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UVA radiation is a major environmental stress on skin, causing acute and chronic photodamage. These
responses are mediated by reactive oxygen species (ROS), although the cellular source of these ROS is
unknown. We tested the hypotheses that UVA-induced activation of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase is required for ROS generation in human keratinocytes (HK) and that these ROS
initiate rapid prostaglandin E2 (PGE2) synthesis. Treatment of HK with a non-toxic dose of UVA rapidly increased
NADPH oxidase activity and intracellular ROS, which were partially blocked by an inhibitor of NADPH oxidase
and by a mitochondria-selective antioxidant. Depleting the Nox1 isoform of the catalytic subunit of NADPH
oxidase using small interfering RNA (siRNA) blocked the UVA-induced ROS increase, indicating that ROS
produced by mitochondria or other sources are downstream from Nox1. Nox1 siRNA also blocked UVA-initiated
PGE2 synthesis. The mechanism for activation of Nox1 is mediated by an increase in intracellular calcium.
Ceramide, which has been proposed to mediate responses to UVA in HK, also activated NADPH oxidase. These
results indicate that UVA activates Nox1-based NADPH oxidase to produce ROS that stimulate PGE2 synthesis,
and that Nox1 may be an appropriate target for agents designed to block UVA-induced skin injury.
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INTRODUCTION
UVA radiation, 320–400 nm, comprises about 95% of the
solar UV reaching the earth’s surface and initiates multiple
responses in skin. Chronic exposure to solar UVA contributes
to deleterious effects including skin cancer, tumor promotion,
immunosuppression, and photoaging (de Laat et al., 1997;
Krutmann, 2001; Bachelor and Bowden, 2004; Allanson
et al., 2006). The role of UVA in development of cutaneous
melanoma is still being debated (Setlow et al., 1993; De Fabo
et al., 2004; Wood et al., 2006). Acute responses in normal
skin to UVA include rapid erythema and immediate pigment
darkening as well as delayed erythema and tanning. Certain
photosensitivity conditions are also induced by UVA (Char-
man et al., 1998). Beneficial effects of UVA exposure include
treatments for cutaneous scleroderma and atopic dermatitis
(Krutmann, 2000; Breuckmann et al., 2004).

Early studies established that UVA-induced erythema and
tanning required oxygen in human skin (Auletta et al., 1986)
and more recent studies have clearly shown that responses in
skin cells to UVA are mediated by reactive oxygen species
(ROS). These ROS initiate signal transduction processes
leading to rapid synthesis and release of inflammatory
mediators, for example, prostaglandin E2 (PGE2) and iso-
prostanes, as well as induction of new gene products, for
example, heme oxygenase-1, cytokines, cyclooxygenase,
ICAM-1 (Grether-Beck et al., 1996, 2005; Mahns et al.,
2004; Belli et al., 2005). Despite their fundamental involve-
ment in UVA-induced effects in skin, the types of the ROS
responsible for initiating these responses are still unclear. The
involvement of singlet oxygen (1O2) in UVA-induced
responses is supported by studies showing enhanced res-
ponses in D2O-containing media, which prolongs the lifetime
1O2 but not the lifetimes of other ROS (Grether-Beck et al.,
1996; Tyrrell, 2000). Singlet oxygen is formed in cells by
energy transfer to molecular oxygen from the triplet excited
state of endogeneous chromophores possibly including
porphyrins, NAD(P)H, flavins, cytochromes, heme, and other
enzyme cofactors. Additional types of ROS are required for
UVA-induced responses because 1O2 is present only during
the irradiation due to its short lifetime in cells (Skovsen et al.,
2005; Redmond and Kochevar, 2006) and ROS are detected
long after the end of the UVA treatment. Thus, ROS continue
to be produced for an extended period and, as ROS
quenchers that do not affect 1O2 block the responses, the
ROS produced subsequent to 1O2 appear to be required
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for UVA-induced responses (Valencia et al., 2006). The

extended production of ROS after photosensitization to

produce 1O2 with an exogeneous dye has been demonstrated
(Ouedraogo and Redmond, 2003). Potential cellular sources
of extended production and enhanced levels of ROS include
enzymes such as nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase, the mitochondrial electron transport
chain and oxidation products from the reaction of 1O2 with
unsaturated lipids and proteins.

NADPH oxidase catalyzes the one-electron reduction of O2

to superoxide anion (O2
�) using NADPH as an electron donor.

This enzymatic complex has been extensively studied in
neutrophils and consists of plasma membrane-bound subunits
(gp91phox/Nox2 and p22phox) and cytosolic subunits (p40phox,
p47phox, p67phox, Rac1) that assemble to produce the active
enzyme (Babior et al., 2002). Recently, homologues of these
subunits have been described in several cell types and their
activities investigated (Lambeth, 2004). Human keratinocytes
(HK) express the gp91phox/Nox2 catalytic subunit as well as its
homologue, Nox1 (Chamulitrat et al., 2004; He et al., 2005;
Valencia et al., 2006). Murine keratinocytes express Nox2,
although this subunit was shown to be only minimally
involved in UVA-induced apoptosis (He et al., 2005). We
have recently shown that UVA irradiation of keratinocytes that
are treated to have a high membrane content of 7-dehydro-
cholesterol (mimicking the UVA photosensitivity disease
Smith–Lemli–Optiz syndrome) produce higher levels of ROS
and that NADPH oxidase is involved in ROS generation
(Valencia et al., 2006). Whether UVA activates NADPH
oxidase in normal keratinocytes has not been examined.

Previous studies have shown that UVA-initiated produc-
tion of ROS involve mitochondria, as blocking complex I of
the electron transport chain in the inner mitochondrial
membrane inhibited ROS formation (Gniadecki et al.,
2000). In addition, UVA has been shown to cause lipid
peroxidation in cell membranes (Morliere et al., 1991),
suggesting that ROS produced by chain radical oxidation of
unsaturated lipids may also contribute to the extended
formation of ROS after UVA.

In this study, we tested the hypotheses that the UVA-
induced ROS formation in normal HK require the activation
of the Nox1 catalytic subunit of NADPH oxidase and that
these ROS stimulate synthesis of PGE2 that can contribute to
immediate and chronic UVA-induced skin responses.

RESULTS
NADPH oxidase is a major source of UVA-induced ROS
in keratinocytes

Our previous results indicated that 10 J/cm2 UVA was not
cytotoxic to the same HK as used in this study (Valencia and
Kochevar, 2006). In this study, HK were irradiated with 5 J/cm2

and the relative level of intracellular ROS was quantified as
a function of time after irradiation by measuring the
fluorescence from the oxidation product of 5-(and-6)-
carboxy-20,70-dichlorodihydrofluorescein diacetate (carboxy-
H2DCFDA) (Figure 1). A significant increase in ROS occurred
by 5 minutes after irradiation in irradiated HK compared with
non-irradiated controls. A maximum level of ROS was

observed at 15 minutes and by 60 minutes the ROS level
was only slightly greater than that in the unirradiated cells.
Diphenylene iodinium (DPI) is often used as an inhibitor of
NADPH oxidase, although it may not be entirely specific for
this enzyme (Riganti et al., 2004). DPI (1mM) inhibited the
UVA-induced level of ROS at 15 minutes by B65%. As
mitochondria are a potential source of ROS
after UVA irradiation (Gniadecki et al., 2000), we used
mitochondrially-targeted ubiquinone (MitoQ or MQ), a
recycling ubiquinone antioxidant that selectively localizes
in mitochondria due to its triphenylphosphonium cation
group, although a portion of the MitoQ taken up by cells
localizes in non-mitochondrial membranes (Kelso et al.,
2001). The UVA-induced ROS level at 15 minutes was
decreased by B30% by 0.1 mM MitoQ, suggesting that ROS
arising in mitochondria, and possibly other subcellular
membranes, contribute to the ROS observed after UVA
treatment, although at a lower level than NADPH oxidase.
Neither DPI nor MitoQ alone completely decreased the
ROS to that of the unirradiated control. Combining 0.1 mM

MitoQ with 1mM DPI did not produce a greater effect on
UVA-induced ROS formation than the 65% reduction
observed by DPI alone (results not shown). Higher levels of
both agents were also tested (up to 5 mM of MitoQ plus 10 mM

of DPI) in order to reduce the ROS level to baseline.
However, these combinations resulted in cell death at 6 hours
after UVA treatment (results not shown).

As DPI substantially decreased the UVA-induced ROS, the
activity of NADPH oxidase was measured in HK as a function
of time after UVA treatment. NADPH oxidase, measured as
the superoxide dismutase-inhibitable cytochrome c oxidation
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Figure 1. UVA induces rapid formation of ROS in keratinocytes that

is partially quenched by an inhibitor of NADPH oxidase and a

mitochondria-selective antioxidant. Keratinocytes were exposed to 5 J/cm2

and the ROS level determined at varying times by measuring the

fluorescence of the oxidation product of carboxy H2DCFDA.

UVA-irradiated HK were preincubated with DPI (1 mM), a NADPH oxidase

inhibitor, or MitoQ, (0.1 mM), a mitochondria-selective antioxidant. The ROS

level is shown as a function of time after UVA irradiation for non-irradiated

HK (K), UVA-irradiated HK (m), plus DPI (&), and plus MQ (’). Data are

representative of four independent experiments with triplicate samples.

*Po0.01 compared with UVA-irradiated HK at the same post-UVA time.

www.jidonline.org 215

A Valencia and IE Kochevar
Reactive Oxygen Species in Keratinocytes



in membrane fractions obtained from cell lysates, was rapidly
activated by UVA with a maximum activity at 10 minutes
(Figure 2a). The activity gradually decreased to the level in
unirradiated control cells at 60 minutes after UVA irradiation.
The kinetics of UVA-induced NADPH oxidase activity is
similar to those for ROS formation (Figure 1).

We tested the hypothesis that Nox1, one of the NADPH
oxidase catalytic subunits expressed in HK, is the principal
source of ROS formed in HK after UVA irradiation. RNA
interference was used to knock down the levels Nox1. Two
small interfering RNA (siRNA) (Nox1A-siRNA and Nox1B-
siRNA) drastically decreased of ROS in UVA-irradiated HK,
with nearly complete 100% inhibition of ROS production at
10, 15, and 20 minutes after UVA (Figure 3a). HK treated with
scrambled sequence siRNA produced ROS levels after UVA
identical to untreated HK. To assess the extent of that siRNA
treatments reduced Nox1 protein, Western blotting was used.
Levels of Nox1 using Nox1A-siRNA and Nox1B-siRNA were
decreased in 90 and 85%, respectively, and scrambled siRNA
did not affect the Nox1 level (Figure 3b). Blocking Nox1
protein synthesis by two different siRNA sequences strongly
suggests that the observed inhibition of UVA-induced ROS is
a Nox1-specific effect rather than a nonspecific effect of the
siRNA treatment. The results in Figure 3a also show that
Nox1 siRNA reduced the UVA-induced ROS most effectively
at shorter times, as by 40 minutes the same ROS level was
present in both siRNA-treated and -untreated samples,
suggesting another source of ROS at longer times.

UVA increases Nox1-dependent PGE2 release in HK

As UVA provokes a rapid increase in PGE2 levels in skin, we
monitored the release of PGE2 as a function of time from UVA
irradiated HK. PGE2 release was significantly increased by
10 minutes after UVA, reached a maximum after 30–35 min-
utes, decreased and then reached another maximum after
120 minutes (Figure 4a). The PGE2 level remained greater
than the unirradiated control HK for at least 4 hours after UVA
irradiation. The UVA-induced increase in PGE2 release was
blocked B70%, compared to non-irradiated HK, by treat-
ment with siRNA (Nox1A and Nox1B) at an early time

(10 minutes), at the second maxima (120 minutes), and at the
valley in between the maxima (60 minutes) (Figure 4b).
However, DPI was only B40% effective at reducing UVA-
induced PGE2 released at 60 and 120 minutes. Scrambled
siRNA did not show any effect.
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Figure 2. UVA increases NADPH oxidase activity of keratinocytes. Keratinocytes were exposed to 5 J/cm2 UVA. (a) NADPH oxidase activity was

measured as the cytochrome c oxidation at 550 nm in lysates from UVA-irradiated HK (K), plus DPI (’), or MQ (n) treatments. The ‘‘zero time’’ point

represents cells before treatment. *Po0.01 compared with non-irradiated HK. Data are representative of five independent experiments with triplicate

samples. (b) Keratinocytes were incubated for 60 minutes with the intracellular calcium chelator 25 mM BAPTA-AM before UVA treatment. *Po0.01

compared with non-irradiated HK. Data represent the average of four experiments with duplicate samples.

R
O

S
 (

re
la

tiv
e 

flu
or

es
ce

nc
e)

450

400

350

300

250

200

150

100
0

b

a

10 20
Time after UVA (minutes)

UVA
Nox1A-siRNA
Nox1B-siRNA

Nox1A-siRNA - - -+
- + --
- - +

GAPDH

Nox1

-
Nox1B-siRNA

Scrambled-siRNA

Scrambled-
siRNA

30 40 50 60

Figure 3. UVA-induced ROS formation in keratinocytes is inhibited in siRNA

against Nox1. Keratinocytes were pretreated with two different siRNA

sequences (Nox1A and Nox1B) against Nox1 of human NADPH oxidase or a

scrambled sequence. (a) Kinetics of ROS formation in HK treated with Nox1A

(J) or Nox1B (X) siRNAs, a scrambled sequence (’) or buffer only (K) after

irradiation with 5 J/cm2 UVA. ROS level was measured using carboxy

H2DCFDA. *Po0.01 compared with UVA-irradiated HK not treated with

Nox1 siRNA at the same post-UVA time. The ‘‘zero time’’ point represents

cells before treatment. Data represent the average of four independent

experiments with quadruplicate samples. (b) Nox1 levels were detected by

Western blot in cells treated with Nox1A and Nox1B siRNA. Scrambled RNA

was used as negative control. GAPDH levels are show as loading controls.
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UVA-induced increase in intracellular calcium

UVA has been shown to increase intracellular calcium,
[Ca2þ ]i, in fibroblasts (Maziere et al., 2005). We measured
the effect of pretreatment of HK with the calcium chelator
1,2-bis-(O-aminophenoxy)-ethane-N,N,N0,N0-tetraacetic
acid, tetraacetoxymethyl ester (BAPTA-AM) (25 mM) on the
UVA-induced activity of NADPH oxidase. As shown in
Figure 2b, BAPTA-AM decreased NADPH oxidase by 470%.
Next, we evaluated whether UVA induced an increase in
[Ca2þ ]i using the calcium-sensitive fluorescent probe Cal-
cium Orange. [Ca2þ ]i increased rapidly after UVA with a
significant increase by 5 minutes and a maximum at
15–20 minutes (Figure 5a). The [Ca2þ ]i decreased rapidly
between 20 and 25 minutes and returned to basal concentra-
tions by 35 minutes. In order to determine whether this spike
in [Ca2þ ]i resulted from ROS formation, and in particular by
activation of NADPH oxidase, HK were treated with DPI or

Nox1 siRNA or MQ before UVA treatment. DPI and siRNA
(Nox1A and Nox1B) inhibited the UVA-induced increase in
[Ca2þ ]i at its maximum (20 minutes) by B40% (Figure 5b).
Interestingly, MQ was more effective than the NADPH
oxidase inhibitors, reducing the [Ca2þ ]i by B55% at
20 minutes (Figure 4b). Measurements made at an earlier
time (10 minutes after UVA) gave similar results except that
Nox1 siRNA and MQ were more effective than at 20 minutes,
reducing [Ca2þ ]i by 60 and 75%, respectively.

Ceramide increases ROS production via NADPH oxidase
activation

Ceramides have been shown to enhance ROS levels and
activate NADPH oxidase in diverse cell types (Li et al., 2002;
Zhang et al., 2003). In addition, UVA irradiation is reported
to induce ceramide production in keratinocytes (Maziere
et al., 2001; Grether-Beck et al., 2005). Consequently, we
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Figure 5. Intracellular calcium levels in keratinocytes increased rapidly after UVA and are blocked by Nox1 siRNA and an antioxidant. Keratinocytes
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DPI (1 mM), the mitochondria-selective antioxidant MitoQ (0.1 mM), and by depleting Nox1 using two siRNA. MitoQ and DPI were added 1 hour before
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www.jidonline.org 217

A Valencia and IE Kochevar
Reactive Oxygen Species in Keratinocytes



examined whether ceramide might initiate ROS formation
through the activation of NADPH oxidase in HK. Unirra-
diated HK were treated with C6-ceramide (25 mM) and the
ROS formation was measured as a function of time. The ROS
level rapidly increased reaching a maximum at 20–25 minu-
tes (Figure 6a), similar to the kinetics for ROS after UVA
treatment (Figure 1a). A single addition of C6-ceramide
induced a sustained high level of ROS for 1 hour that returned
to basal levels after 2 hours (data not shown). The NADPH
oxidase activity was then measured over the same time
course and showed similar kinetics than ROS production
(Figure 6b). DPI inhibited the ceramide-induced increase in
ROS nearly completely (Figure 6a) and blocked the increase
in NADPH oxidase activity completely (Figure 6b). In
contrast, MitoQ did not significantly alter the ROS or NADPH
oxidase level induced by C6-ceramide, suggesting that
mitochondrial or other sources of ROS downstream from
NADPH oxidase do not participate in the ceramide-induced
responses. In toto, these results suggest that ceramide might
mediate the UVA-induced increase in NADPH.

DISCUSSION
Although UVA irradiation of cells is known to produce ROS,
the intracellular sources of these reactive species are not well
characterized and several phases of ROS production may
occur. Multiple ROS including 1O2, O2

�, NO, H2O2, and
lipid hydroperoxides have been detected or implicated in
UVA-initiated responses (Tyrrell and Pidoux, 1989; Morliere
et al., 1991; Petersen et al., 2000; Paunel et al., 2005). Singlet
oxygen is generally proposed to be the first ROS formed from
triplet excited states of endogenous photosensitizers because
replacing H2O with D2O increases certain UVA-induced
responses, consistent with the longer lifetime of 1O2, but not
other ROS, in D2O (Grether-Beck et al., 1996; Tyrrell, 2000).
Singlet oxygen, as well as O2

� that may be formed by electron
transfer from the excited state of the photosensitizer, is only
present during the irradiation because of their short lifetimes
in cells (Skovsen et al., 2005; Redmond and Kochevar, 2006).
However, these initial species must induce extended

production of additional ROS, as ROS are detected for an
extended period after UVA exposure (Figure 1) (Valencia
et al., 2006).

In this study, we focused on NADPH oxidase and
mitochondria as sources for extended ROS production after
UVA irradiation and tested whether these ROS are respon-
sible for a rapid response of keratinocytes, namely, the
production of PGE2. Our initial results using small molecule
inhibitors with different selectivities, DPI and MitoQ,
indicated that ROS are produced by more than one
mechanism, as both inhibitors only partially blocked ROS
formation (Figure 1). In addition, the time course for UVA-
induced NADPH oxidase activity paralleled that for ROS
formation (Figure 2a), suggesting that this redox active
enzyme was involved. These results did not allow us to
discriminate between concurrent production of ROS from
different subcellular sources and sequential generation of
ROS from different sources. However, when Nox1 protein
was 85–95% depleted, the UVA-induced ROS level was
decreased by comparable amounts (Figure 3a) indicating that
the production of ROS after UVA requires Nox1 activity and
implying that Nox1 activity is upstream of ROS production by
mitochondria and other cellular sources. A similar sequence
for ROS formation was found during rat cardiac ischemia/
reperfusion injury where angiotensin II-induced activation of
NADPH oxidase led to production of a much larger amount
of ROS by mitochondria (Kimura et al., 2005). Mitochondrial
ROS can also elicit ROS formation by NADPH oxidase, as
serum withdrawal that stimulated production of ROS by
mitochondria subsequently, by a phosphatidylinositol
3-kinase-dependent mechanism, induced ROS production
by NADPH oxidase (Lee et al., 2006). These are all examples
of the more general phenomenon of ROS-induced ROS
formation (Zorov et al., 2000; Kimura et al., 2005).

The mechanism by which the O2
� produced by Nox1

elicits further ROS formation in cells may follow more than
one pathway. Nox1 is localized in the plasma membrane in
most cell types and releases O2

� to the extracellular space
(Lambeth, 2004; Takeya and Sumimoto, 2006). Dismutation
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of O2
� outside of cells forms H2O2 that can diffuse into the

same cell, or nearby cells, to elicit responses. Extracellular
catalase blocks NADPH oxidase-mediated responses verify-
ing the extracellular formation of H2O2 (Liu et al., 2006).
Exogenous H2O2 has also been shown to increase intracel-
lular ROS from endogenous sources (Li et al., 2001; Chernyak
et al., 2006). An alternative pathway involves products of
membrane lipid peroxidation, such as 4-hydroxynonenal,
that have been shown to stimulate ROS formation by
mitochondria (Landar et al., 2006). Mitochondria are not
necessarily the source of ROS after activation of Nox1.
Although MitoQ is concentrated in mitochondria, it also
partially distributes to other cell membranes and, conse-
quently, may block lipid peroxidation at non-mitochondrial
sites (Kelso et al., 2001; James et al., 2005). MitoQ acts as a
membrane-localized antioxidant with the ubiquinol portion
of the MitoQ structure buried in the lipid bilayer where it
reacts with hydroperoxy or lipid peroxy radicals to terminate
lipid oxidation chain reactions (Kelso et al., 2001; James
et al., 2005). Overall, our results indicate that the primary site
for the extended production of ROS after UVA treatment is
the Nox1-containing isoform of NADPH oxidase in kera-
tinocytes and that mitochondria, as well as other membranes,
may also supply downstream ROS.

The mechanism for activation of Nox1 by UVA irradiation
is unknown. Activation of Nox1 requires activation of Rac1
and its translocation to the plasma membrane where it binds
to the preassembled complex of Nox1, NoxO1 (‘‘Nox
organizer’’), and NoxA1 (‘‘Nox activator’’) (Park et al.,
2004; Ueyama et al., 2006). Our results suggest two possible
mechanisms for the activation of Rac1 by the 1O2 formed
during UVA irradiation. In one mechanism, 1O2 causes an
increase in [Ca2þ ]i, as shown previously for photosensitiza-
tion (Kessel et al., 2005), which leads to activation of NADPH
oxidase (Figure 2b). Nox1 itself is not directly calcium
dependent (Lambeth, 2004) but, an increase [Ca2þ ]i has
been shown to activate Rac (Mehta et al., 2005). Based on
studies in prostate carcinoma cells, the mechanism may
involve activation of protein kinase C by Ca2þ , subsequent
phosphorylation of the Rac inhibitor RhoGDIa, which allows
Rac to translocate to the plasma membrane (Price et al.,
2003). Interestingly, the UVA-induced increase in the [Ca2þ ]i
level (Figure 5b) was partially inhibited (B35%) by Nox1
siRNA, suggesting a positive feedback process: UVA
increases [Ca2þ ]i, which activates Nox1 thereby increasing
the ROS that stimulate a further increase in [Ca]i. Our
studies do not define the source of increased [Ca2þ ]i,
although the UVA-induced increase is partially blocked
(B55%) by MitoQ suggesting Ca2þ release from mitochon-
dria. An alternative mechanism for activation of Rac1 by 1O2

relies on the rapid release of ceramide after UVA, which has
been investigated in keratinocytes (Maziere et al., 2001;
Grether-Beck et al., 2005). Ceramide has been shown to
activate Rac1 leading to ROS formation by NADPH oxidase
in rat mesangial cells (Yi et al., 2004). The mechanism for this
process has not been established in keratinocytes but may
involve ceramide-induced activation of phosphatidylinositol
3-kinase (Barsacchi et al., 2003), which is a known activator

of Rac1 via the guanine nucleotide exchange factor b-Pix
(Park et al., 2004).

The ROS produced by NADPH oxidase are responsible for
the UVA-initiated increase in PGE2, as depletion of Nox1
protein using siRNA nearly completely blocked this response
at both the first (10 minutes) and second maxima (120 min-
utes) (Figure 4b). Interestingly, Nox1 siRNA treatment only
blocked ROS formation up to 30 minutes post-irradiation
(Figure 3a), suggesting that even the PGE2 contributing to the
maximum at 120 minutes requires Nox1 activity at much
shorter times after UVA (o30 minutes). The ROS produced in
a Nox1-independent manner at times 430 minutes post-UVA
does not appear to influence PGE2 synthesis. The rapid
kinetics of the PGE2 increase (Figure 4a) correlates with those
for the [Ca2þ ]i increase (Figure 5a). These two species are
linked by the fact that cytosolic PLA2, which cleaves
arachidonic acid from membrane phospholipids leading to
PGE2 synthesis, is activated by Ca2þ .

In summary, UVA treatment stimulates formation of ROS
in keratinocytes via a Nox1-based NADPH oxidase. Our
results suggest that the mechanism for activation of Nox1
involves UVA-induced increase in [Ca2þ ]i and ceramide,
presumably resulting from initial formation of 1O2, that lead
to activation of Rac1. The ROS formed initiate production of
additional ROS from oxidation of mitochondrial and possibly
other membranes and induce synthesis of PGE2, an inflam-
matory mediator after UVA irradiation, by a Ca2þ -dependent
mechanism. The role of these ROS in additional UVA-
induced responses in keratinocytes requires further study.
These results suggest that agents that inhibit the Nox1-
containing isoform of NADPH oxidase might block UVA-
induced skin injury. Such agents would need to be specific
for Nox1 to prevent interfering with the activity and
potentially beneficial effects of the phagocyte Nox2-contain-
ing isoform of this enzyme.

MATERIALS AND METHODS
Culture of HK
HK immortalized by expression of the catalytic subunit of telomerase

were a gift from Dr James Rheinwald (NIH Harvard Skin Disease

Research Center). Cells were plated in serum-free keratinocyte

medium with phenol red (Gibco Invitrogen, Carlsbad, CA) supple-

mented with recombinant EGF (2.5 mg/500 ml from Gibco, Invitro-

gen), bovine pituitary extract (25 mg/500 ml, Gibco), 0.3 mM CaCl2,

50 mg streptomycin, and 50,000 U of penicillin per 500 ml of media

(Sigma, St Louis, MO). HK were incubated at 371C, 5% CO2 and

medium was replaced every 48 hours until the cells reached 50–60%

confluence.

UVA irradiation

The fluorescent UVA broadband lamps (320–420 nm, PUVA 180;

Herbert Waldman, Werk für lichtechnik Schwenningen, Germany)

used had an irradiance of 5.1 mW/cm2. Cells were irradiated in

Hank’s balanced salt solution after removing the culture plate lids

and the temperature remained B321C. Immediately after irradiation

medium was replaced with fresh serum-free keratinocyte medium or

the appropriate treatment medium.
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Detection of ROS
Cells grown in 12- and 6-multiwell plates were incubated for

30 minutes at 371C with 5mM of carboxy-H2DCFDA (Molecular

Probes Inc., Molecular Probes Invitrogen, Carlsbad, CA) in Hank’s

balanced salt solution and irradiated with 5 J/cm2 UVA (B15 min-

utes exposure). For ROS measurements at 60 minutes and longer

times, carboxy-H2DCFDA was added after UVA irradiation, keeping

the incubation time at 30 minutes before measurements. After UVA

irradiation, the fluorescence was detected using a dual scanning

microplate spectrofluorometer (Spectra MAX Gemini EM, Molecular

Devices, Sunnyvale, CA) with 480 nm excitation and 530 nm

emission.

Preparation of cell fractions and NADPH oxidase activity assay

The isolation of cellular membranes and the NADPH oxidase

activity measurements were carried out as described previously

(Valencia and Kochevar, 2006). Briefly, cellular homogenates from

3� 106 cells per sample were obtained in lysis buffer (eight parts of

150 mM K, Na phosphate buffer pH 7.4, 1 mM MgCl2, 1 mM EGTA,

2 mM NaN3, 1 mM dithiothreitol, and two parts of glycerol containing

50 mM octylglycoside). Post-nuclear fraction was discarded after

centrifuged the lysate at 1000 r.p.m. for 10 minutes at 41C. Super-

natant was centrifuged at 25 000 r.p.m. in a Beckman Coulter

OptimaTM L-90K Ultracentrifuge using a NVT 90 rotor for 1 hour at

41C. The pellet was recovered in resuspension buffer (65 mM K, Na

phosphate buffer pH 7.4, 1 mM MgCl2, 1 mM EGTA, 2 mM NaN3,

1 mM dithiothreitol, 20mg/ml leupeptin, 10mg/ml pepstatin A, 10mg/ml

aprotinin, and 2 mM phenylmethylsulfonyl fluoride) and used as the

membrane fraction. The supernatant was centrifuged at 65 000 r.p.m.

using the NVT 90 rotor for 1 hour at 41C. The supernatant cytosolic

fraction was used for determination of NADPH oxidase activity.

Protein content was determined by Bradford assay.

The superoxide dismutase-inhibitable activity of NADPH oxidase

was determined by ferricytochrome c reduction in octylglycoside-

containing buffer (Shpungin et al., 1989). Twenty and sixty

micrograms of protein, respectively, from membrane and cytosolic

fractions were incubated in the reaction mixture (0.1 mM cytochrome c,

65 mM K, Na phosphate buffer pH 6.8, 2 mM EGTA, 1 mM MgCl2, and

10 mM flavin adenosine dinucleotide) plus 100 mM of SDS for

2 minutes at 241C. Then, superoxide anion production from NADPH

oxidase complex was induced by addition of 0.2 mM of NADPH. The

absorbance of reduced cytochrome c was measured at 550 nm using

a spectrophotometer (Aglient 8453 UV-visible Spectroscopy System,

Aglient Technologies, Foster City, CA). Results are expressed as

absorbance of cytochrome c reduced at 550 nm.

Silencing Nox1 by RNA interference

Silencing Nox1 experiments were carried out following the protocol

described in a previous study (Valencia and Kochevar, 2006).

SteatlhTM-siRNA duplex oligoribonucleotides (InvitrogenTM Life Techno-

logies, Carlsbad, CA) were designed by selecting two different duplex

sequences of the human Nox1 gene, which is the catalytic subunit of a

non-phagocytic NADPH oxidase expressed by keratinocytes (Chamu-

litrat et al., 2004). Nox1-A primer with the sequence sense

50-ACAAUAGCCUUGAUUCUCAUGGUAA-30, anti-sense 50-UUAC

CAUGAGAAUCAAGGCUAUUGU-30, starting at 750 bp; and Nox1-B

primer with sequence sense 50-GCAAUAUUG UUGGUCAUGCAG

CAUU-30, anti-sense 50-AAUG CUGCAUGACCAACAAUAUUGC-30,

located at 1642 bp. A scrambled StealthTM siRNA duplex as a

negative control was used with sequence sense 50-ACACCGAA

GUUUCUUGUACGUAUAA-30, anti-sense 50-UUAUACGUACAA

GAAACUUCGGUGU-30. Transfection efficiency was determined

with the SilencerR FAMTM labeled negative control siRNA (Ambion,

Austin, TX).

Optimal transfection efficiency by the amounts of transfection

reagent (Lipofectamine-2000TM from InvitrogenTM Life Technologies),

siRNA, cell density, and the length of exposure of cells to

Lipofectmanie2000TM-siRNA complexes were optimized in our

previous study (Valencia and Kochevar, 2006). Briefly, at 24 hours

before transfection, HK were transferred onto six-well plates

(8� 105 cells/well) and transfected with 100 nM of each StealthTM-

siRNA duplex using Lipofectamine-2000TM transfection reagent for

4 hours in serum-reduced media (OptiMem from Gibco Invitrogen)

without antibiotics. Then, complete serum-free keratinocyte medium

was added to the HK. Maximum levels of transfection were observed

at 48 hours with both Nox1-A and Nox1-B primers. Transfection

efficiency was monitored by flow cytometry based on FAM-labeled

transfected cells, resulted in 75% transfection efficiency with Nox1-A

StealthTM-siRNA and 70% with Nox1-B StealthTM-siRNA. Cell death

was measured by flow cytometry using 7-amino-actinomicyn D, an

early apoptotic marker that intercalates in the DNA of apoptotic

cells, resulting in 9 and 13% cell death for Nox1-A and Nox1-B,

respectively.

Prostaglandin E2 release

PGE2 release was assayed using a commercial EIA kit (Cayman

Chemical; Ann Arbor, MI). The PGE2 release was detected by the

absorption of 5-thio-2-nitrobenzoic acid at 412 nm, which is the

product of non-enzymatic reaction between PGE2-acetylcholinester-

ase and acetylthiolcholine plus 5-50-dithio-bis-(2-nitrobenzoic acid).

For these experiments, six-well plates were used containing

B400 000 cells at 80% confluence. Results are express as a

picogram of PGE2 released per cell.

Intracellular calcium levels

Intracellular calcium was measured using the fluorescent probe

Calcium OrangeTM-AM from Molecular Probes Inc. Cells in six-well

plates (B520 000 per sample) were incubated with 10 mM of Calcium

OrangeTM-AM for 30 minutes at 371C. Then the fluorescence was

detected in a dual scanning microplate spectrofluorometer (Spectra

MAX Gemini EM, Molecular Devices) using 530 nm excitation and

575 nm emission wavelengths. To obtain the total free [Ca2þ ]i in the

samples, the following formula was applied:

½Ca2þ�i ¼ KdðF � Fmin=Fmax � FÞ

when Kd is the dissociation constant for Calcium OrangeTM (185 nM),

F is fluorescence of experimental samples, Fmin is the fluorescence in

the absence of calcium and Fmax is the fluorescence of calcium-

saturated probe. Calibration was carried out using ionomicyn (1 mM

in DMSO; Molecular Probes Inc.) and BAPTA-AM (5 mM 1 hour

preincubation; Molecular Probes Inc.).

Immunoblots

Cells homogenates were obtained in lysis buffer (250 mM Tris-HCl

pH 6.8, 150 mM NaCl, 4% (w/v) SDS, 0.5 mM EGTA, 5 mM dithio-
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threitol, 20 mg/ml leupeptin, 10 mg/ml pepstatin A, 10 mg/ml aproti-

nin, and 2 mM phenylmethylsulfonyl fluoride). Samples were

subjected to SDS-PAGE and the resolved proteins were transferred

to polyvinylidine difluoride membranes at 100 mV for 1 hour at 41C.

Membranes were blocked with 5% non-fat milk in Tris-buffered

saline (phosphate-buffered saline plus 0.1% (v/v) Tween 20) for

1–2 hours. Primary antibodies were incubated in 2.5% non-fat milk

in Tris-buffered saline overnight at 41C followed by 1 hour

incubation with hypoxanthine-guanine phosphoribosyl-transferase

(HPRT)-linked secondary antibody. Bands were visualized using

enhanced chemiluminescence system according to the manufacturer

(Cell Signaling, Beverly MA). Anti-Nox1 antibody was from Santa

Cruz Biotechnology Inc., Santa Cruz, CA.

Statistical analysis

Data are expressed as mean7SD, and statistical significance of the

results was determined by one-way analysis of variance followed by

t-test, with statistical significance set at Po0.01.
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