
Journal of Combinatorial Theory, Series A 113 (2006) 799–821
www.elsevier.com/locate/jcta

Revlex-initial 0/1-polytopes�

Rafael Gillmanna, Volker Kaibelb,∗
aTU Berlin, MA 6-2, Strasse des 17. Juni 136, 10623 Berlin, Germany

bZuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

Received 4 January 2005
Available online 12 September 2005

Abstract

We introduce revlex-initial 0/1-polytopes as the convex hulls of reverse-lexicographically initial
subsets of 0/1-vectors. These polytopes are special knapsack-polytopes. It turns out that they have
remarkable extremal properties. In particular, we use these polytopes in order to prove that the min-
imum numbers gnfac(d, n) of facets and the minimum average degree gavdeg(d, n) of the graph of
a d-dimensional 0/1-polytope with n vertices satisfy gnfac(d, n)�3d and gavdeg(d, n)�d + 4. We
furthermore show that, despite the sparsity of their graphs, revlex-initial 0/1-polytopes satisfy a con-
jecture due to Mihail and Vazirani, claiming that the graphs of 0/1-polytopes have edge-expansion at
least one.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let us call a subset X of {0, 1}d revlex-initial if, for every x ∈ X, all points in {0, 1}d
that are reverse-lexicographically smaller than x are contained in X. The convex hulls of
revlex-initial subsets of {0, 1}d are the revlex-initial 0/1-polytopes. Phrased differently, the
revlex-initial 0/1-polytopes are the convex hulls of those sets of 0/1-vectors of length d
that correspond to the binary representations of all numbers 0, 1, . . . , n − 1 for some n.
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In particular, for every 1�n�2d there is precisely one revlex-initial 0/1-polytope with n
vertices in Rd .

Why should one be interested in such special polytopes? The general interest in 0/1-
polytopes stems from their importance in combinatorial optimization. Investigations of
0/1-polytopes like traveling salesman polytopes, cut polytopes, stable set polytopes, and
matching polytopes have not only led to beautiful insights into the interplay of combinatorics
and geometry, but also to great algorithmic progress with respect to the corresponding
optimization problems. From that work on such special 0/1-polytopes quite a few general
questions on 0/1-polytopes have emerged, such as, e.g., the question for the maximal number
of facets a d-dimensional 0/1-polytope may have (see Ziegler [15]).

With respect to this extremal question, Bárány and Pór [2] obtained a remarkable result.
They showed that a random d-dimensional 0/1-polytope with roughly 2d/log2 d vertices
in expectation has at least (roughly) 2(1/4)d log2 d facets. Recently, this bound was even
improved to 2(1/2)d log2 d by Gatzouras et al. [5]. The best known upper bound currently
is O((d − 2)!) (due to Fleiner et al. [4]). It turns out that the revlex-initial 0/1-polytopes
studied in this paper give some answers to two reverse extremal questions: How few facets
or edges can a d-dimensional 0/1-polytope with a specified number of vertices have?

Note that, somewhat different to the class of general polytopes, the number of vertices of a
0/1-polytope may impose severe restrictions on the combinatorial type. For instance, a 0/1-
polytope is simple if and only if it is the product of 0/1-simplices [8]. Thus, d-dimensional
simple 0/1-polytopes with n vertices do only exist if there is a factorization n = ∏

ni of n
with d = ∑

(ni − 1). Therefore, within the realm of 0/1-polytopes, it seems interesting to
investigate extremal questions for all (reasonable) pairs (d, n).

Our paper contains three main results.
(1) Revlex-initial 0/1-polytopes in Rd have no more than 3d facets (Theorem 2); from this

we deduce that the smallest number of facets gnfac(d, n) of a d-dimensional 0/1-polytope
with exactly n vertices satisfies gnfac(d, n)�3d for all d and n and gnfac(d, n(d))�d +o(d)

if n(d) grows sub-exponentially with d (Theorem 6).
(2) The average degree of every revlex-initial 0/1-polytope in Rd is at most d+4 (Theorem

4); from this we deduce that the smallest average degree gavdeg(d, n) of a d-dimensional
0/1-polytope with exactly n vertices satisfies gavdeg(d, n)�d + 4 (Theorem 7).

Since revlex-initial 0/1-polytopes have extremely sparse graphs, at first sight they look
like candidates for counter-examples to an important conjecture due to Mihail and Vazirani
(cited, e.g., in [3,9]) stating that the graph of every 0/1-polytope has edge-expansion at least
one. However, supporting that conjecture, we prove:

(3) Revlex-initial 0/1-polytopes have edge-expansion at least one (Theorem 5); from this
we deduce that, for every (reasonable) pair (d, n), there are d-dimensional 0/1-polytopes
with n vertices, sparse graphs, and edge-expansion at least one (Theorem 8).

The context in which we came to study the special class of revlex-initial 0/1-polytopes is
described in Section 3.4. They appeared from investigating an apparently strange behavior
of certain convex hull algorithms on random 0/1-polytopes.

The notion of revlex-initial subsets of {0, 1}d , or, equivalently, of a system of subsets of
{1, . . . , d}, is not new. It is related to the notion of compression of a set system, which plays
an important role in the Kruskal–Katona theorem (see, e.g., [14, Theorem 8.32]) charac-
terizing the f-vectors of simplicial complexes. Here, a system S of subsets of {1, . . . , d}
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(corresponding to a subset X ⊆ {0, 1}d ) is called compressed if, for every i, the subsystem
of S containing all sets from S of cardinality i is reverse-lexicographically initial within
the i-subsets of {1, . . . , d}. Clearly, every revlex-initial subset of {0, 1}d corresponds to a
compressed system of subsets of {1, . . . , d}, but the converse is not true.

In the context of the Kruskal–Katona theorem only compressed set systems that are closed
under taking subsets are considered. Of course, all revlex-initial 0/1-polytopes correspond to
compressed set systems with that property (i.e., revlex-initial 0/1-polytopes are monotone).
But even more: Exploiting the interpretation in terms of binary representations of numbers,
one finds that revlex-initial 0/1-polytopes are a special kind of knapsack polytopes (see
Section 2).

Note that the terminus “compressed polytope” has already been coined with a different
meaning (see, e.g., [13]).

2. Definitions

Throughout the paper, we assume that d is a positive integer number. We start with fixing
some notions and notation.

Definition 1 (Index ranges). For a positive integer number k, let

[k] := {1, 2, . . . , k} and [k]0 := {0, 1, . . . , k − 1}.
We will identify Rd with R[d]0 , i.e. vectors x ∈ Rd have components x0, x1, …, xd−1,
similarly for Nd .

Definition 2 (Reverse-lexicographical order). A point x ∈ {0, 1}d is reverse-lexicographi-
cally smaller than another point y ∈ {0, 1}d \ {x} (x ≺rlex y) if ximax < yimax holds for
imax := max{i : xi �= yi}. We denote x �rlex y if x = y or x ≺rlex y hold for x, y ∈ {0, 1}d .

For x ∈ {0, 1}d denote S(x) := {i ∈ [d]0 : xi = 1}. Then we have

x ≺rlex y ⇔ max(S(x)$S(y)) ∈ S(y)

for all x, y ∈ {0, 1}d (x �= y), where$ denotes the symmetric difference of two sets.

Definition 3 (Revlex-initial 0/1-polytope). A subset X ⊆ {0, 1}d is revlex-initial if, for
every x ∈ X, it contains all y ∈ {0, 1}d with y ≺rlex x. For v ∈ {0, 1}d define

X≺v := {x ∈ {0, 1}d : x ≺rlex v}.
A revlex-initial 0/1-polytope is the convex hull of any revlex-initial 0/1-set. We denote

P ≺v := conv X≺v.

Since ≺rlex defines a total ordering of {0, 1}d , every revlex-initial 0/1-set X with |X| < 2d

is of the form X≺v for some v ∈ {0, 1}d \ {0}. Note that v �∈ P ≺v .
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Table 1
Example illustrating some of the definitions: we have d = 10, w(v) = 5, S(v) = {0, 2, 3, 6, 9}, and S(v) =
{1, 4, 5, 7, 8}
v 1 0 1 1 0 0 1 0 0 1

Indices 0 1 2 3 4 5 6 7 8 9
Signature �5(v) �4(v) �3(v) �2(v) �1(v)

P≺v
1 � � � � � � � � � 0

P≺v
2 � � � � � � 0 0 0 1

P≺v
3 � � � 0 0 0 1 0 0 1

P≺v
4 � � 0 1 0 0 1 0 0 1

P≺v
5 0 0 1 1 0 0 1 0 0 1

Definition 4 (Signature of a 0/1-point). Let v ∈ {0, 1}d \ {0}. Its weight w(v) := 1�v is
the number of ones of v. Its signature is the vector

(�1(v), . . . , �w(v)(v))

with

S(v) = {�1(v), . . . , �w(v)(v)} and �1(v) > �2(v) > · · · > �w(v)(v).

Further we define the index set of all zero-components

S(v) := [d]0 \ S(v).

Definition 5 (Block decomposition). For a 0/1-point v ∈ {0, 1}d \ {0} with signature
(�1(v), . . . , �w(v)(v)), we call

X≺v
q := {x ∈ {0, 1}d : x�q (v) = 0, x�q (v)+1 = v�q (v)+1, . . . , xd−1 = vd−1}

(for q ∈ [w(v)]) the blocks of P ≺v . Clearly, X≺v is the disjoint union

X≺v = X≺v
1 	 · · · 	 X≺v

w(v)

of its blocks. The faces P ≺v
q := convX≺v

q are the block faces of P ≺v . The vector

(dim P ≺v
1 , . . . , dim P ≺v

w(v)) = (�1(v), . . . , �w(v)(v))

is the signature of the revlex-initial 0/1-polytope P ≺v (Table 1).

As mentioned in the introduction, revlex-initial 0/1-polytopes are a special kind of
knapsack polytopes. Indeed, for d ∈ N we define a ∈ Nd as ai := 2i . Then for two 0/1-
vectors v, w ∈ {0, 1}d we have v ≺rlex w if and only if a�v < a�w holds. Thus we can
identify each natural number n ∈ N with a unique 0/1-vector v ∈ {0, 1}d for a unique d
such that n = a�v and vd−1 = 1. Therefore we write P <n with n ∈ N instead of P ≺v with
v ∈ {0, 1}d with vd−1 = 1. With the above identification, P <n has exactly the n vertices
corresponding to the numbers 0, 1, . . . , n − 1. In other words, P ≺v with v ∈ {0, 1}d is the
knapsack polytope conv{x ∈ {0, 1}d : a�x�a�v − 1}.
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3. The facets of revlex-initial 0/1-polytopes

3.1. Optimizing linear functions

For c ∈ Rd and I ⊆ [d]0, define

c+(I ) :=
∑
i∈I

max{ci, 0}.

The following statement follows immediately from the block decomposition of revlex-initial
0/1-polytopes.

Proposition 1. For every v ∈ {0, 1}d \ {0} and c ∈ Rd , we have

max{c�x : x ∈ P ≺v} = max

⎧⎨
⎩

q−1∑
p=1

c�p(v) + c+([�q(v)]0):q ∈ [w(v)]
⎫⎬
⎭ .

In particular, the optimization problem max{c�x : x ∈ P ≺v} (for given v ∈ {0, 1}d and
c ∈ Qd ) can be solved in polynomial time.

3.2. A linear description

If i ∈ S(v) and x ∈ X≺v with xi = 1, then xj = 0 must hold for some j ∈ S(v) with
j > i. Let us denote

S>i(v) := {j ∈ S(v) : j > i} and S
>i

(v) := {j ∈ S(v) : j > i}.
We will use similar notations with respect to <, � and � . Thus, the inequalities

xi +
∑

j∈S>i(v)

xj � |S>i(v)| for all i ∈ S(v) (1)

and (since v �∈ P ≺v)

∑
j∈S(v)

xj = v�x = � |S(v)| − 1 (2)

are valid for P ≺v . These inequalities are minimal cover inequalities. In fact, they are all
minimal cover inequalities of the knapsack polytope P ≺v .

Theorem 1 (Linear descriptions of revlex-initial 0/1-polytopes). For every v ∈ {0, 1}d \
{0} the revlex-initial 0/1-polytope P ≺v has the following linear description:

P ≺v = {x ∈ Rd : 0�x�1 , x satisfies (1) and (2)} (3)
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Proof. Denote the polytope defined by the right-hand side of (3) by Q(v). Thus, Q(v) is
the set of all x ∈ Rd satisfying the following system of inequalities:

−xi � 0 for all i ∈ [d]0 (4)

xi � 1 for all i ∈ [d]0 (5)

xi +
∑

j∈S>i(v)

xj � |S>i(v)| for all i ∈ S(v) (6)

∑
j∈S(v)

xj � w(v) − 1 (7)

Denote by A the matrix with the left-hand side coefficients of the inequalities in (6) and (7).
The rows of A can be put into an order, such that A is an interval matrix. Thus A is total
unimodular (see, e.g., [11, Example 7, p. 279]), and appending the identity matrices Id and
−Id does not change total unimodularity.

Since the right-hand sides of the inequalities in (4)–(7) are integers, all vertices of Q(v)

are integer vectors and by the inequalities of type (4) and (5) they are binary vectors.
Therefore Q(v) = P ≺v , since Q(v) ∩ {0, 1}d = X≺v . �

3.3. The facet defining inequalities

Let us first describe the dimension of a revlex-initial 0/1-polytope.

Proposition 2. For each v ∈ {0, 1}d \ {0} the dimension of the revlex-initial 0/1-polytope
P ≺v is

dim P ≺v = 1 + max ({i ∈ [d]0 : ei ≺rlex v} ∪ {−1}) ,

In our knapsack notation we have for n ∈ N

dim P <n = 1 + max{i ∈ N ∪ {−1} : 2i < n} = min{j ∈ N : n�2j }.

Proof. This follows from the block decomposition of P ≺v . �

In particular, P ≺v is full-dimensional if and only if ed−1 ≺rlex v (that is, 2d−1 < n�2d ).
The following three propositions describe the facets of full-dimensional revlex-initial 0/1-
polytopes.

Proposition 3. For each v ∈ {0, 1}d with ed−1 ≺rlex v and for every i ∈ [d]0, the inequality
xi �0 defines a facet of P ≺v .

Proof. By Theorem 1, the inequalities (4)–(7) provide a linear description of P ≺v . Since
the trivial inequalities (4) are the only ones in this description which have negative co-
efficients, none of them can be conically combined from others. Hence, they all define
facets of P ≺v (since P ≺v is full-dimensional). �

Proposition 4. For each v ∈ {0, 1}d with ed−1 ≺rlex v, the inequality
∑

j∈S(v) xj �w(v)−
1 defines a facet of P ≺v .
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Proof. The inequality
∑

j∈S(v) xj �w(v)−1 is the only inequality in the linear description
(4)–(7) of P ≺v provided by Theorem 1 that is violated by the point v, which is not contained
in P ≺v . Thus, that inequality must define a facet of P ≺v . �

Proposition 5. For each v ∈ {0, 1}d with ed−1 ≺rlex v and for every i ∈ [d]0, the inequality
xi �1 defines a facet of P ≺v unless

w(v) = 2 and i ∈ S(v)

or

�2(v) < d − 2 and �2(v) < i�d − 1

(in which cases they do not define facets).

Proof. Unless one of the exceptions listed in the proposition holds, all inequalities from the
linear description (4)–(7) of P ≺v provided by Theorem 1 that have a positive ith coefficient
have right-hand side at least two. Since the only ones with negative ith coefficient have
right-hand side zero, the inequality xi �1 cannot be conically combined from the others in
that linear description. Hence it defines a facet of P ≺v (since P ≺v is full-dimensional).

In case of w(v) = 2 and i ∈ S(v), let j be such that S(v) = {i, j}. Thus, xi �1 is the sum
of inequality (7) and −xj �0. Hence, it does not define a facet of P ≺v .

Finally, consider the case �2(v) < d − 2. If �2(v) < i < d − 1, then the type-(6)
inequality xi + xd−1 �1 implies xi �1 by adding −xd−1 �0. If i = d − 1 then the type-(6)
inequality xj + xd−1 �1 for any �2(v) < j < d − 1 implies xd−1 �1 by adding −xj �0.
Thus, in both cases, xi �1 does not define a facet of P ≺v . �

Proposition 6. For each v ∈ {0, 1}d with ed−1 ≺rlex v and for every i ∈ S(v), the
inequality xi + ∑

j∈S>i(v) xj � |S>i(v)| defines a facet of P ≺v unless i < �w(v)(v) (in
which case it does not define a facet).

Proof. For each i ∈ S(v) with i > �w(v)(v), the inequality xi + ∑
j∈S>i(v) xj � |S>i(v)|

is the only inequality in the linear description (4)–(7) of P ≺v that is violated by the point
v + ei − e�w(v)(v), which is not contained in P ≺v . Thus, that inequality must define a facet
of P ≺v .

If i < �w(v)(v), then xi +∑
j∈S>i(v) xj � |S>i(v)| does not define a facet since it equals

the sum of the two inequalities
∑

j∈S(v) xj �w(v) − 1 and xi �1. �

Combining Theorem 1 and the five preceding propositions, we obtain the following result.

Theorem 2 (Facets of revlex-initial 0/1-polytopes). Let v ∈ {0, 1}d with ed−1 ≺rlex v, i.e.,
P ≺v is a full-dimensional revlex-initial 0/1-polytope. Let

D(v) := D1(v) ∪ D2(v)
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with

D1(v)

{
S(v) if w(v) = 2,

� otherwise.

and

D2(v)

{ {�2(v) + 1, . . . , d − 1} if �2(v) < d − 2
� otherwise

.

(1) The following system is a minimal (with respect to. inclusion) linear description of P ≺v

by facet defining inequalities:

xi � 0 for all i ∈ [d]0,

xi � 1 for all i ∈ [d]0 \ D(v),

xi + ∑
j∈S>i(v)

xj � |S>i(v)| for all i ∈ S(v), i > �w(v)(v),

∑
j∈S(v)

xj � w(v) − 1.

(2) The number of facets of P ≺v is

fd−1(P
≺v) = 2d + ∣∣{�w(v)(v) < i < �2(v) : vi = 0}∣∣ + �,

where

� :=
⎧⎨
⎩

−1 if w(v) = 2,

0 if w(v) > 2, vd−2 = 0,

1 otherwise (i.e., w(v) > 2, vd−2 = 1).

We have

2d − 1�fd−1(P
≺v)�3d − 2.

The minimum number 2d − 1 of facets is attained if and only if w(v) = 2, and the
maximum fd−1(P

≺v) = 3d − 2 is achieved only by v = e0 + ed−2 + ed−1 (for d �3).

See Fig. 2 for an illustration of the facet numbers of revlex-initial 0/1-polytopes.

3.4. Incremental convex-hull algorithms

The origin of our investigations on revlex-initial 0/1-polytopes lies in some experi-
ments on computing the convex hulls of random 0/1-polytopes that we performed with
the polymake system. Some of the results of the experiments are illustrated in Fig. 1,
showing the running times for computing the convex hulls of (uniformly) random 0/1-
polytopes in Rd depending on the number n of vertices. The picture shows two curves, one
for the beneath-beyond and one for the double-description method (where polymake uses
Komei Fukuda’s implementation cdd for the latter method).

These two methods are incremental in the sense that they iteratively compute the convex
hull of the first i +1 vertices from the convex hull of the first i vertices. Since n−1 vertices
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Fig. 1. Incremental convex hull algorithms: running times on 9-dimensional random 0/1-polytopes.

of a random 0/1-polytope with n vertices should make a random 0/1-polytope with n − 1
vertices, we had expected the curves to be monotonically increasing. However, the first
n − 1 vertices do only make a (uniform) random 0/1-polytope with n − 1 vertices if the
order of the n vertices is (uniformly) random.

As it turned out, this is not the case for random 0/1-polytopes produced by thepolymake
system. Instead, the rand01 client of polymake is implemented in such a way that the
vertices of the random 0/1-polytope produced appear in lexicographic order. This led us to
studying revlex-initial 0/1-polytopes.

And in fact, our results on the facet numbers of revlex-initial 0/1-polytopes make the
curves in Fig. 1 plausible: For 0/1-polytopes with large numbers of vertices, which further-
more are lexicographically ordered, the intermediate polytopes appearing during the runs
of incremental convex hull algorithms are quite close to revlex-initial 0/1-polytopes. There-
fore, it is plausible that these intermediate polytopes have extremely few facets compared
to random 0/1-polytopes with the same numbers of vertices (Fig. 2).

In particular, if the 2d vertices of the entire cube are ordered lexicographically then the
total number of facets of all intermediate polytopes produced by an incremental convex hull
algorithm to compute the cube is bounded from above by 3d · 2d , while for an arbitrary
(even for a random) ordering there might be intermediate polytopes with super-exponentially
many vertices (due to the results of Bárány and Pór [2] and Gatzouras et al. [5]).

These results indicate that it might be a good strategy to sort the vertices lexicographically
before applying an incremental convex hull algorithm to a 0/1-polytope. However, we do
not yet have any thorough computational study to support this.

4. The graphs of revlex-initial 0/1-polytopes

4.1. Characterization of adjacency

The one-dimensional faces of a polytope (forming its 1-skeleton or graph) are particularly
important, for instance, since the simplex algorithm for linear programming proceeds along
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Fig. 2. The numbers of facets and the average degrees of all full-dimensional revlex-initial 0/1-polytopes for
d = 13.

them. Moreover, in the special case of 0/1-polytopes, the graphs are important also for
different reasons (see Section 4.3).

Here, we describe the graphs of revlex-initial 0/1-polytopes.

Definition 6. For v ∈ {0, 1}d \ {0} and 1�p < q �w(v) and x ∈ {0, 1}d we define the
sets (Table 2)

A≺v
p,q(x) := {

z ∈ P ≺v
p : zi = xi for all 0� i < �q(v),

z�q (v) = 0, z�r (v) = 1 for all p < r < q
}

and

B≺v
p,q(x) := {

z ∈ P ≺v
p : zzi = xi for all 0� i < �q(v),

z�q (v) = 1, z�r (v) = 1 for all p < r < q
}
.

Theorem 3 (Graphs of revlex-initial 0/1-polytopes). For v ∈ {0, 1}d \{0}, the graph of the
corresponding revlex-initial 0/1-polytope P ≺v has the following structure.

(1) Let x ∈ X≺v be a vertex of P ≺v contained in the block P ≺v
q . Let p be some block number

with 1�p < q.
(a) The vertex x is adjacent to all vertices of A≺v

p,q(x).
(b) If max({i ∈ [�q(v)]0 : xi �= vi}∪{−1}) �∈ S(v) then x is also adjacent to all vertices

of B≺v
p,q(x).

(2) The graph of P ≺v does not contain any other edges than the (cube-)edges of the blocks
P ≺v

1 ,…,P ≺v
w(v) and the ones described in part (i) of this theorem.
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Table 2
Illustration of the definitions (with p = 1, q = 4, and x = (1, 0, x2, x3, x4, x5, x6, x7, x8, x9) ∈ {0, 1}10 \ {0})
on the example from Section 2

v 1 0 1 1 0 0 1 0 0 1

Indices 0 1 2 3 4 5 6 7 8 9
Signature �5(v) �4(v) �3(v) �2(v) �1(v)

P≺v
1 � � � � � � � � � 0

A≺v
1,4(x) 1 0 0 1 � � 1 � � 0

B≺v
1,4(x) 1 0 1 1 � � 1 � � 0

P≺v
4 � � 0 1 0 0 1 0 0 1

Proof. For the proof of part (1), let us denote by F the face of P ≺v that is defined by the
following equations:

zi = xi (0� i < �q(v)), (8)

z�r (v) = 1 (p < r < q), (9)

zi = vi (�p(v) < i). (10)

The claim in (a) follows from the fact that the only vertices of the face {z ∈ F :
z�q (v) = 0} of P ≺v are the vertices of A≺v

p,q(x) and x itself. Since A≺v
p,q(x) is contained

in the hyperplane defined by z�p(v) = 0, while x is not, that face must be the pyramid with
base A≺v

p,q(x) and apex x.
In order to prove part (b), assume max({i ∈ [�q(v)]0 : xi �= vi} ∪ {−1}) �∈ S(v). Thus,

there is no block P ≺v
r with r > q that has a common vertex with the face F. Hence, the only

vertices of that face are the vertices of A≺v
p,q(x), B≺v

p,q(x), and x itself. Again, since A≺v
p,q(x)

and B≺v
p,q(x) are contained in the hyperplane defined by z�p(v) = 0, while x is not, that face

must be the pyramid with base conv(A≺v
p,q(x) ∪ B≺v

p,q(x)) and apex x.
For the proof of part (2), suppose that x and y are adjacent vertices of P ≺v not contained

in the same block. We may assume x ∈ P ≺v
q and y ∈ P ≺v

p with 1�p < q �w(v).
We will first show that y is contained in the face F of P ≺v defined in the proof of part

(1). Therefore, we have to prove that (8)–(10) is satisfied by z = y.
Let us assume (8) is not satisfied by z = y, i.e., there is some 0� i < �q(v) with xi �= yi .

If we denote, for a, b ∈ {0, 1}d , by a ⊕ b the component-wise addition modulo two, then
we have x ⊕ ei ∈ P ≺v (since i < �q(v)) and y ⊕ ei ∈ P ≺v (since i < �q(v) < �p(v))
with

{x ⊕ ei , y ⊕ ei} �= {x, y}
(since x�p(v) = 1 �= 0 = y�p(v)). But then

1
2 (x + y) = 1

2 (x ⊕ ei + y ⊕ ei )

contradicts the adjacency of x and y. Thus, z = y satisfies (8).
If (9) would not be satisfied by z = y, then there was some p < r < q with y�r (v) = 0.

Due to x ∈ P ≺v
q , x�r (v) = 1 holds. Thus, we have x − e�r (v) ∈ P ≺v and y + e�r (v) ∈ P ≺v
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(since y ∈ P ≺v
p with r < p). Again,

{x − e�r (v), y + e�r (v)} �= {x, y}

holds, and therefore,

1
2 (x + y) = 1

2

(
(x − e�r (v)) + (y + e�r (v))

)

contradicts the adjacency of x and y. Hence, (9) is satisfied by z = y.
Since q > p and x ∈ P ≺v

q , y ∈ P ≺v
p , we clearly have xi = yi = vi for all i > �p(v).

Therefore, also (10) is satisfied by z = y, and thus, the claim y ∈ F is proved.
We obtain y ∈ A≺v

p,q(x)∪B≺v
p,q(x). It hence suffices to show that, in case of y ∈ B≺v

p,q(x),
we have

max({i ∈ [�q(v)]0 : xi �= vi} ∪ {−1}) �∈ S(v).

Therefore, suppose we have y ∈ B≺v
p,q(x) and there is some q < s�w(v) with x�s (v) = 0

and xi = vi for all �s(v) < i < �q(v). Then we have y − e�q (v) ∈ P ≺v (due to y ∈ P ≺v
p ,

p < q, and y�q (v) = 1) and x + e�q (v) ∈ P ≺v (in fact: x + e�q (v) ∈ P ≺v
s ). Also here, we

have

{x + e�q (v), y − e�q (v)} �= {x, y},

and thus,

1
2 (x + y) = 1

2

(
(x + e�q (v)) + (y − e�q (v))

)

contradicts the adjacency of x and y. �

4.2. The number of edges

Having the structural description given in Theorem 3 at hand, we can now derive a formula
for the number of edges of a revlex-initial 0/1-polytope.

Theorem 4 (Edge numbers of revlex-initial 0/1-polytopes). For v ∈ {0, 1}d\{0}, the graph
of the corresponding revlex-initial 0/1-polytope P ≺v has

w(v)∑
p=1

2�p(v)

⎛
⎝�p(v)

2 +
w(v)∑

q=p+1

2p−q

⎛
⎝2 −

⎛
⎝ w(v)∑

r=q+1

2�r (v)

⎞
⎠ 2−�q (v)

⎞
⎠

⎞
⎠

edges. In particular, its average node degree is bounded from above by d + 4.

Proof. The statement on the average degree follows from the exact expression for the
number of edges: Inside the (outermost) brackets, the fraction �p(v)

2 is bounded from above
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by d
2 while the remaining sum clearly is at most 2. Thus the number of edges is at most

( d
2 + 2) times the number

∑
2�p(v) of vertices of P ≺v .

In order to determine the total number of edges, let 1�p < q �w(v). We have

dim A≺v
p,q(x) = dim B≺v

p,q(x) = (p + �p(v)) − (q + �q(v)) =: �p,q

for each x ∈ X≺v
q .

Clearly, the number of edges between P ≺v
q and P ≺v

p described in part (1a) of Theorem
3, thus is

2�q (v) · 2�p,q = 2p+�p(v)−q .

The number of x ∈ X≺v
q that do not satisfy the condition of part (1b) of Theorem 3 is∑w(v)

r=q+1 2�r (v). Thus, the number of edges between P ≺v
q and P ≺v

p described in part (1b) is

⎛
⎝2�q (v) −

w(v)∑
r=q+1

2�r (v)

⎞
⎠ · 2�p,q = 2p+�p(v)−q −

⎛
⎝ w(v)∑

r=q+1

2�r (v)

⎞
⎠ 2�p,q .

Therefore, the total number of edges is

w(v)∑
p=1

�p(v)2�p(v)−1

+
∑

1�p<q �w(v)

⎛
⎝2 · 2p+�p(v)−q −

⎛
⎝ w(v)∑

r=q+1

2�r (v)

⎞
⎠ 2(p+�p(v))−(q+�q (v))

⎞
⎠ ,

where the first sum accounts for the edges inside the blocks and the second one (the
double-sum) counts the edges running across different blocks. That expression can easily be
simplified to the one stated in the theorem. �

4.3. The edge-expansion

The geometry of a 0/1-polytope P (more precisely: its 1-skeleton, i.e., its graph) defines
a natural neighborhood structure on the set system S corresponding to the vertices of P.
Such a neighborhood structure can be used in order to design random walk algorithms for
generating elements from S at random (according to a certain pre-specified probability
distribution). Random walk algorithms are of great importance, for instance with respect to
randomized approximative counting algorithms (see, e.g., [6]).

In many cases, the neighborhood structure defined geometrically via the associated 0/1-
polytope has turned out to be quite appropriate for designing such random walk algorithms.
A crucial parameter with respect to the time complexity of these methods is the edge-
expansion of the neighborhood structure. The rule of thumb here is that the expansion
should be bounded from below polynomially in 1/d (where d is the dimension of the
polytope) in order to achieve an efficient time algorithm.
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Definition 7. The edge-expansion X (G) of a graph G = (V , E) is defined as

X (G) := min

{ |�(S)|
|S| : S ⊂ V, 0 < |S|� |V |

2

}

(with �(S) denoting the set of all edges with one end node in S and the other one in V \S).

It has been conjectured by Mihail and Vazirani (cited, e.g., in [3,9]) that the graph of
every 0/1-polytope has edge-expansion at least one. In fact, this conjecture is known to be
true for several classes of 0/1-polytopes, including stable set polytopes, (perfect) matching
polytopes, and polytopes associated with the bases of balanced (in particular: regular)
matroids (see [9,3,7]). For more details and references, we refer to [7].

Here, further supporting the Mihail–Vazirani conjecture, we prove that despite the sparsity
of their graphs, revlex-initial 0/1-polytopes have edge expansion at least one.

Theorem 5 (Edge-expansion of revlex-initial 0/1-polytopes). For v ∈ {0, 1}d \ {0}, the
graph of the corresponding revlex-initial 0/1-polytope P ≺v has edge-expansion at least
one.

In order to bound the edge expansion of a graph G = (V , E) from below we will construct
certain flows in the (uncapacitated) network N (G) = (V , A), where A contains for each
edge {u, v} ∈ E both arcs (u, v) and (v, u). This strategy dates back to the method of
“canonical paths” developed by Sinclair (see [12]). The extension to flows was explicitly
exploited by Morris and Sinclair [10]. Feder and Mihail [3] use random canonical paths,
which can equivalently be formulated in terms of flows.

The crucial idea is to construct for each ordered pair (x, y) ∈ V × V a flow �(x,y) : A −
→ Q�0 in the network N (G) sending one unit of some commodity from x to y. Define the
multi-commodity flow (MCF) � := ∑

(x,y)∈V ×V �(x,y) as the sum of all the flows �(x,y).
By

�max := max{�(a) : a ∈ A}
we denote the maximal amount of �-flow on any arc. By construction of �, the total amount
�(S : V \S) of �-flow leaving S is at least |S| · (n−|S|), where n = |V |. On the other hand,
we have �(S : V \S)��max · |�(S)|. This implies |S| · (n − |S|)��max · |�(S)|, and hence,
if |S|� n

2 holds,

|�(S)|
|S| � n

2 · �max
.

Thus, we have proven

X (G) � n

2 · �max
. (11)

In the light of inequality (11) it is clear that the task is to construct a flow � as above with
�max � n

2 (where n = |V |).



R. Gillmann, V. Kaibel / Journal of Combinatorial Theory, Series A 113 (2006) 799–821 813

Proof of Theorem 5. We will use the notations P <n := P ≺v ⊂ Rd and X<n := X≺v ,
where n ∈ N is the number having binary representation v (i.e., n is the number of vertices
of P <n = P ≺v). Clearly, we may assume vd−1 = 1, i.e., n > 2d−1 and dim P <n = d.
Thus, in particular, the dimension d and the 0/1-vector v ∈ {0, 1}d are uniquely determined
by the vertex number n.

We will prove the theorem by showing via induction on n that, for every n ∈ N, there is
an MCF �n = ∑

(x,y)∈X<n×X<n �n
(x,y) on N (G(P <n)) such that �n

max � n
2 .

The statement obviously holds for n = 2, since in that case, the polytope P <n consists
of two vertices joint by an edge.

Thus let us suppose that for all 2�n′ < n there is such an MCF �n′
on N

(
G(P <n′

)
)

with �n′
max � n′

2 . The induction step, i.e., the construction of an appropriate MCF �n, will
be subdivided into two cases.

Let G := G(P <n). For a subset A of the nodes of G, we denote by G[A] the subgraph
of G induced by A (similarly, we use N (G) [A]). Two 0/1-polytopes P and Q are called
0/1-equivalent if they can be transformed into each other by (potentially) lifting one of
them into the space of the other and applying a symmetry of the cube (i.e., by flipping and
permuting coordinates). Of course, such a transformation induces an isomorphism between
the graphs of P and Q. Note that for w ∈ {0, 1}d the vertex w ⊕ e0 is the one obtained by
flipping the first coordinate of w.

Case 1: (v0 = 0). Define the following faces of P <n and the corresponding vertex sets:

FA := {w ∈ P <n : w0 = 0}, FB := {w ∈ P <n : w0 = 1},
XA := {w ∈ X<n : w0 = 0}, XB := {w ∈ X<n : w0 = 1}.

Then, for every x ∈ XA, we have x ⊕ e0 ∈ XB (and vice versa). Thus P <n is a prism over
FA. In particular, FA and FB are 0/1-equivalent. Furthermore, they both are 0/1-equivalent
to P <n′

with n′ = n
2 . Thus, G[XA] and G[XB ] both are isomorphic to G(P <n′

).

Let �A and �B be the MCFs induced by �n′
on N (G) [XA] and N (G) [XB ], respectively.

Thus �A
max = �B

max = �n′
max � n

4 by the induction hypothesis. Now we construct the MCF
�n on N (G) by defining each �n

(x,y) in the following way (note that G[XA] and G[XB ] are
edge-disjoint):

x, y ∈ XA : �n
(x,y) := �A

(x,y),

x, y ∈ XB : �n
(x,y) := �B

(x,y),

x ∈ XA, y ∈ XB : �n
(x,y) := �(x,x⊕e0) + �B

(x⊕e0,y),

x ∈ XB, y ∈ XA : �n
(x,y) := �(x,x⊕e0) + �A

(x⊕e0,y).

Here, �(x,x⊕e0) denotes the flow just sending one unit along the arc (x, x ⊕ e0) ∈ A (and
nothing along any other arc). In the resulting MCF �n, every arc (x, x ⊕ e0) with x ∈ XA

carries one unit of flow for each of the |XB | = n
2 pairs (x, y), y ∈ XB . The same holds for

the reverse arcs (x, x ⊕ e0), x ∈ XB . Thus we have �(x, x ⊕ e0) = n
2 for every such arc,

and we conclude

�n
max � max

{
n
2 , 2 · �n′

max

}
= n

2
.
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x̂

XA

XA′

XB

XB ′

Fig. 3. Illustration of the sets used in case 2 of the proof of Theorem 5.

Case 2: (v0 = 1) Let x̂ ∈ {0, 1}d be the revlex-predecessor of v, i.e., the 0/1-vector
corresponding to the number (n − 1). Then x̂ is the “last” vertex of P <n and {x̂} = P <n

w(n)

is the “last” block of P <n. Define the following faces of P <n and the corresponding vertex
sets (see Fig. 3):

FA := {w ∈ P <n : w0 = 0}, FB := {w ∈ P <n : w0 = 1},
XA := {w ∈ X<n : w0 = 0}, XB := {w ∈ X<n : w0 = 1} ∪ {x̂},
X′

A := XA \ {x̂}, X′
B := XB\{x̂}.

Thus P <n is a partial prism over FA, i.e., P <n arises from a true prism over FA via removing
the vertex (x̂ + e0) corresponding to x̂ (and taking the convex hull).

We will first prove that there is a spanning subgraph of G[XB ] that is isomorphic to
G[XA]. Indeed, this is a simple consequence of the fact that P <n is a partial prism over
FA (with x̂ being the “not duplicated vertex”): Every edge {a, a′} of FA with a, a′ �= x̂

gives rise to a quadrangular 2-face {a, a′, a ⊕e0, a
′ ⊕e0} of the partial prism (showing that

{a ⊕ e0, a
′ ⊕ e0} is an edge of G), and every edge {x̂, a} of FA yields a triangular 2-face

{x̂, a, a ⊕ e0} of the partial prism (showing that {x̂, a ⊕ e0} is an edge of G).
Hence, there is a spanning subgraph of G[XB ] that is isomorphic to G[XA]. Furthermore,

the face FA of P <n is 0/1-equivalent to P <n′
with n′ = (n+ 1)/2. Therefore, the MCF �n′

induces MCFs �A and �B on N (G) [XA] and N (G) [XB ], respectively, with

�A
max = �B

max = �n′
max � n+1

4

by the induction hypothesis.
With � := n−1

n+1 < 1 we have (1 + �)�n′
max � n

2 . Thus we can increase each of the flows

�A and �B by an �-fraction without making the flow exceed the desired limit of n/2 at any
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arc. We construct the MCF �n on N (G) by defining each �n
(x,y) in the following way (note

that G[XA] and G[XB ] are edge-disjoint):

x, y ∈ XA : �n
(x,y) := �A

(x,y),

x, y ∈ XB : �n
(x,y) := �B

(x,y),

x ∈ X′
A, y ∈ X′

B : �n
(x,y) := �

(
�(x,x⊕e0) + �B

(x⊕e0,y)

)
+(1 − �)

(
�A

(x,x̂) + �B
(x̂,y)

)
,

x ∈ X′
B, y ∈ X′

A �n
(x,y) := �

(
�(x,x⊕e0) + �A

(x⊕e0,y)

)
+(1 − �)

(
�B

(x,x̂) + �A
(x̂,y)

)
.

Here, as in the first case, �(x,x⊕e0) is the flow sending one unit along the arc (x, x⊕e0) ∈ A

and nothing along any other arc.
It is easy to see that this is a valid MCF (i.e. for each pair (x, y) the flow �n

(x,y) really
sends one unit of flow). Thus let us check �n

max. Firstly, in order to estimate the flow on
the arcs inside G[XA] and G[XB ], we determine the multiplier by which each flow �A

(s,t)

respectively �B
(s,t) appears in the definition of �n. By symmetry, it suffices to do this for all

pairs s, t ∈ XA.
Each pair s, t ∈ X′

A is used once with multiplier one (for (x, y) = (s, t)) and once with
multiplier � (for (x, y) = (s ⊕ e0, t)). Thus, each �A

(s,t) appears with multiplier (1 + �) for
s, t �= x̂.

Each pair s = x̂ and t ∈ X′
A is used once with multiplier one (for (x, y) = (s, t)) and,

for each of the (n − 1)/2 pairs x ∈ XB and y = t , with multiplier (1 − �). Each pair
s ∈ X′

A and t = x̂ is used once with multiplier one (for (x, y) = (s, t)) and, for each of the
(n − 1)/2 pairs x = s and y ∈ XB , with multiplier (1 − �).

Thus, due to

(1 − �)
n − 1

2
= n + 1 − (n − 1)

n + 1

n − 1

2
= n − 1

n + 1
= �,

each �A
(s,t) with s = x̂ or t = x̂ appears with multiplier (1 + �).

Secondly, we estimate the flow along the arcs (x, x ⊕ e0) with x �= x̂. By symmetry we
restrict our attention to the case x ∈ X′

A and y ∈ X′
B , and we find that each arc (x, x ⊕ e0)

is used (n − 1)/2 times with flow-value �.
Altogether, this yields

�n
max � max

{
(1 + �) · �n′

max,
n − 1

2
· �

}
� n

2
,

which concludes the inductive step, and thus, the proof. �

5. Towards a lower-bound-theorem for 0/1-polytopes

In the following, we will exploit the following construction (using revlex-initial 0/1-
polytopes) several times.



816 R. Gillmann, V. Kaibel / Journal of Combinatorial Theory, Series A 113 (2006) 799–821

Proposition 7. For d, n ∈ N with d + 1�n�2d there exists d̃ ∈ N such that for ñ :=
n − (d − d̃) the following inequalities hold.

0� d̃ �d, (12)

2d̃−1 < ñ �2d̃ , (13)

d̃ �1 + log2 n. (14)

Furthermore P <ñ is a d̃-dimensional revlex-initial 0/1-polytope with ñ vertices.

Proof. To see that such a d̃ and ñ exist, observe that with ñ(k) := n − (d − k) we have
ñ(k) > 2k−1 for k = 0 and ñ(k)�2k for k = d; note that for these estimates we need
d + 1�n�2d . Then, we have that

d̃ := min{k ∈ N : ñ(k)�2k}
satisfies (12).

By definition, we have ñ(d̃)�2d̃ . If d̃ = 0, then (as stated above) also ñ(d̃) > 2d̃−1 is
true, and otherwise, from the minimality of d̃ we conclude ñ(d̃ − 1) > 2d̃−1, which, of
course, implies ñ(d̃) > 2d̃−1. Hence, d̃ also satisfies (13).

Finally, (14) trivially follows from (13).
Thus, with ñ := ñ(d̃), by (13) and Proposition 2 the revlex-initial 0/1-polytope P <ñ has

dimension d̃. �

Definition 8. For arbitrary d, n ∈ N with d + 1�n�2d and d̃, ñ ∈ N as in Proposition 7
we define P(d, n) to be the d-dimensional 0/1-polytope with n vertices obtained by building
the (d − d̃)-fold pyramid over P <ñ.

We denote the parameters d̃ and ñ by d̃(d, n) and ñ(d, n).

Note that Proposition 7 guarantees that this construction always works as claimed in the
definition of P(d, n).

5.1. An upper bound on the minimal number of facets

Definition 9. For d, n ∈ N with d + 1�n�2d , denote by gnfac(d, n) the minimal number
of facets of a d-dimensional 0/1-polytope with n vertices.

Note that a k-dimensional 0/1-polytope in Rd (with k < d) can isometrically be projected
to a k-dimensional 0/1-polytope in Rk . Thus, the definition is independent of the ambient
spaces of the polytopes.

Proposition 8. For every d + 1�n�2d we have gnfac(d, n)�d + 2 log2 n.

Proof. By Theorem 2(2), the revlex-initial 0/1-polytope P <ñ(d,n) has at most 3d̃ −2 facets.
Thus P(d, n) has at most 3d̃ − 2 +n− ñ = 2d̃ + d − 2 facets. The claim of the proposition
follows by (14). �
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Fig. 4. Comparison of the lower bounds on gnfac(5, n) and gavdeg(5, n) obtained from the polytopes P(5, n) in
the proofs of Propositions 7 and 8 with the true values of gnfac(5, n) and gavdeg(5, n) obtained from Aichholzer’s
enumeration [1].

The proposition immediately implies the following results:

Theorem 6.(1) For every d + 1�n�2d we have gnfac(d, n)�3d.
(2) For d + 1�n(d)�2o(d) we have gnfac(d, n(d)) = d + o(d).
(3) For 1 < � < 2 and n(d) := ��d� we have gnfac(d, n(d))�(1 + 2 log2 �)d + o(d).

The upper bounds on gnfac(d, n) provided by the polytopes P(d, n) in Proposition 8
are not sharp, at least not for all parameters d and n. This follows, for instance, from
the examples of Cartesian products of r 0/1-simplices of dimension d1,…,dr (which are
precisely the simple 0/1-polytopes, see Kaibel and Wolff [8]). Such a product is a 0/1-
polytope of dimension d = ∑

di with
∏

(di + 1) vertices and d + r facets. In particular
for n = (� d

2 � + 1)(� d
2 � + 1), this yields

g(d, n) = d + 2,

while the polytopes P(d, n) have d + �(log2 d) facets.
The right part of Fig. 4 shows that for d = 5 the polytopes P(5, n) achieve the respective

minimum number of facets in all but 10 cases (i.e., in 17 out of 27 cases). Fig. 5 depicts the
numbers of facets (and the average degrees) of the polytopes P(13, n).

For sub-exponential numbers of vertices, Part (2) of Theorem 6 shows that the minimum
number of facets is asymptotically as small as the number of facets of any d-dimensional
polytope can be (up to an additive o(1)-term). The range of sub-exponential vertex numbers
is particularly interesting for two reasons: Firstly, many 0/1-polytopes that are relevant in
combinatorial optimization have sub-exponentially many vertices (e.g., cut polytopes of
complete graphs and traveling salesman polytopes). Secondly, the papers by Bárány and
Pór [2] and Gatzouras et al. [5] show that within sub-exponential ranges of vertex numbers
a random 0/1-polytope has very many facets. In fact, it may well be that the maximum
numbers of facets of 0/1-polytopes is (roughly) attained by these polytopes.

The examples of products of simplices (i.e., simple 0/1-polytopes) seem to indicate
that it might be hopeless to derive an explicit formula for gnfac(d, n), i.e., a sharp lower
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Fig. 5. Numbers of facets and average degrees of the polytopes P(13, n) providing the upper bounds on gnfac(13, n)

and gavdeg(13, n).

bound theorem for the facet numbers of 0/1-polytopes. Nevertheless, the question for the
(asymptotic) best upper bound on gnfac(d, n) that does only depend on d (and not on n)
might be within reach. In particular, we do not know whether there is some constant � < 3
such that gnfac(d, n)��d + o(d) holds for all d and n. This might even be true for � = 2.

5.2. An upper bound on the minimal number of edges

Definition 10. Ford, n ∈ N withd+1�n�2d , denote bygavdeg(d, n) the minimal average
degree among all graphs of d-dimensional 0/1-polytopes with n vertices.

Revlex-initial 0/1-polytopes and the pyramidal construction yield the following bound
of the minimum average degrees.

Theorem 7. For d + 1�n�2d , we have gavdeg(d, n)�d + 4.

Proof. Set d̃ := d̃(d, n) and ñ := ñ(d, n). By Theorem 4, the revlex-initial 0/1-polytope
P <ñ has at most (d̃ + 4)ñ edges. Thus, P(d, n) (the (d − d̃)-fold pyramid over P <ñ) has
at most

(d̃ + 4)ñ + (d − d̃)n � (d + 4)n

edges. �

The left part of Fig. 4 shows that for d = 5 the polytopes P(5, n) achieve the respective
minimum average degree in all but 8 cases (i.e., in 19 out of 27 cases). Comparisons of
the average degrees and the graph densities of the polytopes P(d, n) and of random 0/1-
polytopes are depicted in Figs. 6 and 7, respectively.
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Fig. 6. Average degrees of the polytopes P(10, n) and uniformly random 10-dimensional 0/1-polytopes (by
sampling).
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Fig. 7. The graph densities of the polytopes P(10, n) used in the proof of Theorem 7 versus the graph densities of
respective random 0/1-polytopes (by sampling).

Finally, the polytopes P(d, n) yield examples of 0/1-polytopes with remarkably sparse
graphs, satisfying, nevertheless, the Mihail–Vazirani conjecture.

Theorem 8. For every d+1�n�2d , there is a d-dimensional 0/1-polytope with n vertices,
at most (d + 4)n edges, and edge expansion at least one.

Proof. By Theorem 7 the polytope P(d, n) has at most (d + 4)n edges. Since P(d, n) is
a k-fold pyramid over the revlex-initial 0/1-polytope P <ñ(d,n) the multi-commodity flow
constructed in the proof of Theorem 5 can be easily extended to a multi-commodity flow
of P(d, n) sending one unit of flow from every vertex to every other vertex. �
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6. Concluding remarks

The contributions of this paper concern three topics: (1) Investigations of a “natural”–
class of 0/1-polytopes, (2) lower bound theorem(s) for 0/1-polytopes, and (3) support of the
Mihail–Vazirani conjecture on the edge expansion of the graphs of 0/1-polytopes.

With respect to the first topic, one may be interested also in studying the convex hulls of
sets of 0/1-vectors that are only gradually revlex-initial (the 0/1-polytopes corresponding to
compressed set systems), i.e., convex hulls of sets X of 0/1-vectors which, with every x ∈ X,
contain all 0/1-vectors y which have the same number of ones as x and are revlex-smaller
than x. Due to the important role played by the monotone ones among them (more precisely:
by the corresponding set systems) in the theory of simplicial complexes, it might be that
these objects bear some connections between 0/1-polytopes and combinatorial topology.
This would be quite interesting.

It seems that precise lower bound theorems on the number of facets (edges, or even
other-dimensional faces) are hard to obtain. Nevertheless, with respect to topic (2) some
questions remain open that may be tractable, e.g., the question whether there is some � < 3
(maybe � = 2?) with gnfac(d, n)��d + o(d).

Perhaps the most interesting and promising line to follow up this research concerns topic
(3) Extending our techniques for construction of the multi-commodity flows showing that
revlex-initial 0/1-polytopes (as special knapsack-polytopes) have edge expansion at least
one to all knapsack polytopes (or even to all monotone polytopes) would be a big support for
the Mihail–Vazirani conjecture (which itself is of great importance in the theory of random
generation and approximate counting, as mentioned in Section 4.3). It follows from work
of Morris and Sinclair [10] that the edge-expansion of the graphs of d-dimensional 0/1-
knapsack polytopes is bounded from below by a polynomial in 1/d. Their proof in fact
shows that this is true even for the subgraph that is formed by those edges which are also
edges of the cube. Since our flows extensively use non-cube edges, the techniques used in
the proof of Theorem 5 seem to have good potential to improve the current lower bound,
maybe even to ‘one’ as conjectured by Mihail and Vazirani.
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