With the above coordinatization, with N
1

(say) on G
1
WG

2
, but

N
2
"(0, 1, 1) not on G

1
WG

2
, then we have C

2
: Z2#X>#XZ"0 giving

intersection polynomial p(t)"t3#t2#1. The polynomial p (t) is an irredu-
cible polynomial over GF(2), and therefore it contains three simple distinct
roots in GF(8). Since we are assuming that F does not contain a sub"eld of
order 8, the only common points of H

1
and H

2
are those on l

=
, namely

(0, 1, 0) and (1, 0, 0). Thus H
1
WH

2
"G

1
WG

2
.

(iv) For this case, we have N
1
, N

2
NG

1
WG

2
, but three of N

1
, N

2
, P

1
,

P
2

are collinear, where G
1
WG

2
"MP

1
, P

2
N. Coordinatize n similar to above,

with the same four points (0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 1, 1) on G
1
, but with

G
1
WG

2
"M(1, 0, 0), (0, 0, 1)N and with the line through (0, 1, 0), (1, 0, 0) and the

line through (1, 1, 1), (0, 0, 1) meeting in the point N
2

of G
2
, which then has

coordinates N
2
"(1, 1, 0). Then we have C

2
:>2#XZ#>Z"0 giving

intersection polynomial p (t)"t. Thus H
1
WH

2
"G

1
WG

2
.

(v) In this case, we have N
1
, N

2
NG

1
WG

2
. Also, N

1
, N

2
, P

1
, P

2
is

a quadrangle, where G
1
WG

2
"MP

1
, P

2
N. Coordinatize n similar to above,

with the same four points on G
1
, but with G

1
WG

2
"M(1, 0, 0), (0, 0, 1)N,

N
1
"(0, 1, 0), and N

1
N

2
meeting G

1
in MN

1
, (1, 1, 1)N. This forces N

2
"(1, e,

1), for some e3GF (4). Note that b#eO0, 1 since (1, 1, 1) and (u, u2, 1) are
not in G

2
. Thus C

2
: b>2#X>#eXZ#>Z"0 with b#eO0, 1. This

gives intersection polynomial p(t)"t3#(b#e)t2#t"t(t2#(b#
e)t#1). The polynomial t2#(b#e)t#1 is a polynomial of degree 2 which
is irreducible over GF(4) and which has two simple distinct roots in GF(42)
(see [9, p. 52]). Thus p(t) has exactly one root in GF (4); p (t) has exactly three
roots in F if F contains a sub"eld of order 16 and exactly one root otherwise.
In addition, H

1
and H

2
have one common point, (1, 0, 0), on the line l

=
. Thus

DH
1
WH

2
D"4 if F contains a sub"eld of order 16, and H

1
WH

2
"G

1
WG

2
otherwise.

DG
1
WG

2
D"0: Choose coordinates so that N

1
"(0, 1, 0) and (1, 0, 0) are

the points of G
1

on N
1
N

2
and so that (0, 0, 1) and (1, 1, 1) are the points of G

1
on another line through N

2
. Thus, N

2
"(1, 1, 0), C

1
:>2"XZ,

C
2
: aX2#b>2#cZ2#XZ#>Z"0, for some a, b, c3GF(4), with inter-

section polynomial p (t)"at4#(b#1)t2#t#c.
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Also, G
1
"M(0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 1, 1), (u, u2, 1), (u2, u, 1)N. In n

0
,

there are exactly ten hexads skew to a "xed hexad. Of the ten hexads skew to
G

1
, exactly four contain (1, 1, 0). Two of these contain (1, u, 0) and the other

two contain (1, u2, 0). The other six hexads skew to G
1

consist of two
containing both (1, u, 0) and (1, u2, 0) and four which miss l

=
. Let

D
1
"M(1, 1, 0), (1, u2, 0), (1, 0, 1), (u2, u2, 1), (u2, 0, 1), (1, u2, 1)N

D
2
"M(1, 1, 0), (1, u2, 0), (0, 1, 1), (u, u, 1), (u, 1, 1), (0, u, 1)N

D
3
"M(1, 1, 0), (1, u, 0), (0, 1, 1), (0, u2, 1), (u2, 1, 1), (u2, u2, 1)N

D
4
"M(1, 1, 0), (1, u, 0), (1, 0, 1), (1, u, 1), (u, 0, 1), (u, u, 1)N

be these four which miss l
=
.

If G
2
"D

1
, then C

1
and C

2
have intersection polynomial p (t)"

u2(t4#t2#ut#u2). If G
2
"D

2
, then C

1
and C

2
have intersection poly-

nomial p (t)"u2(t4#t2#ut#1). If G
2
"D

3
, then p(t)"u(t4#t2#u2t

#1). If G
2
"D

4
, then p (t)"u(t4#t2#u2t#u). For each of these we

have that p(t) is an irreducible polynomial of degree 4 over GF (4). Such
a polynomial has four simple distinct roots in GF (44). Note that H

1
and H

2
do not contain any common points on l

=
. Therefore, DH

1
WH

2
D"4 if F con-

tains a sub"eld in order 256, and H
1
WH

2
"0 otherwise.

Denote by D the hexad

M(0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 1, 1), (u, u2, 1), (u2, u, 1)N.

Also, let

E
1
"M(0, 1, 0), (1, 1, 0), (0, 1, 1), (1, u2, 1), (u, 1, 1), (u2, u2, 1)N

E
2
"M(0, 1, 0), (1, 1, 0), (0, u, 1), (1, 0, 1), (u, u, 1), (u2, 0, 1)N

E
3
"M(0, 1, 0), (1, u, 0), (0, 1, 1), (1, 0, 1), (u, 0, 1), (u2, 1, 1)N

E
4
"M(0, 1, 0), (1, u, 0), (0, u2, 1), (1, u, 1), (u, u, 1), (u2, u2, 1)N

E
5
"M(0, 1, 0), (1, u2, 0), (0, u2, 1), (1, u2, 1), (u, 0, 1), (u2, 0, 1)N

E
6
"M(0, 1, 0), (1, u2, 0), (0, u, 1), (1, u, 1), (u, 1, 1), (u2, 1, 1)N

F
1
"M(0, 1, 0), (1, 1, 0), (0, 1, 1), (1, u, 1), (u, u, 1), (u2, 1, 1)N

F
2
"M(0, 1, 0), (1, 1, 0), (0, u2, 1), (1, 0, 1), (u, 0, 1), (u2, u2, 1)N

F
3
"M(0, 1, 0), (1, u, 0), (0, u, 1), (1, u, 1), (u, 0, 1), (u2, 0, 1)N

F
4
"M(0, 1, 0), (1, u, 0), (0, u2, 1), (1, u2, 1), (u, 1, 1), (u2, 1, 1)N

F
5
"M(0, 1, 0), (1, u2, 0), (0, u, 1), (1, u2, 1), (u, u, 1), (u2, u2, 1)N

F
6
"M(0, 1, 0), (1, u2, 0), (0, 1, 1), (1, 0, 1), (u, 1, 1), (u2, 0, 1)N.



HYPERCONICS IN PROJECTIVE PLANES 337
These are the 12 hexads that intersect D only in the point (0, 1, 0). Say D is
a I-hexad, E

1
,2 , E

6
are II-hexads, and F

1
,2, F

6
are III-hexads.

DG1WG2 D"1: The number of common points of H
1
and H

2
will depend

on whether or not N
1

and N
2

are the common point G
1
WG

2
. We will break

up the case DG
1
WG

2
D"1 into four cases: (i) N

1
"N

2
, (ii) one of N

1
, N

2
(N

1
say) is the point G

1
WG

2
, (iii) N

1
, N

2
are not the point G

1
WG

2
, and the three

points N
1
, N

2
, and G

1
WG

2
are collinear, (iv) N

1
, N

2
, and G

1
WG

2
are three

distinct noncollinear points.
In each of these cases we will coordinatize so that the common point P of

G
1

and G
2

is (0, 1, 0). For cases (i), (ii), and (iii), we will coordinate as follows:
Given a "xed point Q of G

2
CG

1
, we can choose the coordinates of n so that

(1, 0, 0) is the other point of G
1

on PQ and so that (0, 0, 1) and (1, 1, 1) are the
points of G

1
on another line through Q. This forces Q to be (1, 1, 0), G

1
to be

D, C
1
:>2"XZ, and G

2
to be one of E

1
, E

2
, F

1
, F

2
.

(i) If N
1
"N

2
, coordinatize as above. Then N

1
"N

2
"P"(0, 1, 0)

and G
2
"E

1
, E

2
, F

1
, or F

2
. We consider the case where G

2
"E

1
. The others

can similarly be considered, and the conclusion is the same (namely, that
DH

1
WH

2
D"3 if F contains a sub"eld of order 16, and H

1
WH

2
"G

1
WG

2
otherwise). Now C

1
and C

2
give intersection polynomial

p(t)"u2(t2#ut#1)2. This polynomial is an irreducible polynomial of
degree 2 over GF (4). It has two simple distinct roots in GF(42). Note that H

1
and H

2
also contain one common point, (0, 1, 0), on l

=
. Therefore,

DH
1
WH

2
D"3 if F contains a sub"eld of order 16, and H

1
WH

2
"G

1
WG

2
otherwise.

(ii) Suppose N
1
ON

2
and one of these, N

1
say, is the common point

P of G
1

and G
2
. Coordinatize n as above so that N

2
is the chosen point

Q"(1, 1, 0) of G
2
CG

1
. Then G

2
is one of E

1
, E

2
, F

1
, F

2
. We consider the case

G
2
"E

1
. The others give the same conclusion (namely, that DH

1
WH

2
D"5 if

F contains a sub"eld of order 256, and H
1
WH

2
"G

1
WG

2
otherwise). If

G
2
"E

1
, then C

1
and C

2
have intersection polynomial

p(t)"u2(t4#ut2#ut#u). This polynomial is an irreducible polynomial
of degree 4 over GF(4), with four simple distinct roots in GF(44). Note that
H

1
and H

2
also contain one common point, (0, 1, 0), on l

=
. Therefore,

DH
1
WH

2
D"5 if F contains a sub"eld of order 256, and H

1
WH

2
"G

1
WG

2
otherwise.

(iii) Suppose that N
1

and N
2

are not the common point P of G
1

and
G

2
. Moreover, suppose that N

1
, N

2
, P are collinear. Coordinatize n as above

with P"(0, 1, 0), N
1
"(1, 0, 0), and N

2
"Q"(1, 1, 0). Once again G

2
can be

one of E
1
, E

2
, F

1
, F

2
and the conclusion is the same for each (namely, that

DH
1
WH

2
D"3 if F contains a sub"eld of order 16 and that

H
1
WH

2
"G

1
WG

2
otherwise). We consider G

2
"E

1
. For this particular case

we have coordinatized so that C
1
:X2">Z instead of the usual >2"XZ.

Therefore, we need an altered intersection polynomial. The common a$ne
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points of the conics X2">Z and aX2#b>2#cZ2#dX>#eXZ#

f>Z"0 are of the form (X, >, 1), where X2"> and X is a root of the
polynomial q (t)"bt4#dt3#(a#f ) t2#et#c. If G

2
"E

1
, then

q(t)"ut2#t#1. This polynomial is irreducible and of degree 2 over GF (4).
It contains two simple distinct roots in GF (42). Also, H

1
and H

2
contain one

common point, (0, 1, 0). Therefore, DH
1
WH

2
D"3 if F contains a sub"eld of

order 16, and H
1
WH

2
"G

1
WG

2
otherwise.

(iv) If N
1
, N

2
, and G

1
WG

2
is a triangle, then we choose coordinates as

follows: P"(0, 1, 0) is the common point of G
1

and G
2
, (1, 1, 1) is the other

point of G
1

on the line through P and N
2
, N

1
"(1, 0, 0,), and (0, 0, 1) is the

other point of G
1
on the line through N

1
and N

2
. Thus N

2
"(1, 0, 1), G

1
"D,

and G
2

must be one of E
2
, E

3
, F

2
, F

6
. We will suppose that G

2
"E

2
. The

other cases are similar and have the same conclusion, namely, that
H

1
WH

2
"G

1
WG

2
. If G

2
"E

2
, then since C

1
: X2">Z, we again need an

altered intersection polynomial q (t)"t3#u. This polynomial has degree
3 and is irreducible over GF(4). It has three simple distinct roots in GF (43).
Since we are assuming that F does not contain a sub"eld of order 8, we have
H

1
WH

2
"G

1
WG

2
.

DG1WG2 D"3:
(i) If N

1
"N

2
, then coordinatize so that N

1
"N

2
"(0, 1, 0), (1, 0, 0),

and (0, 0, 1) are the three common points of G
1
and G

2
and also G

1
"D. This

gives intersection polynomial p(t)"(b#1)t2, for some b3GF(4). Also, bO0
as (0, 1, 0)"N

2
, and bO1 as (1, 1, 1) N G

2
. Therefore, the only common

points of H
1

and H
2

are the common points on l
=
. Therefore,

H
1
WH

2
"G

1
WG

2
.

(ii) If N
1

and N
2

are distinct and are both common points of G
1

and
G

2
, then let N

1
"(0, 1, 0), N

2
"(1, 0, 0), and (0, 0, 1) be in G

1
WG

2
and take

(1, 1, 1) to be some other point of G
1
. This gives intersection polynomial

p(t)"t(at3#1) for some a3GF(4). Also, aO0, 1 as N
2
"(1, 0, 0), and (1, 1,

1)NG
2
. Therefore, at3#1 is of degree 3 and is irreducible over GF (4). It has

three simple distinct roots in GF(43). Since we are assuming that F does not
contain a sub"eld of order 8, the only common points of H

1
and H

2
are N

1
,

N
2
, and (0, 0, 1). Thus, H

1
WH

2
"G

1
WG

2
.

(iii) Suppose that exactly one of N
1

and N
2
, say N

1
, is contained in

G
1
WG

2
. Coordinatize so that N

1
"(0, 1, 0), (1, 0, 0), and (0, 0, 1) are the

common points of G
1

and G
2

and so that G
1
"D. This gives intersection

polynomial p (t)"t(t2#et#f ), where e, f3GF(4). Note that eO0 as (0, 0,
1) and (1, 0, 0)3G

2
, and f O0 as (0, 0, 1) and (0, 1, 0)3G

2
. Also, e#fO1

since (1, 1, 1)NG
2
. Therefore, e, f both cannot be equal to 1. This means that

t2#et# f is an irreducible polynomial of degree 2 over GF (4). It has two
simple distinct roots in GF(42). The hyperconics H

1
and H

2
also have two

common points on l
=

as well as the point (0, 0, 1). Therefore DH
1
WH

2
D"5 if

F contains a sub"eld of order 16, and H
1
WH

2
"G

1
WG

2
otherwise.
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(iv) Suppose that N
1
, N

2
N G

1
WG

2
. Coordinatize so that N

1
"(0, 1,

0) and so that (1, 0, 0), (0, 0, 1), and (1, 1, 1) are the three common points of G
1

and G
2
. This gives intersection polynomial p (t)"t(dt2#(b#e)t#f ) for

some b, d, e, f 3GF (4) satisfying b#d#e#f"0. Now, the line N
1
N

2
meets exactly one of the three common points of G

1
and G

2
. If (1, 0, 0) is on

N
1
N

2
, then p(t)"t(t#1). If (0, 0, 1) is on N

1
N

2
, then p(t)"t2 (t#1). If

(1, 1, 1) is on N
1
N

2
, then p(t)"t (t#1)2. Thus H

1
WH

2
"G

1
WG

2
. j

We make several remarks:
1. It is interesting to note that Theorem 2.1 is indeed false if F does

contain a sub"eld of order 8.
To see this, suppose that G

1
LH

1
and G

2
LH

2
where G

1
and G

2
are

coplanar hexads contained in the hyperconics H
1

and H
2
, respectively.

There are now three cases in which Theorem 2.1 fails if F contains
a sub"eld of order 8.

(i) If DG
1
WG

2
D"2 and exactly one of the nuclei of H

1
and H

2
is

a common point of G
1

and G
2
, then DH

1
WH

2
D"5 if F contains a sub"eld of

order 8.
(ii) If DG

1
WG

2
D"1 and if the nuclei of H

1
and H

2
and the point

G
1
WG

2
are three distinct points that are not collinear, then DH

1
WH

2
D"4 if

F contains a sub"eld of order 64.
(iii) If DG

1
WG

2
D"3 and the nuclei of H

1
and H

2
are two of the three

points of G
1
WG

2
, then DH

1
WH

2
D"6 if F contains a sub"eld of order 64.

2. It is an open question to determine if the even intersection equiva-
lence relation can be extended to a larger set of hyperconics. However, the
even intersection property does not give an equivalence relation in general in
the plane PG (2, q). For example, in PG(2, 16), with GF(16)CM0N"SaT,
a4"1#a, let

H
1
: a5X2#a5>2#X>#XZ#>Z"0 X M(1, 1, 1)N

H
2
: a5X2#a5>2#a9Z2#X>#a4XZ#a13>Z"0 X M(a13, a4, 1)N

H
3
:>2"XZ X M(0, 1, 0)N.

Then H
1
WH

2
"M(1, a3, 0), (1, a12, 0)N, H

1
WH

3
"M(1, 1, 1), (0, 0, 1)N, and

H
2
WH

3
"M(a9, a12, 1)N.

3. While proving Theorem 2.1, we considered the case DG
1
WG

2
D"0,

i.e., the case of two disjoint hexads. The proof of Theorem 2.1 for this case
could have been shortened if PG¸(3, 4) had been transitive on pairs of
pointed disjoint hexads in PG (2, 4). Given a pair of disjoint hexads G

1
, G

2
containing points P

1
, P

2
, respectively, and another pair of disjoint hexads G@

1
,

G@
2

containing points P@
1
, P@

2
, respectively, does there exist a map

/3PG¸(3, 4) such that / (G
i
)"G@

i
and / (P

i
)"P@

i
, i"1, 2 ? A counting

argument suggests PG¸(3, 4) is transitive on pairs of disjoint pointed hexads
(G

i
, P

i
), i"1, 2.



340 BRUEN AND MCQUILLAN
We show now that this is not the case. Let the line l"P
1
P
2
meet H

1
, H

2
in

Q
1

and Q
2
, respectively. Similarly, the line l@"P@

1
P@

2
meets H@

1
, H@

2
in Q@

1
, Q@

2
,

respectively. Denote the "fth point of l, l@ by >, >@, respectively.
Suppose there exists / in PG¸(3, 4) mapping the ordered pair (G@

i
, P@

i
) to the

ordered pair (G
i
, P

i
), i"1, 2. Note that / (P@

1
)"P

1
, /(P@

2
)"P

2
, / (Q@

1
)"Q

1
,

/(Q@
2
)"Q

2
, and /(>@)">. Then we claim there is no element t mapping

the ordered pair (G@
1
, P@

1
) and (G@

2
, Q@

2
) to the ordered pair (G

1
, P

1
) and (G

2
,

P
2
), respectively. For in this case, t (P@

1
)"P

1
, t (P@

2
)"Q

2
, t(Q@

1
)"Q

1
,

t(Q@
2
)"P

2
, and t (>@)">. But then / and t are both in PG¸(3, 4) and the

image of each of P@
1
, Q@

1
, >@ is the same under both maps. This is not possible

as P@
1
, Q@

1
, >@ are collinear. We are grateful Prof. A.E. Brouwer (see [3]) for

a discussion of these matters.
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