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SUMMARY
Wehave recently demonstrated that human pediatric mesenchymal stem cells can be reprogrammed toward
a Ewing sarcoma family tumor (ESFT) cancer stem cell (CSC) phenotype by mechanisms that implicate
microRNAs (miRNAs). Here, we show that themiRNA profile of ESFT CSCs is shared by embryonic stem cells
and CSCs from divergent tumor types. We also provide evidence that the miRNA profile of ESFT CSCs is the
result of reversible disruption of TARBP2-dependent miRNAmaturation. Restoration of TARBP2 activity and
systemic delivery of synthetic forms of either of two of its targets, miRNA-143 or miRNA-145, inhibited ESFT
CSC clonogenicity and tumor growth in vivo. Our observations suggest that CSC self-renewal and tumor
maintenance may depend on deregulation of TARBP2-dependent miRNA expression.
INTRODUCTION

Cancer development is a multistep process that relies primarily

on alterations in the form of mutation, deletion, or translocation

of genes that control cell growth, proliferation, and survival.

Mounting evidence suggests that, despite originating from

a single transformed cell, a tumor may adopt a hierarchical

cellular organization, the apex of which is occupied by poorly

differentiated cells that acquire or retain at least a subset of

stem cell properties, including the capacity for self-renewal

and differentiation (Clarke et al., 2006; Clevers, 2011; Frank

et al., 2010; Visvader, 2011). These cells, termed cancer stem

cells (CSCs), have the ability to generate proliferating cell pools

that repopulate tumors and to differentiate into nontumorigenic

progeny that contributes to the phenotypic heterogeneity char-

acteristic of most tumor types. CSCs have therefore been advo-

cated to constitute the sustaining force of a tumor. This notion

has led to the view that CSC-directed therapeutic approaches
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may provide an attractive alternative in malignancies that are

resistant to conventional chemotherapy aimed at indiscriminate

elimination of the tumor bulk (Frank et al., 2010).

Exactly how CSCs emerge remains unclear but possible

mechanisms include transformation of primary stem cells or

acquisition of stem cell properties by more differentiated cells

as a result of transformation-associated genetic reprogramming

(Liu et al., 2009; Marión et al., 2009). Subsequent maintenance

of stem cell features may be ensured, in part, by the genetic

alterations responsible for transformation itself and, in part, by

posttranscriptional events, including regulation of gene expres-

sion by microRNAs (miRNAs).

miRNAs are noncoding transcripts capable of recognizing

complementary sequences within the 30 untranslated regions,

introns, and even exons of a wide range of genes (Bartel,

2009). Human tumors display broad miRNA downregulation

that appears to be responsible, at least in part, for their malig-

nancy and stems from defects in their production, intracellular
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transport, and/or maturation (Kumar et al., 2007; Melo and Estel-

ler, 2011; Ventura and Jacks, 2009). miRNA biogenesis is a

multistep process initiated by RNA polymerase II-mediated tran-

scription to generate a primary miRNA (pri-miRNA) (Newman

and Hammond, 2010; Winter et al., 2009). Pri-miRNAs are pro-

cessed by the multiprotein microprocessor complex that

includes Drosha, an RNaseIII enzyme, and DGCR8, a double-

stranded RNA-binding domain protein, to produce a �70 nt

precursor miRNAs (pre-miRNAs). Pre-miRNAs are exported

from the nucleus to the cytoplasm by Exportin-5 by a Ran-

GTP-dependent mechanism and are further processed by the

multiprotein Dicer complex to generate mature 21–23 nt oligo-

mers. The two miRNA strands are then separated, and one is

loaded onto the RNA-induced silencing complex (RISC) by

binding to an Argonaute (Ago) protein, whereas the carrier

strand is degraded (Newman and Hammond, 2010; Winter

et al., 2009). The miRNA guides RISC to its complementary

sequences within target transcripts to silence their expression

by either facilitating corresponding mRNA degradation or block-

ing its translation. Because complementary sequences to any

given miRNA are found in numerous genes, a restricted number

of miRNAs can regulate expression of large gene repertoires

implicated in the control of key cell functions. Increasing

evidence indicates miRNA involvement in stem cell generation,

maintenance, and differentiation, as well as in tumor initiation

and progression, consistent with the possibility that miRNAs

may play a key role in CSC establishment. As active participants

in the orchestration of tumor development, miRNAs may also

provide potentially attractive therapeutic targets and/or reagents

in cancer.

Work from our own laboratory has shown that miRNAs are

implicated in the emergence of CSCs in Ewing sarcoma family

tumors (ESFT), the second most common bone malignancy in

children and young adults (Riggi et al., 2010). ESFTs are charac-

terized by unique chromosomal translocations that give rise to

fusion genes composed of EWS and one of several ets family

members of transcription factors (Riggi et al., 2007). The most

common fusion gene, EWS-FLI1, arises as a result of the chro-

mosomal translocation t(11;22)(q24;q12) and is expressed in

85%–90% of ESFTs. The EWS-FLI-1 fusion protein is believed

to provide the key oncogenic event in ESFT by inducing and

repressing target genes that lead to transformation of permissive

primary cells. Mesenchymal stem cells (MSCs) have been shown

to provide permissiveness for EWS-FLI-1 expression and onco-

genicity (Riggi et al., 2005, 2008) and are currently considered to

be the most likely cell of origin of ESFT. Human pediatric MSCs

(hpMSCs) transduced with EWS-FLI-1 (hpMSCEWS-FLI-1) adopt

a transcriptome that resembles that of ESFT more closely

than any other primary or immortalized cell type tested (Riggi

et al., 2010). Remarkably, expression of EWS-FLI-1 in hpMSCs

cultured in serum-free conditions generates a subpopulation of

cells that express the CD133 marker characteristic of CSCs in

a variety of malignancies and in ESFT in particular (Suvà et al.,

2009). These cells constitute no more than 5%–8% of the bulk

hpMSCEWS-FLI-1 population and display upregulation of the

embryonic stem cell-associated genes OCT4 and NANOG

(Suvà et al., 2009) and repression of miRNA-145, a master regu-

lator of ESCdifferentiation that acts by suppressingOCT4,KLF4,

and SOX2 expression (Xu et al., 2009). On the basis of these
808 Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc.
observations, we assessed miRNA implication in ESFT CSC

development using reprogrammed hpMSCEWS-FLI-1 cells, ESFT

cell lines, and primary CSCs and addressed the mechanisms

that underlie miRNA deregulation in CSCs.

RESULTS

The ESFT CSC Subpopulation Displays Repression of
a Broad Range of miRNAs that Is Shared by the CD133+

Fraction of hpMSCEWS-FLI-1, Human Embryonic Stem
Cells, Induced Pluripotent Stem Cells, and CSC
from Diverse Carcinomas
To identify miRNAs thatmay be relevant to ESFTCSCgeneration

and maintenance, we performed miRNA microarray expression

profiling of the CD133+ and CD133� subpopulations derived

from primary ESFT, hpMSCEWS-FLI-1, and the ESFT STA-ET-8.2

cell line. A total of four primary ESFT tumors were used, two of

which (ESFT1 and 2) have been described previously (Suvà

et al., 2009), whereas two others (ESFT3 and 4) were obtained

more recently (Table S1 available online). All tumors displayed

a poorly differentiated small round cell phenotype and harbored

a subpopulation of CD133+ cells ranging between 6.5% and

15.2%. Tumors 1 and 2 were used for initial miRNA profiling

and qRT-PCR validation of miRNA expression, whereas tumors

3 and 4, whose CD133+ subpopulations displayed features

comparable to those of tumors 1 and 2 in terms of miRNA

expression profiles, were used for all subsequent functional

experiments. ESFT CD133+ (corresponding to CSC) and

CD133� cells were isolated from primary tumors, whereas

CD133+ and CD133� hpMSCEWS-FLI-1 were generated by retro-

virally mediated introduction of EWS-FLI-1 into hpMSCs grown

in serum-free stem cell medium, as previously reported (Riggi

et al., 2010). Expression profile analysis revealed broad miRNA

repression in CD133+ hpMSCEWS-FLI-1 and ESFT cells, and

cluster analysis showed that CD133+ and CD133� cells derived

from different primary ESFT cluster together, respectively (Fig-

ure 1A). The total number of miRNAs detected in ESFT samples

1 and 2was 205 and 182, respectively. In CD133+ cells of sample

1, 122 miRNAs (60%) were downregulated, whereas 29 (14%)

were upregulated. In sample two, the corresponding numbers

for CD133+ cells were 102 (56%) and 4 (2%). Not surprisingly,

a highly significant number of downregulated miRNAs was

shared by CD133+ ESFT and hpMSCEWS-FLI1 cells (Figure 1B).

miRNA repertoire distinction between CD133+ and CD133�

hpMSCEWS-FLI-1 was found to resemble that between their

respective primary ESFT CD133+ and CD133� counterparts,

as shown by the highly significant overlap between the lists of

differentially expressed miRNAs (Figure 1B). Real-time PCR

(qRT-PCR) assessment of the miRNA profile of CD133+ and

CD133� cell fractions derived from ESFT 1 and 2 and three dis-

tinct hpMSCEWS-FLI-1 populations validated the microarray re-

sults, consistent with the notion that CD133+ hpMSCEWS-FLI-1

bear molecular resemblance to ESFT CSCs.

The above analysis was repeated using the ESFT cell line STA-

ET-8.2, which has recently been suggested to mirror the CSC

model (Jiang et al., 2010). However, microarray profiling of

STA-ET-8.2-derived CD133+ and CD133� subpopulations, as

well as the corresponding qRT-PCR data validation, failed to

show any difference in their miRNA repertoire, and no similarity



Figure 1. Mature miRNA Expression in ESFT

(A) Clustering of CD133+ and CD133� hpMSCEWS-FLI1, primary ESFT cells, and STA-ET-8.2 cells.

(B) Venn diagrams indicating shared repressed (top left) and induced (top right) miRNAs between primary CD133+ cells from different ESFT samples, and shared

repressed miRNAs between primary CD133+ ESFT and hpMSCEWS-FLI-1 cells (lower left). Principle of component analysis of the eight samples used is shown

(lower right).

(C) Real-time PCR analysis of the expression of selected mature miRNAs in CD133+ and CD133� primary ESFT cells (left) and hpMSCEWS-FLI1 (right). Real-time

PCR experiments were normalized to SNORD49a and were done in triplicate. Error bars represent the SD of three independent determinations.

See also Figure S1 and Tables S1, S2, S3, S4, and S5.
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was observed with either primary ESFT CSC or hpMSCEWS-FLI-1

CD133+ cells (Figure 1A and Figure S1A). Established cell lines

may therefore not be representative of CSCs, having adapted

to in vitro culture conditions. Comparison of CD133+ CSC and

hpMSCEWS-FLI-1 miRNA signatures to recently published miRNA

expression profiles of normal human embryonic stem cells

(hESCs), induced pluripotent stem cells (iPSCs), and fibroblasts

(Wilson et al., 2009) showed that both CD133+ populations share

a significant portion of their miRNA repertoire with hESCs and

iPSCs but not with fibroblasts (Table S2). Moreover, comparative
analysis of ESFT CSCs and currently publicly available solid

tumor miRNA CSC profiles, including those of hepatocellular

(Ma et al., 2010b) (Table S3), prostate (Liu et al., 2011) (Table

S4), and breast (Iliopoulos et al., 2011) (Table S5) carcinomas,

revealed significant similarity. Thus, there appears to be marked

molecular resemblance between ESFT CSCs, hESC/iPSCs,

and CSCs from diverse tumor types, suggesting that the in-

trinsic stemness shared by these cells may rely on a common

miRNA expression profile that overrides the differences in their

ontogeny.
Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc. 809



Figure 2. Tarbp2 Is Repressed in ESFT CSC

(A) Real-time PCR analysis of primary (pri-) miRNA

expression (left) and primary and precursor (pre-) miRNA

expression (right) in primary CD133+ and CD133� ESFT

cells.

(B) Left: Real-time PCR analysis of the expression of key

components of the miRNA maturation machinery in

primary CD133+ and CD133� ESFT cells. Right: Western

blot analysis of Tarbp2 and Dicer expression in primary

ESFT CD133� and CD133+ cells.

(C) Real-time PCR analysis of TARBP2 expression in

CD133+ and CD133� ESFT cells after the first round of

sorting from tumor samples and after ESFT sphere

formation (second round of sorting).

(D) Real-time PCR analysis in primary CD133+ and

CD133� ESFT cells of the expression of primary (left) and

mature (right) miRNAs that are regulated by Tarbp2 in both

ESFT CSCs and colon cancer cells. Expression of the

Tarbp2-independent miRNA-451 is included as an internal

control.

(E) Real-time PCR analysis of TARBP2 expression after

5 days of treatment with 5-AzaC (20 mM) and/or DZNep

(10 mM). Real-time PCR experiments were normalized to

18S formRNAor SNORD49a formiRNAs andwere done in

triplicate. Error bars represent the SD of three independent

determinations. *p<0.05.

See also Figure S2.
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ESFT CSCs Display Decreased TARBP2 Expression
Studies on Dicer KO mice showed that global reduction in

miRNA processing and expression augments the tumorigenic

potential of transformed cells (Kumar et al., 2007). Subsequent

work suggested that defective miRNA biogenesis, resulting in

a reduction in the amounts of their mature 21–23 nt form, is

responsible for the repressed miRNA signature observed in

cancer cells (Kumar et al., 2009). We hypothesized that the

miRNA expression profile of CSC may reflect intrinsic deregula-

tion of miRNA maturation, which could explain, at least in part,

their phenotype and tumorigenic potential.

Expression of a panel of relevant pri-miRNAs, whose cor-

responding mature form was found to be repressed (Fig-

ure 1C), was assessed by qRT-PCR in CD133+ and CD133�

hpMSCEWS-FLI-1, as well as in freshly isolated primary cells from

ESFT 3 and 4. With the exception of the miRNA 143-145 cluster,

which is known to be transcriptionally repressed by Oct-4, (Xu
810 Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc.
et al., 2009) no decrease in the tested pri-miRNA

transcriptswas observed in either of theCD133+

populations (Figure 2A, left, and Figure S2A,

left), indicating that, for most of the repressed

mature miRNAs, the initial transcription step is

not affected. Expression of combined pri-

and pre-forms of each of a selected panel of

miRNAs was assessed according to recently

described methods (Shan et al., 2008) to

exclude a possible blockade in the pri- to pre-

miRNA maturation step. With the exception of

let-7a, combined pri- and pre-miRNA levels

were found to be increased in CD133+ com-

pared to CD133� cells (Figure 2A, right, and Fig-

ure S2A, right) for all species tested, consistent
with pre-miRNA accumulation and a late miRNA maturation

defect in CSCs. The strong decrease in combined let-7a pri-

and pre-miRNA may be attributed to elevated expression of

Lin28B in ESFT CSCs (De Vito et al., 2011), reported to act

primarily on pre-let-7a (Piskounova et al., 2011).

Because CD133� cells are derived from their CD133+ counter-

parts (Suvà et al., 2009), we reasoned that anymiRNAmaturation

defect responsible for CSC development should be reversible.

A putative underlying mechanism may therefore include altered

transcriptional regulation of molecules implicated in miRNA bio-

genesis. Accordingly, we assessed the expression of DROSHA,

DGCR8, DICER, TARBP2, AGO1-4, and EXPORTIN5 by qRT-

PCR in primary ESFT cells and hpMSCEWS-FLI-1. Interestingly,

the TARBP2 transcript (Figure 2B, left), as well as the corre-

sponding protein (Figure 2B, right), were significantly repressed

in CD133+ ESFT cells. The TARBP2 transcript was also re-

pressed in hpMSCEWS-FLI-1 (Figure S2B), albeit less markedly



Table 1. Downregulated miRNAs Common to CD133+ ESFT Cells

and CD133+ hpMSCEWS-FLI-1 that Are Modulated in Colon Cancer-

Bearing Mutated TARBP2

ESFT CD133

pos #1

ESFT CD133

pos #2

hpMSCEWS-FLI-1 CD133

pos

hsa-miR-181a hsa-miR-26a hsa-miR-26a

hsa-miR-99a hsa-miR-99a hsa-miR-125b

hsa-let-7f hsa-miR-181a hsa-miR-100

hsa-miR-26a hsa-miR-125b Hsa-let-7f

hsa-miR-125b hsa-let-7f

hsa-miR-196a hsa-miR-10a

hsa-miR-100 hsa-miR-100

p = 0.0063 p = 0.0022 p = 0.024
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so than in primary CD133+ ESFT cells, whereas no difference in

TARBP2 expression was observed between STA-ET-8.2-

derived CD133+ and CD133� fractions (data not shown). Among

the other genes implicated in miRNA biogenesis tested, only

XPO5 was observed to be modestly repressed in CD133+

ESFT cells, prompting us to focus on TARBP2.

ESFT CSCs Display a TARBP2 Expression-Dependent
Defect in miRNA Maturation
The TARBP2 gene encodes an integral component of a Dicer1-

containing complex whose mutation has recently been reported

to participate in the pathogenesis of sporadic and hereditary

colon carcinomas with microsatellite instability (Melo et al.,

2009). The observed frameshift mutations cause a decrease in

Tarbp2 protein expression, which leads to a broad defect in

miRNA maturation, possibly as a result of Dicer1 protein desta-

bilization (Melo et al., 2009). To exclude the possibility that

TARBP2 downregulation in our CSC model might be due to

mutation, primary ESFT TARBP2 cDNA was sequenced and

found to be wild-type (data not shown). Interestingly, Dicer1

expression was unaltered at the protein level in primary ESFT

CD133+ fractions (Figure 2B left), suggesting that the reduced

Tarbp2 levels may suffice to maintain Dicer protein stability but

not to ensure full Dicer complex function.

As previously observed (Suvà et al., 2009), only CD133+

ESFT cells were able to generate spheres, which contain both

CD133+ and CD133� cell fractions. Similar to freshly isolated

CD133+ cells, sphere-derived CD133+ cells displayed de-

creased TARBP2 expression compared to their CD133� deriva-

tives, highlighting the reversibility of TARBP2 repression in CSC

(Figure 2C).

The ESFT CSC miRNA signature revealed significant overlap

with that observed upon TARBP2 mutation in colon cancer cell

lines (Melo et al., 2009) (Table 1), suggesting that the partial

TARBP2 repression identified in ESFT CSCs may underlie their

defective miRNA maturation. qRT-PCR assessment of a panel

of pri- and mature miRNAs, including miRNAs 100, 181a, 26a,

99a, and let-7f, reported to be part of the TARBP2miRNA profile

in colon cancer cells, validated the molecular similarity sug-

gested by array analysis, further supporting a putative implica-

tion of Tarbp2 in the generation of the ESFT CSC miRNA profile

(Figure 2D). To verify that repression of miRNAs in ESFT CSCs

results, at least in part, from a Tarbp2/Dicer-dependent matura-
tion blockade, we measured by qRT-PCR the expression of

miRNA-451, which has been shown to be processed in a

Dicer-independent manner (Yang et al., 2010). No difference in

miRNA-451 expression was observed between ESFT CD133+

and CD133� cells (Figure 2D).

Given the reversibility of TARBP2 repression in CD133+

ESFT cells and preclusion of detailed promoter methylation

analysis by the paucity of CD133+ cells, we addressed pos-

sible epigenetic mechanisms that may underlie the observed

TARBP2 repression using a pharmacological approach. CD133+

ESFT cells were subjected to treatment with 20 mM 5-Aza-2-

deoxycytidine (5-AzaC), to block CpG island methylation in

the TARBP2 promoter, and with 10 mM of the S-adenosyl homo-

cysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), to

block histone H3K27 and H3K9 methylation (Tan et al., 2007).

The two reagents were applied alone or in combination for

5 days, and corresponding changes in TARBP2 expression

were assessed by qRT-PCR. Although neither reagent alone

altered expression significantly, the combination of both resulted

in a 2-fold increase in expression, de facto restoring expression

to the level observed in CD133� cells (Figure 2E).

Interestingly, several miRNAs that are downregulated in ESFT

CSCs are also repressed in relapsing tumors (Nakatani et al.,

2012), including miRNA-34a, 224, 376a, and 26a (Figure S2).

TARBP2-Depleted ESFT Cell Lines Mimic ESFT CSC
Behavior
To address its role in generating the miRNA expression profile

observed in ESFT CSCs, as well as its involvement in their

tumorigenic potential, TARBP2 was depleted in three different

ESFT cell lines using an shRNAapproach. A 52%–60% reduction

in TARBP2mRNA and protein expression, as assessed by qRT-

PCR (Figure 3A, left) and western blot (Figure 3A, right) analysis,

respectively, was obtained that corresponds to the difference

in Tarbp2 expression levels observed between freshly isolated

CD133+ and CD133� ESFT cells. Similar to primary ESFT, Dicer

protein expression was unaltered upon Tarbp2 depletion (Fig-

ure 3A). miRNA expression analysis of control vector-infected

andshTARBP2-expressingcells revealed thatTARBP2-depleted

cells acquire a miRNA profile that is remarkably similar to that of

CD133+ hpMSCEWS-FLI-1 and ESFTCSCs (Figure 3B). Consistent

with this observation, qRT-PCR analysis confirmed that expres-

sion of a panel of mature miRNAs regulated by Tarbp2 in both

ESFT CSCs and colon cancer cells was repressed in TARBP2-

depleted ESFT cell lines, without decreasing transcription of their

corresponding pri-miRNA forms (Figure 3C, Figure S3A, and data

not shown). miRNAs that were upregulated in CD133+ cells were

also upregulated in shTARBP2-expressing cells, suggesting that

the same or related internal regulatory pathways are modified

in ESFT CSCs and ESFT cell lines upon TARBP2 depletion.

Because TARBP2-depleted ESFT cell lines display a miRNA

expression profile reminiscent of that of ESFT CSCs, we

assessed the effect of TARBP2 depletion on ESFT cell line prolif-

eration and tumorigenicity. Although there was no significant

difference in ESFT cell proliferation in vitro (Figure S3B), subcu-

taneous injection of control vector- and shTARBP2-infected

A673, TC252, and STA-ET-8.2 cells into six NOD-SCID mice

each revealed accelerated tumor emergence from TARBP2-

depleted cells (Figure 3D). The decreased TARBP2 expression
Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc. 811



Figure 3. Depletion of Tarbp2 in ESFT Cells Leads to an ESFT CSC miRNA Profile and Increases Tumorigenicity

(A) Real-time PCR (left) and western blot (right) analysis of TARBP2 depletion in A673, TC252, and STA-ET-8.2 ESFT cell lines.

(B) Comparison of miRNA profiles between ESFT cell lines depleted of TARBP2, CD133+ ESFT cells, and CD133+ hpMSCEWS-FLI1. N indicates the number of

shared miRNAs by each cell population pair. The number of expected shared miRNAs is shown in brackets, and the p value is indicated. Statistically significant

similarities are highlighted in yellow.

(C) Real-time PCR comparison of mature miRNA expression in TARBP2-depleted and control shRNA-treated ESFT cell lines.

(D) Growth curve of TC252 STA-ET-8.2 and A673 tumors depleted or not of TARBP2. Real-time PCR experiments were normalized to 18S for mRNA or

SNORD49a for miRNAs and were done in triplicate. Error bars represent the SD of three independent determinations. Student’s t test was used for statistical

analysis.

See also Figure S3.
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observed in ESFT CSCs may therefore be implicated in their

tumorigenic potential.

To compare the effect of depleting DICER to that of depleting

TARBP2 on ESFT tumorigenicity, DICER-specific shRNA was

stably expressed in the ESFT cell lines A673 and TC71 and

resulted in a 42%–43% depletion of Dicer protein (Figure S3C).

Neither cell viability nor proliferation (Figure S3D) was affected.

However, xenografts of the cells in immunocompromised mice

displayed a significant increase in tumorigenicity (Figure S3E)

and downregulation of a panel of Tarbp2/Dicer-dependent

miRNAs (Figure S3F).
812 Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc.
Enoxacin Inhibits Tumor Development from ESFT Cell
Lines
To address the potential effectiveness of restoring miRNA

expression in inhibiting tumor growth, we explored methods of

augmenting Tarbp2 function that may be applicable to therapy.

The possibility to specifically enhance Tarbp2 activity, without

affecting its expression level, has been recently demonstrated

using enoxacin, an antibacterial agent of the fluoroquinolone

family (Melo et al., 2011; Shan et al., 2008). We therefore as-

sessed the effect of enoxacin on ESFT cell line miRNA expres-

sion in vitro and tumorigenesis in vivo. ESFT cell lines TC252,



Figure 4. Enoxacin Blocks ESFT Cell Line

Growth In Vivo

(A) Real-time PCR analysis of expression of

a panel of mature Tarbp2-dependent miRNAs

upon DMSO or 40 mg/ml enoxacin treatment of

A673, TC252, and STA-ET-8.2 cells.

(B) MTT assay in DMSO- or enoxacin-treated

(40 mg/ml) ESFT cells for 72 hr.

(C) Growth curves of established TC252 and

A673 tumors in mice receiving daily i.p. enoxacin

(10 mg/kg) or DMSO injections.

(D) Real-time PCR analysis of mature miRNA

expression in DMSO- or enoxacin-treated tumors

at autopsy. Real-time PCR experiments were

normalized to SNORD49a and were done in trip-

licate. Error bars represent the SD of three inde-

pendent determinations. Student’s t test was used

for statistical analysis.

See also Figure S4.
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STA-ET-8.2, and A673 treated for 72 hr with enoxacin (40 mg/ml)

showed an increase in Tarbp2-dependent miRNA expression

(Figure 4A), without alteration of Tarbp2 expression itself (Fig-

ure S4). They also displayed significant reduction in their

in vitro proliferation, as assessed by MTT assays (Figure 4B).

TC252 and A673 cells were injected subcutaneously into

12 NOD-SCID mice, and daily intraperitoneal treatment with

enoxacin (n = 6) or solvent (DMSO, n = 6) was initiated at a

dose of 10 mg/kg for a total of 10 days, once tumor volume

reached 60 mm3. Tumor growth was significantly inhibited in

enoxacin-treated compared to DMSO-treated animals (Fig-

ure 4C). As expected, upregulation of Tarbp2-dependent

miRNAs in enoxacin-treated tumors was observed (Figure 4D),

consistent with the notion that enoxacin enhances endogenous

Tarbp2 activity, which leads to increased miRNA maturation

and inhibition of ESFT tumor growth.

Reconstitution of TARBP2 Expression and Function in
ESFT CSC Impairs Their Self-Renewal In Vitro and
Tumorigenic Potential In Vivo
We next addressed the effect of enoxacin on primary ESFT

spheres. ESFT CSCs cultured as spheres in serum free con-
Cancer Cell 21, 807–8
ditions were treated with enoxacin

(40 mg/ml) or solvent (DMSO) for 3 days,

following which their clonogenic

capacity, miRNA expression profile, and

stem cell protein expression levels were

assessed. Clonogenic assays revealed

a 50% reduction in sphere formation

by enoxacin-treated CSCs (Figure 5A).

Enoxacin-treated spheres also displayed

increased expression of a panel of

Tarbp2/Dicer-dependent miRNAs (Fig-

ure 5B) and decreased expression of

Oct-4, Nanog, and Sox-2 proteins (Fig-

ure 5C). To validate the notion that the

effect of enoxacin was due to enhance-

ment of Tarbp2 activity, we assessed

the effect of TARBP2 overexpression on
ESFT spheres. Lentivirus-mediated introduction of TARBP2

into primary ESFT spheres resulted in a marked decrease in their

clonogenicity (Figure 5D) and a concomitant increase in the

expression of a panel of Tarbp2-dependent miRNAs, including

miRNAs 100, 181a, 26a, 99a, Let-7f, 143, and 145 (Figure 5E).

Partial repression of Oct-4, Nanog, and Sox-2 (Figure 5F),

comparable to that observed upon enoxacin treatment, was

also noted. These observations indicate that enoxacin mimics

the effect of exogenous TARBP2 introduction and that enhanced

Tarbp2 activity impairs ESFT CSC self-renewal.

To address the effect of restoring Tarbp2 activity on primary

tumor growth and CSC population maintenance, 200,000 ESFT

cells freshly isolated from ESFT 3, of which 15% were CD133+,

were injected beneath the renal capsule of 12 immunocompro-

mised mice each. After 3 weeks of growth, six of the mice

were treated with vehicle (DMSO) only, whereas the remaining

six received daily injections of enoxacin at 10 mg/kg for

10 days. The mice were then sacrificed and tumors examined

for size, morphology, and CD133+ cell content. Although tumor

size was comparable in control and enoxacin-treated animals

(Figure 5G, left), control tumors were firm with little or no

necrosis, whereas tumors from enoxacin-treated animals were
21, June 12, 2012 ª2012 Elsevier Inc. 813



Figure 5. Enoxacin Treatment Inhibits ESFT CSC Self-Renewal In Vitro and Depletes CSC Populations In Vivo

(A) Clonogenic assay of DMSO- or enoxacin-treated primary ESFTs as assessed by sphere formation from single cell cultures. Sphere formation (inset) was

scored after 30 days; 40 mg/ml of enoxacin was added to the cultures every 5 days.

(B) Real-time PCR analysis of expression of a panel of mature miRNAs in primary ESFT spheres treated with DMSO or enoxacin (40 mg/ml) for 5 days.

(C) Western blot analysis of Oct-4, Nanog, and Sox-2 proteins in primary ESFT spheres treated with DMSO or enoxacin (40 mg/ml) for 5 days.

(D) Clonogenic assay of primary ESFT cells overexpressing exogenous TARBP2, as assessed by sphere formation from single cell cultures. Sphere formationwas

scored after 30 days.

(E) Real-time PCR analysis of expression of a panel of mature miRNAs in primary control ESFT cells and ESFT cells overexpressing exogenous TARBP2.

(F) Western blot analysis of the expression of Tarbp2 and Oct-4, Nanog, and Sox-2 proteins in primary ESFT spheres infected with TARBP2 cDNA-containing

lentivirus.

(G) Left panel: weight of primary ESFT xenografts grown under the renal capsule for 3 weeks prior to daily i.p. injections of enoxacin (10mg/kg) for 10 days. Middle

panel: histology of DMSO- and enoxacin-treated tumors. The asterisk indicates necrosis. Scale bar = 100 mm.Right panel: fraction of viable cells fromDMSO- and

enoxacin-treated tumors expressing CD133. Real-time PCR experiments were normalized to SNORD49a and were done in triplicate. Error bars represent the SD

of three independent determinations. **p < 0.005.
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soft and hemorrhagic with extensive necrosis (Figure 5G,

middle). Importantly, the CD133+ cell subpopulation was

reduced from 15% to 7% (Figure 5G, right).

miRNA-143 and miRNA-145 Control ESFT CSC Self-
Renewal and Tumorigenicity
ESFT spheres cultured in the presence of serum for 1 week

become adherent, acquire an elongated MSC-like phenotype,

and lose their tumorigenic potential (Figure 6A). We therefore

compared the miRNA expression profile of spheres and their

adherent cell counterparts from two different ESFTs (Figure 6B).

Similar to ESFT CD133+ and CD133� cells, PCA analysis

showed that spheres and adherent cells from the two popula-

tions cluster together, respectively (Figure S5). Compared to

their adherent counterparts, ESFT spheres displayed upregula-

tion of the known oncogenic 17-92a miRNA cluster (Figure 6B
814 Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc.
and C), whereas the TARBP2-dependent miR-143/miR-145

cluster (Melo et al., 2011) was among their most strongly

repressed miRNAs (Figure 6B and C). miRNA expression profile

differences between spheres and adherent cells were not iden-

tical to those observed between primary CD133+ and CD133�

ESFT cells, because spheres are composed of both CD133+

and CD133� cells. Moreover, comparison of spheres and

adherent cells highlights serum-induced differences in differenti-

ation and tumorigenicity, whereas comparison between CD133+

and CD133� cells underscores differences in stemness. miRNAs

that show similar expression differences in the two comparisons

are therefore likely to be relevant to CSC constitution and

maintenance.

Having previously shown that miRNA-145 plays an important

role in the generation of ESFT CSCs and in ESFT tumorigenicity

(Riggi et al., 2010), we addressed the function of the miRNA
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143-145 cluster in ESFT CSC self-renewal. By introducing the

cluster into primary ESFT spheres using a lentiviral system, we

obtained a 260- and 220-fold expression of miRNA-143 and

miRNA-145, respectively (Figure 6D).Clonogenic assays showed

that both miRNA-143- and miRNA-145-overexpressing-

ESFT spheres have lower self-renewal capacity (Figure 6E) that

correlates with suppression of OCT4 and NANOG but not

SOX2 transcripts (Figure 6F). Although SOX2 is a target of

miRNA-145, its response to changes in miRNA-145 expression

may occur at the transcriptional or translational level and may

vary according to cell type (Xu et al., 2009). Downregulation of

the miRNA 143-145 cluster therefore appears to play an impor-

tant role in ESFT CSC self-renewal.

Because bothmiRNA-143 andmiRNA-145 impair in vitro ESFT

CSC self-renewal, we assessed whether, similar to miRNA-145,

miRNA-143 could inhibit ESFT tumorigenicity. The introduction

of miRNA-143 into ESFT cell lines A673 and TC252 resulted in

a 150- to 200-fold increase in its expression, respectively (Fig-

ure 7A). Although proliferation was only minimally affected (Fig-

ure 7B), subcutaneous injection of control vector-infected or

miRNA-143-overexpressing ESFT cells into six NOD-SCID

mice each revealed that miRNA-143 overexpression significantly

reduced ESFT tumor growth in vivo (Figure 7C). Because exog-

enous miRNA administration has been shown to effectively

control tumor growth in experimental models (Ma et al., 2010a;

Wiggins et al., 2010), we asked whether systemic injection of

synthetic miRNAs can block or reverse growth of established

tumors. Similar to in vivo treatment using enoxacin, miRNA-

based treatment was initiated once the tumor reached a volume

of 60 mm3. Tail vein injection of 30 mg of synthetic miRNA-143 or

miRNA-145 was administrated on days 11, 14, and 18. Mice

treated with either miRNA-143 or miRNA-145 showed significant

reduction of tumor volume compared to control-treated animals

(Figure 7D). To verify that synthetic miRNAs had reached the

tumors, total RNA was extracted from the tumors, and expres-

sion of miRNA-143 and miRNA-145 were assessed by qRT-

PCR (Figure 7E), along with the expression level of the known

miRNA-145 target genes OCT4 and KLF4 (Figure 7F). A 2-fold

increase in miRNA-143 and miRNA-145 expression, along with

a significant decrease in of OCT4 and KLF4 expression levels,

were found in the treated tumors.

DISCUSSION

A Common miRNA Signature and Functionally Related
miRNAs May Underlie and Sustain the CSC Phenotype
Although broad miRNA repression is a well-established feature

of malignant cells, there has been little evidence of shared

miRNA profiles among different cancer types. The present study

demonstrates that the miRNA profile of CD133+ ESFT CSC and

hpMSCEWS-FLI-1 populations is at least partially shared by hESCs

and iPSCs, but not by terminally differentiated fibroblasts,

consistent with the notion that their stem cell properties reflect

a common intrinsic molecular profile. Greater similarity was

observed between miRNA expression profiles of ESFT CSCs

and hepatocellular, breast, and prostate carcinoma CSCs than

between those of CD133+ hpMSCEWS-FLI1 and the different

carcinomas. This may reflect the distinction between cells of

origin of a tumor that incur the initial transforming events to
become tumor initiating cells (TICs) and CSCs that represent

the self-renewing and tumor-sustaining population in the

established tumor (Visvader, 2011). The observed miRNA

expression profile similarity between CD133+ hpMSCEWS-FLI-1

and ESFT CSCs suggests that CD133+ hpMSCEWS-FLI-1 may

represent early stages of ESFT TIC generation that retain traces

of the miRNA expression profile of the cell of origin. These traces

may be diluted in established CSCs, whose miRNA profile more

strongly reflects their transformed stem-cell-like properties.

Our observations indicate that miRNA expression signatures

shared by CSCs from highly divergent tumor types not only

resemble those of ESCs and iPSCs but may underlie and help

sustain their phenotype and functional properties. Several

studies have shown that an ESC-like transcriptional signature

is associated with the most aggressive and undifferentiated

form of cancers of diverse origin, suggesting the existence of

a shared core pluripotency gene network. This putative network

is composed of the target gene repertoire of a limited group of

stem cell-related transcription factors, namely the Core, Poly-

comb, and c-Myc modules (Ben-Porath et al., 2008; Kim et al.,

2010; Wong et al., 2008).

The core module is composed of target genes regulated by,

among others, Oct-4, Nanog, Klf-4, Sox-2, and Lin-28; whereas

the PRC module comprises Suz12, Ezh1/2, and Eed; and the

c-Myc module includes Max and Rex1 (Wong et al., 2008).

Each of these genes or group of genes is silenced by miRNAs

found to be repressed in ESFT CSC. Thus, miRNA-145 re-

presses OCT4, KLF4, and SOX2 (Xu et al., 2009); let-7a silences

MYC and LIN28 (Kim et al., 2009) and is itself silenced by LIN28

(Viswanathan et al., 2008); miRNA-26a controls MYC and EZH2

(Sander et al., 2008); and miRNA-101 represses EZH2 (Varam-

bally et al., 2008). Furthermore, miRNA-145 is repressed in

breast (Iorio et al., 2005) and colorectal cancer (Schepeler

et al., 2008), miRNA-26a expression is reduced in hepatocellular

carcinoma (Chen et al., 2011), let-7 repression is associated with

lung cancer development (Trang et al., 2010), whereas miRNA-

101 is downregulated in prostate (Varambally et al., 2008), liver

(Su et al., 2009), and bladder cancer (Friedman et al., 2009). A

plausible scenario may therefore be that deregulation of

a restricted set of ESC-related miRNAs may govern expression

of different transcription modules, which help generate and

sustain the CSC population. The miRNA signatures, however,

need not be identical. Because expression of numerous tran-

scripts can be regulated by different miRNAs, it is conceivable

that CSC derived from diverse tumor types, and therefore gener-

ated by distinct oncogenic events, may exploit different miRNAs

tomodulate expression of an identical set of transcription factors

that are required for their survival. For example, ESFT- and

breast cancer-derived CSC appear to share the same let-7a-

mediated regulation of c-myc (Yu et al., 2007), whereas for the

Polycomb group proteins, they use miRNA-26a/101 (Sander

et al., 2008; Varambally et al., 2008) and miRNA-200 (Shimono

et al., 2009), respectively.

Reversible Deregulation of TARBP2 Expression
Determines CSC miRNA Profiles and Tumor Growth
Mutations in TARBP2 have been identified in colon cancer

associated with microsatellite instability (Melo et al., 2009). The

resulting decrease in Trbp expression is associated with Dicer1
Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc. 815



Figure 6. miRNA-143 and miRNA-145 Are Repressed in ESFT Spheres

(A) Upper left panel: ESFT sphere and adherent cell cultures are shown. Lower left panel: Tumor development following subcapsular kidney injection of primary

ESFT spheres and adherent cells. The number of cells injected and the number ofmice that developed tumors are indicated. Cells from three independent primary

ESFTs were used. Right panel: Flow cytometry analysis of CD133 expression in ESFT spheres and adherent cell cultures.

(B) Clustering of primary ESFT spheres and adherent ESFT cells.

(C) Real-time PCR comparison of the expression of a panel of mature miRNAs in primary ESFT spheres and adherent ESFT cells.
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Figure 7. Synthetic miRNA-143 and miRNA-145 Inhibit ESFT Tumor Growth

(A) miRNA-143 overexpression in TC252 and A673 ESFT cells following retroviral introduction.

(B) Curve growth of control and miR-143 overexpressing A673 and TC252 cells.

(C) Tumor growth curves in six mice each from miRNA-143 and empty vector-infected A673 and TC252 cells.

(D) Growth curves of established A673 tumors in mice treated by tail vein injection of 30 mg of synthetic miRNA-143 or miRNA-145. miRNA-143 or miRNA145 was

administered on days 11, 14, and 17 following subcutaneous A673 cell injection. Mice were sacrificed on day 20, and tumor size was assessed.

(E) Real-time PCR analysis of miRNA-143 and miRNA-145 expression in A673 tumors from miRNA-treated or control mice.

(F) Real-time PCR analysis of OCT4 and KLF4 expression in tumors from miRNA-145 treated or control mice. Real-time PCR experiments were normalized to

SNORD49a for miRNA or 18S for mRNA and were done in triplicate. Error bars represent the SD of three independent determinations. Student’s t test was used

for statistical analysis.
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protein instability or Dicer complex dysfunction that leads to

defective miRNA processing (Chendrimada et al., 2005). Inter-

estingly, the degree of reduction in Trbp expression observed

in colon cancer cells corresponds to the 50% lower expression

in CD133+ ESFT CSCs compared to CD133� cells seen here.

The notion that partial TARBP2 repression may underlie the

miRNA expression profile in ESFT CSCs is supported by the

observation that shRNA-mediated depletion, by roughly 50%,

of TARBP2 in ESFT cell lines results in a miRNA expression

profile that is highly reminiscent of that of ESFT CSCs, along
(D) Expression of miRNA-143 and miRNA-145 following lentiviral vector-mediate

(E) Clonogenic assay showing reduced self-renewal of miRNA-143- and miRNA-

(F) Real-time PCR analysis of OCT4, NANOG, and SOX2 in empty vector-infe

Real-time PCR experiments were normalized to 18S for mRNA or SNORD49a

independent determinations.

See also Figure S5.
with an increase in their tumorigenic potential. Furthermore,

both introduction of exogenous TARBP2 and enhancement of

endogenous Tarbp2 activity by enoxacin resulted in reexpres-

sion of the broad panel of repressed miRNAs in ESFT CSCs, in

addition to decreased clonogenicity. After 10 days of enoxacin

treatment, CSC-derived tumors displayed massive necrosis,

hemorrhage, and, most importantly, a roughly 50% decrease

in the CD133+ cell population. The extent of the necrosis

observed is consistent with the notion that, in addition to

promoting CSC differentiation, reconstitution of Tarbp2 activity
d introduction into primary ESFT cells.

145-overexpressing-ESFT cells.

cted and miRNA-143 or miRNA-145 overexpressing primary ESFT spheres.

for miRNAs and were done in triplicate. Error bars represent the SD of three
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drives a substantial proportion of the cells that constitute the

tumor bulk toward death. One among several possible mecha-

nisms may be downregulation of EWS-FLI-1 expression by

miRNA-145 (Riggi et al., 2010), which could reduce the onco-

genic driving force in both CSC and non-CSC populations,

resulting in impairment of their growth and survival. Consistent

with this view, the effect of enoxacin on cell line-derived tumors,

which may at least partially mimic the tumor bulk, was to inhibit

their growth.

Our observations suggest that partial inhibition of Tarbp2

function may constitute a key component of the mechanism

that underlies defectivemiRNAmaturation required for the emer-

gence andmaintenance of the CSC phenotype. Interestingly, the

observed repression of TARBP2 was not accompanied by Dicer

protein instability, as assessed by western blot analysis, sug-

gesting that partial TARBP2 repressionmay deregulate the func-

tion of the Dicer complex without augmenting Dicer degradation

itself. Alternatively, there may be a Tarbp2 repression range

within which effects on miRNA expression are Tarbp2 specific.

As expected, Dicer depletion by shRNA resulted in augmented

tumorigenicity of ESFT cell lines, similar to the effect of Tarbp2

depletion, underscoring the importance of miRNA biogenesis

in determining the tumorigenic potential of ESFT independently

of the mechanisms that underlie initial transformation.

Robust upregulation of repressed Tarbp2-dependent miRNAs

upon exposure of CSCs to serum indicates that the mechanisms

underlying the defect in TARBP2 expression are reversible.

Consistent with this notion, we found that TARBP2 expression

could be restored by treating CD133+ ESFT cells with a combina-

tion of 5-AzaC and DZNep, which suggests that TARBP2 repres-

sion in these cells is likely due to a combination of DNA and

histone methylation. Modulation of miRNA maturation as a

means of altering expression of a broad panel of genes that

orchestrate the full spectrum of CSC properties may provide

tumor cells with a relatively simple way to acquire or lose the

CSC phenotype. Epigenetic regulation of TARBP2 expression

may therefore constitute an important molecular switch that

allows tumor cells to gain or relinquish CSC status in response

to intrinsic or microenvironmental signals. Such regulation

could maintain CSC as dynamic rather than fixed populations

and account for their temporal and intertumor type size

variability.

The similarities we have uncovered between miRNAs that are

repressed in CSCs and in relapsing ESFT patients are consistent

with the notion that CSCs constitute the population that is resis-

tant to current chemotherapeutic agents and whose survival

upon treatment is likely to be responsible for tumor relapse.

The recent identification of miRNA-34a, the most robust event-

free predictor miRNA in ESFT (Nakatani et al., 2012), as a p53

downstream target whose repression enhances somatic cell re-

programming and iPSC generation (Choi et al., 2011) further

supports a potentially important mechanistic link between

Tarbp2-dependent miRNA expression, CSC maintenance, and

resistance to therapy in human tumors.

Targeting of Selected miRNAs Provides a Means
to Control ESFT Growth
The miRNA 143-145 cluster has been observed to display tumor

suppressor properties and to be downregulated in a broad range
818 Cancer Cell 21, 807–821, June 12, 2012 ª2012 Elsevier Inc.
of tumor types (Tong and Nemunaitis, 2008). Moreover, we have

previously shown the involvement of miRNA-145 in the genera-

tion of a CD133+ subpopulation of hpMSCEWS-FLI-1 that display

CSC features (Riggi et al., 2010). Here, we demonstrate that

both miRNA-145 and miRNA-143 are strongly repressed in

ESFT CSCs and that their reexpression impairs self-renewal.

miRNA-145 induction upon ESFT sphere exposure to serum

may result in OCT4 and SOX2 repression, thereby inducing

CSC differentiation and leading to loss of their tumor-initiating

and -sustaining properties. In addition, miRNA-145 can repress

EWS-FLI-1 expression (Riggi et al., 2010), neutralizing ESFT

CSCs by at least two mechanisms: induction of differentiation

on the one hand and silencing of the key oncogene on the other.

Taken together, our observations provide a plausible scenario

for the emergence of CSCs in ESFTs. Expression of EWS-FLI-1

in appropriate primary host cells suppresses themiRNA 143-145

cluster, leading to genetic reprogramming that induces expres-

sion of OCT4, NANOG, and SOX2. The resulting network of

induced target genes may modify the epigenetic landscape of

EWS-FLI-1-expressing cells, leading to partial TARBP2 sup-

pression, which results in defective maturation of a host of

miRNAs and the acquisition of the full-blown CSC phenotype.

Depending on microenvironmental conditions, these cells may

reexpress TARBP2 and lose their tumorigenic potential, whereas

others that are nontumorigenic may undergo partial TARBP2

depletion and acquire or regain CSC features. Given the power

of miRNA-driven gene expression to override the oncogenic

effect of genetic mutations, restoration of relevant miRNA

expression by systemic administration of synthetic miRNAs or

correction of the underlying transient maturation defect may

provide a potential means to control malignant growth. Effective

therapy for any malignancy that harbors CSCs should simulta-

neously target the CSC population, to hamper tumor progres-

sion, as well as the bulk of the tumor to avoid the possibility

that differentiated cells become reprogrammed toward the

CSC phenotype. Increasing Tarbp2 activity by enoxacin may

force ESFT CSCs to differentiate, while abrogating the opportu-

nity for differentiated tumor cells to modulate their miRNA reper-

toire and to revert their phenotype to that of CSCs.

EXPERIMENTAL PROCEDURES

Cell Culture, Retroviral and Lentiviral Infection, and Tarbp2

Construct

Human pediatric mesenchymal stem cells (hpMSCs) were isolated and

cultured as previously described (Riggi et al., 2010). A673 (ATCC), TC252

(kindly provided by Dr. T. Triche), STA-ET-8.2 (kindly provided by Dr. H. Kovar),

and TC71 (kindly provided by Dr. E. De Alava) ESFT cells lines were cultured in

RPMI (GIBCO) supplemented with 10% FCS (GIBCO). HpMSC, A673, TC252,

STA-ET-8.2, and TC71 cells were infected as previously described (Riggi et al.,

2010). MiR-143 vector was kindly provided by Dr. R. Agami. For stable knock-

down of Tarbp2 (V3LHS_300582), pGIPZ lentiviral system from Open Biosys-

tems was used. For stable knock-down of Dicer pSicoR sh dicer#1 (Addgene

plasmid 14763) was used. Primary ESFT samples were obtained at surgery

with approval of the ethics committee of the Canton de Vaud. All human

samples were deidentified prior to analysis and were exempt from informed

consent in accordance with the law of the Canton de Vaud. Spheres were

cultured in IMDM (GIBCO), supplemented with 20% KO serum (GIBCO),

10 mg/ml LIF (Millipore), 10 ng/ml recombinant human epidermal growth factor

(Invitrogen), and 10 ng/ml recombinant human basic fibroblast growth factor

(Invitrogen). Single ESFT cell suspensions were infected using lentivirus-

expressing miRNA control and mir-143-RFP (Biosettia) or miRNA-control
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and mir-145-GFP (System Biosciences). TARBP2was amplified from cDNA of

A673 cells and cloned into pLiV lentiviral vector.

RNA Isolation and Real-Time PCR

Total RNA was isolated using Trifast (Peqlab) according to the manufacturer’s

recommendations. Real-time PCR was performed as previously described

(Riggi et al., 2010). TaqMan probes included 18S, OCT4, NANOG, DROSHA,

DICER, pri-mir-138-1, and pri-mir-17 (Applied Biosystems). Primer sequences

for SYBR Green gene expression quantification are listed in Supplemental

Experimental Procedures. For microRNA quantification, 30 ng of total RNA

was amplified using miRCURY LNA Universal RT microRNA PCR kit (Exiqon,

DK) according to the manufacturer’s recommendations. LNA PCR primers

from Exiqon were used for RT-PCR amplification, and snord49a provided

the endogenous control.

MicroRNA Array Profiling

Total RNA quality was verified by an Agilent 2100 Bioanalyzer profile. Total

sample and reference RNA was labeled with Hy3 and Hy5 fluorescent label,

respectively, using the miRCURY LNA Array power labeling kit (Exiqon,

Denmark) according to the manufacturer’s recommendations. Hy3-labeled

samples and a Hy5-labeled reference RNA sample were mixed pairwise and

hybridized to the miRCURY LNA array version sixth generation (Exiqon,

Denmark), which contains capture probes targeting all miRNAs for human,

mouse, or rat registered in the miRBASE version 16.0 at the Sanger Institute.

Hybridization was performed according to the miRCURY LNA array manual

using a Tecan HS4800 hybridization station (Tecan, Austria). The miRCURY

LNA array microarray slides were scanned using the Agilent G2565BA Micro-

array Scanner System (Agilent Technologies, Inc., USA) and image analysis

was performed using the ImaGene 9.0 software (BioDiscovery, Inc., USA).

The quantified signals were background corrected and normalized using the

global Lowess (LOcally WEighted Scatterplot Smoothing) regression

algorithm.

Analysis of Microarray Data

Normalization of the microarray data was performed with the global Lowess

regression algorithm. MicroRNAs showing expression fold-change greater

than 2 (1.5 for the TARBP2-silenced cell lines) were considered differentially

expressed. Clustering analysis was performed using average-linkage hierar-

chical clustering based on Pearson correlation coefficient. The statistical

significance of the overlap between our microRNA lists and published ones

was established in all cases using a one-sided exact Fisher test and Bonferroni

correction for multiple testing.

Western Blots and Chemical Compounds

Western blots were performed according to standard procedures. Antibodies

used for the study were anti-Tarbp2 (Abnova), anti-Dicer (Santa Cruz),

anti-OCT-4 (Santa Cruz), anti-Nanog (R&D), anti-Sox2 (Chemicon Millipore),

and anti-b-actin (Sigma). Quantification of bands was performed using imageJ

Software. ESFT spheres were treated with 5-AzaC 20 mM (Sigma) and/or

3-Deazaneplanocin A (DZnep) 10 mM for 5 days.

Tumorigenicity Assays

Six NOD/SCID IL2 receptor common g-chain knockout mice were anesthe-

tized, and sphere-derived or adherent ESFT cells were injected beneath the

renal capsule. All mice were sacrificed 3 months later, and the kidneys were

removed at autopsy for histological analysis.

For assessment of the tumorigenic potential of TARBP2 depletion and

miRNA-143-overexpression ESFT cells, NOD-SCID mice were anesthetized,

and 1 3 106, 2 3 106, or 3 3 106 A673, TC252, or STA-ET-8.2 cells, respec-

tively, were injected subcutaneously into six mice each. For assessment of

the tumorigenic potential of Dicer depletion, NOD-SCID mice were anesthe-

tized, and 1 3 106 or 4 3 106 A673 or TC71 cells, respectively, were injected

subcutaneously into six mice each. The animals were sacrificed 4 weeks after

injection. All tumors were removed at autopsy and sectioned for histological

analysis. For in vivo treatment assays, 30 mg of miScript microRNA mimic

(QIAGEN) were formulated with MaxSuppressor in vivo RNALancerII (BIOO

Scientific, Inc), according to the manufacturer’s recommendations. miRNAs

were administrated intravenously by tail vein injection on days 11, 14, and
18. Tumor volume was measured as previously described (Esquela-Kerscher

et al., 2008). Experimental protocols involving mice were approved by the Etat

de Vaud, Service Vétérinaire, authorization number VD1942.1.

Cell Growth, Magnetic Cell Sorting, and FACS Analysis

ESFT cell lines were plated in triplicate wells and total cell counts and

cell viability determined using trypan blue. The MTT assay was performed

according to standard procedures. Magnetic cell sorting and FACS analysis

were performed as previously described (Suvà et al., 2009).

Clonogenic Assays

Empty vector-infected, miRNA-143-RFP- or miRNA-145-GFP-expressing

ESFT cells were plated as single cells in four 96-well plates and were cultured

for 30 days in IMDM, 20% KO serum, LIF, EGF, and FGF. Sphere formation

was scored 30 days later.
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The Gene Expression Omnibus accession number for the miRNA expression
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