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Abstract

Using the theory of basis generators we study various properties of multivariate Riesz and orthonormal sequences of translates,
with emphasis on those associated with multiresolution analyses and their connection with wavelets. In particular, we show that
every multiresolution analysis of multiplicity n generated by a dilation matrix preserving the lattice Zd has an orthonormal wavelet
system associated with it, and give a closed form representation in Fourier space for such wavelet systems. We illustrate these
results by applying them to the case of univariate wavelets associated with multiresolution analyses with binary dilations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The main results of this paper (Theorems 9 and 12) give explicit closed form representations in Fourier space for all
multivariate orthonormal and semiorthogonal Riesz wavelet systems associated with a given multiresolution analysis.
Such formulas were only known for the univariate case (see Theorems A and B). These representation theorems did
not grow on fallow ground; rather, they developed in a field tilled by many other people. We therefore felt it would be
appropriate to review some related results in order to provide context, and also because they are widely scattered in
the literature. In addition to the main results mentioned above, we also present some properties of bases of translates
that are of independent interest.

In what follows, Z will denote the set of integers and Z+ the set of all strictly positive integers. The underlying
space will be L2(Rd), where d � 1 is an integer and R is the set of real numbers; C will denote the set of complex
numbers, and I will stand for the identity matrix. Boldface lowercase letters will denote elements of R

d , which will
be represented as column vectors; x · y will stand for the standard dot product of the vectors x and y; ‖x‖2 := x · x.
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author wishes to thank the institution for its generous support and faculty members Alfredo L. González and M. del Carmen Moure for their helpful
comments.
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The inner product of two functions f,g ∈ L2(Rd) will be denoted by 〈f,g〉, their bracket product by [f,g], and the
norm of f by ‖f ‖; thus,

〈f,g〉 :=
∫
Rd

f (t)g(t)dt,

[f,g](t) :=
∑

k∈Zd

f (t + k)g(t + k),

and

‖f ‖ := √〈f,f 〉.
The Fourier transform of a function f will be denoted by f̂ . If f ∈ L(Rd),

f̂ (x) :=
∫
Rd

e−i2πt·xf (t)dt.

Let A ∈ C
d×d and a := det A. For every j ∈ Z and k ∈ Z

d the dilation operator DA
j and the translation operator Tk

are defined on L2(Rd) by

DA
j f (t) := |a|j/2f

(
Aj t

)
and

Tkf (t) := f (t + k).

In particular, if d = 1

Djf (t) := 2j/2f
(
2j t

)
.

Let T := [0,1], and let T
d denote the d-dimensional torus. A function f will be called Z

d -periodic if it is defined on
R

d and Tkf = f for every k ∈ Z
d . A set S ⊂ L2(Rd) is called shift-invariant if f ∈ S implies that Tkf ∈ S for every

k ∈ Z
d .

Let u ⊂ L2(Rd); then

T (u) := {
Tku; u ∈ u, k ∈ Z

d
}

and

S(u) := spanT (u),

where the closure is in L2(Rd). If u = {u1, . . . , um} then S(u) is called a finitely generated shift-invariant space or
FSI and the functions u� are called the generators of S(u). In this case we will also use the symbols T (u1, . . . , un)

and S(u1, . . . , un) to denote S(u) and T (u), respectively. If u contains a single element, then S(u) is called a principal
shift-invariant space or PSI.

Theorems, lemmas and propositions that are either known or are trivial corollaries of known results, are labeled
using the letters of the alphabet.

Recall that a wavelet ψ ∈ L2(R) is called semiorthogonal if j �= q implies that 〈DjTkψ�,DqTnψr 〉 = 0 for every
k,n ∈ Z.

Our starting point and motivation are the following characterizations in Fourier space of MRA orthonormal
wavelets and MRA semiorthogonal Riesz wavelets in L2(R) which, with the definition of Fourier transform we have
adopted, may be stated as follows.

Theorem A. Let ϕ be a scaling function for M with associated low-pass filter p. The following propositions are
equivalent:

(a) ψ is an MRA orthonormal wavelet associated with M .
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(b) There is a measurable unimodular Z-periodic function μ(x) such that

ψ̂(2x) = ei2πxμ(2x)p(2πx + 1/2)ϕ̂(x) a.e. (1)

Theorem B. A function ψ is a semiorthogonal Riesz wavelet with bounds 0 < A � B associated with an MRA M if
and only if there is a measurable Z-periodic function μ(x) and an orthonormal wavelet h associated with M such
that

A �
∣∣μ(x)

∣∣2 � B a.e.

and

ψ̂(x) = μ(x)ĥ(x) a.e.

Theorem A is well known (see e.g. Hernández and Weiss [17], Wojtaszczyk [30]). Theorem B was proved by the
author [32, Corollary 2]. Theorems 9 and 12 below generalize these theorems to orthogonal and semiorthogonal Riesz
wavelet systems in L2(Rd).

2. Bessel sequences, frames, and Riesz bases of translates

Let H be a (separable) Hilbert space with inner product 〈·,·〉 and norm ‖ · ‖ := 〈·,·〉1/2. A sequence F = {fk, k ∈
Z} ⊂ H is called a frame if there are constants 0 < A � B such that for every f ∈ H

A‖f ‖2 �
∑

k∈Zd

∣∣〈f,fk〉
∣∣2 � B‖f ‖2.

The constants A and B are called (lower and upper) bounds of the frame. If only the right-hand inequality in the
preceding displayed formula is satisfied for all f ∈ H, then F is called a Bessel sequence with bound B . It is called
Riesz sequence if there are constants A and B , A > 0, such that for every sequence {ck, k ∈ Z} ⊂ �2

A
∑

k∈Zd

|ck|2 �
∥∥∥∥ ∑

k∈Zd

ckfk

∥∥∥∥
2

� B
∑

k∈Zd

|ck|2.

Finally, F is called a Riesz basis of H if it is a Riesz sequence and its linear span is dense in H. The constants A and
B are called (lower and upper) bounds of the Riesz basis. Every Riesz basis is a frame, every orthonormal basis is a
Riesz basis with bounds A = B = 1, and Riesz bounds and frame bounds coincide. A sequence {fk, k ∈ Z} ⊂ H is a
Riesz basis if and only if it is a frame having the additional property that upon the removal of any element from the
sequence, it ceases to be a frame [2,13,31].

Given a sequence of functions u := {u1, . . . , um} in L2(Rd), by G[u1, . . . , um](x), Gu(x) or G(x) we will denote
its Gramian matrix, viz.

G(x) := ([û�, ûj ](x)
)m

�,j=1.

The range function JS(x) associated with S is defined by

JS(x) := span
{(

f (x + k)
)

k∈Zd ; f ∈ S(u)
}

and the spectrum σ(u) of u by

σ(u) := {
x ∈ T

d ; dimJS(x) �= 0
}
.

Let Λ ⊂ Z and u = {uk; k ∈ Λ} ⊂ S ⊂ L2(Rd). If S is a shift-invariant space then u is called a basis generator of S,
and we say that u provides a basis for S, if for every f ∈ S there are Z-periodic functions pk , uniquely determined by
f (up to a set of measure 0), such that

f̂ =
∑
k∈Λ

pkûk.

If u is a finite set, the uniqueness of the functions pk is equivalent to Gu(x) being nonsingular for almost every x ∈ T
d

[4,5].
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The theory of basis generators has been extensively developed by De Boor, DeVore, Ron and Shen in [4,5,25]
(where sometimes they are just called “bases”). Here we shall apply some of these results to the study of Schauder
basis generators, Riesz basis generators and orthonormal basis generators, i.e. sets u such that T (u) is either a
Schauder basis, a Riesz basis, or an orthonormal basis of S(u). Note that a Riesz basis generator is a basis generator.

Let Λ(x), λ+(x) and λ(x) respectively denote the largest eigenvalue of G(x), the smallest nonzero eigenvalue of
G(x), and the smallest eigenvalue of G(x). It follows from the properties of Hermitian positive semidefinite matrices
that Λ(x) = ‖G(x)‖, and that if G(x) is nonsingular, then(

λ(x)
)−1 = ∥∥G(x)−1

∥∥,

where “‖ · ‖” is the matrix norm induced by the euclidean vector norm. Thus, if ρ denotes the spectral radius, we have
Λ(x) = ρ(G(x)) and, if G(x) is nonsingular,(

λ(x)
)−1 = ρ

(
G−1(x)

)
.

In [25, Theorem 2.3.6] Ron and Shen provided characterizations of Bessel sequences, frames, and Riesz bases of
translates in FSI spaces (see also Bownik [6]). These conditions, as well as the corresponding Bessel, frame and Riesz
bounds, are expressed in terms of these induced matrix norms or in terms of Λ(x), λ+(x) and λ(x). Although the
bounds given are optimal [5, Lemma 3.27], it is relatively difficult to verify that the conditions of these theorems are
satisfied. It is therefore useful to have alternative conditions to characterize these sequences, that are easier to verify.
For Riesz sequences this was done by Lemarié–Rieusset [20, Lemme 2].

Proposition C. Assume that u = {u1, . . . , um} ⊂ L2(Rd). Then

(a) T (u) is a Bessel sequence if and only if for every �, j = 1, . . . ,m the coefficients [û�, ûj ] are essentially bounded.
(b) T (u) is a Riesz sequence if and only if for every �, j = 1, . . . ,m the coefficients [û�, ûj ](x) are essentially

bounded, and there is a constant C > 0 such that det[G(x)] � C > 0 for almost every x ∈ T
d .

Part (b) of Proposition C is [20, Lemme 2]; the proof of part (a) is implicit in the proof of part (b).
It is easy to see that the boundedness of the coefficients [û�, ûj ] in Proposition C can be replaced by the assertion

that the trace tr[Gu(x)] be bounded. Indeed, assume there is a constant K such that tr[Gu(x)] � K for almost every
x ∈ Td . Note that tr[Gu(x)] equals the sum of all eigenvalues of Gu(x). Moreover, since Gu(x) is positive semidefinite
all these eigenvalues are nonnegative. We therefore conclude that Λ(x) � tr[Gu(x)], and the assertion follows from
[25, Theorem 2.3.6]. Conversely, assume T (u) is a Bessel sequence with bound B . Then tr[Gu(x)] � mΛ(x) � mB .

Let

p�(x) :=
∑

k∈Zd

a�,ke−i2πk·x.

The proofs of both [20, Lemme 2] and [25, Theorem 2.3.6] make use of the identity∥∥∥∥∥
m∑

�=1

∑
k∈Zd

a�,kTku�

∥∥∥∥∥
2

L2(Rd

= ∥∥(p1, . . . , pm)Gu(p1, . . . , pm)T
∥∥2

L2(Td )
;

see also Bownik [6, p. 294].
Since Gu(x) is Z

d -periodic and T
d is a compact set, we have the following analog of [5, Theorem 3.19(c)].

Corollary 1. Assume that u = {u1, . . . , um} ⊂ L2(Rd) is such that the functions [û�, ûj ](x), �, j = 1, . . . ,m are
continuous on T

d . Then

(a) T (u) is a Bessel sequence.
(b) T (u) is a Riesz sequence if and only if Gu(x) is nonsingular for every x ∈ T

d .

Given a shift-invariant space S, let lenS denote the smallest number k such that S has a set of k generators. We
will use this definition in the proof of
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Theorem 1. Let u := {u1, . . . , un} and v := {v1, . . . , vm}.

(a) If T (u) and T (v) are Riesz bases of the same shift-invariant space S ⊂ L2(Rd), then n = m.
(b) If T (u) and T (v) are Riesz sequences such that n = m and S(u) ⊂ S(v), then T (u) is a Riesz basis of S(v).
(c) Let T (u) and T (v) be Riesz sequences in L2(Rd), and assume that S(u) is a proper subset of S(v). Then n < m

and there are functions w1, . . . ,wm−n such that

T (w1, . . . ,wm−n)

is an orthonormal basis of the orthogonal complement S(u)⊥ of S(u) in S(v), and

T (u1, . . . , un,w1, . . . ,wm−n)

is a Riesz basis of S(v1, . . . , vm).

Proof. (a) is a consequence of [4, Theorem 2.26(ii)]. If T (u) is a Riesz basis then u is a basis generator, and therefore
Gu(x) is nonsingular a.e.; thus (b) is a consequence of [4, Theorem 2.26(iii)]. To prove (c) we proceed as follows:
assume that n � m; then T (u1, . . . , um) is a Riesz sequence and S(u1, . . . , um) is a proper subset of S(v), in contradic-
tion of (b); thus n < m. The hypotheses also imply that σ(u) = σ(v) = T

d . From [4, Theorem 2.26(ii)] we infer that
lenS(u) = n and lenS(v) = m; thus [5, Theorem 3.13] implies that σ(S(u)⊥) = T

d and that lenS(u)⊥ = m−n. From
[5, Corollary 3.4] we deduce that S(u)⊥ is a closed shift-invariant space. Thus [5, Lemma 3.6] implies that S(u)⊥
contains a principal shift-invariant space S1 such that σ(S1) = Td . If S̃1 denotes the orthogonal complement of S1 in
S(u)⊥, [5, Theorem 3.13] implies that σ(S̃1) = T

d and len S̃1 = m−n−1. Repeating this procedure we conclude that
S(u)⊥ is the orthogonal sum of m − n principal space invariant spaces Sk such that σ(Sk) = Td , k = 1, . . . ,m − n.
Therefore [5, Theorem 2.10] implies that there are functions wk such that T (wk) is an orthonormal basis of Sk . By
orthogonality we conclude that T (w1, . . . ,wr) is an orthonormal basis of S(u)⊥. Moreover,

[û�, ŵk] = 0; � = 1, . . . , n, k = 1, . . . ,m − n,

and

[ŵ�, ŵk] = δ�,k; �, k = 1, . . . ,m − n.

If y� := u� for � = 1, . . . , n, y� := w�−n for � = n+1, . . . , r , y := {y1, . . . , ym}, and for each x ∈ T
d , Eu(x) and Ey(x)

denote the sets of eigenvalues of Gu(x) and Gy(x) respectively, then Ey(x) = Eu(x) ∪ {1}. It follows that T (y) is a
Riesz sequence in S(v), and (b) implies that T (y) is a Riesz basis of S(v). �

Let A be a dilation matrix preserving the lattice Z
d ; that is, AZ

d ⊂ Z
d and all its eigenvalues have modulus

greater than 1. These conditions imply that A ∈ Z
d×d , and that if a := det A then |a| is an integer larger than 1.

A multiresolution analysis (MRA) of multiplicity n in L2(Rd) (generated by A) is a sequence {Vj ; j ∈ Z} of closed
linear subspaces of L2(Rd) such that:

(i) Vj ⊂ Vj+1 for every j ∈ Z.
(ii) For every j ∈ Z, f (t) ∈ Vj if and only if f (At) ∈ Vj+1.

(iii)
⋃

j∈Z
Vj is dense in L2(Rd).

(iv) There are functions u := {u1, . . . , un} such that T (u) is an orthonormal basis of V0.

The condition that T (u) be an orthonormal basis may be replaced by the condition that T (u) be a Riesz basis (see
Proposition G below).

It follows from the definition of multiresolution analysis that there are Z
d -periodic functions p�,j ∈ L2(Td) such

that the functions u� satisfy the scaling identity

û�(A∗x) =
n∑

j=1

p�,j (x)ûj (x), j, � = 1, . . . , n a.e.,

where A∗ is the conjugate transpose of A. The functions u� are called scaling functions for the multiresolution analy-
sis, and the functions p�,j are called the low-pass filters associated with u.
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In [3, Corollary 2.3] Bownik and Garrigós showed that the multiplicity of a multiresolution analysis is a constant
that depends only on V0 and not on the choice of scaling functions. This also follows from Theorem 1.

From the definition of the dilation operator at the beginning of Section 1 we see that

DA
1 = |a|1/2f (At),

where a := det A. If {A1, . . . ,Am} ⊂ C
d×d , let

T (A1, . . . ,Am;u1, . . . , um) := {
D

A�

1 Tku�; � = 1, . . .m, k ∈ Z
d
}
, (2)

and

S(A1, . . . ,Am;u1, . . . , um) := spanT (A1, . . . ,Am;u1, . . . , um). (3)

If

A� = A, � = 1, . . . ,m, and u = {u1, . . . , um}
we will write T (A;u) or

T (A;u1, . . . , um)

instead of (2), and S(A;u) or

S(A;u1, . . . , um)

instead of (3). Note that T (u) = T (I;u) and S(u) = S(I;u).

Theorem 2. Let

{A1, . . . ,Am} ⊂ Z
d×d and u = {u1, . . . , um} ⊂ L2(

R
d
)
.

Assume that for some �, 1 � � � m, A�Z
d �= Z

d . If there are functions ϕ1, . . . , ϕm such that T (ϕ1, . . . , ϕm) is a Riesz
sequence and

T (A1, . . . ,Am;u1, . . . , um) (4)

is a Riesz sequence in S := S(ϕ1, . . . , ϕm), then (4) cannot be a Riesz basis of S.

Proof. Assume that (4) is a Riesz basis of S(ϕ1, . . . , ϕm) and v� := D
A�

1 u�. Then T (v1, . . . , vm) is a proper subse-
quence of (4) and also a Riesz sequence. From Theorem 1 we deduce that T (v1, . . . , vm) is a basis of S(ϕ1, . . . , ϕm),
and we have a contradiction. �
Corollary 2. Let {j1, . . . , jm} be a set of nonnegative integers, not all of them equal to 0, let T (u) be a Riesz sequence,
and assume that A ∈ R

d×d is such that

AZ
d �= Z

d .

Then there is no set of functions {ϕ1, . . . , ϕm} such that

T
(
Aj1, . . . ,Ajm;ϕ1, . . . , ϕm

)
is a Riesz basis of S(u1, . . . , um).

If A is a dilation matrix preserving the lattice Z
d then, in the notation used by Madych in [21], a coset of AZ

d is a
set of the form

j + AZ
d = {

j + Ar; r ∈ Z
d
}
,

where j ∈ Z
d . An element of a coset is called a representative of the coset. Any pair of cosets are either identical or

disjoint, and the union of all disjoint cosets equals Zd . There are exactly |a| disjoint cosets (cf. Wojtaszczyk [30]). The
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collection of all disjoint cosets is denoted by Z
d/AZ

d . A set J ⊂ Z
d is said to be a full collection of representatives

of Z
d/AZ

d if it contains exactly |a| elements and⋃
j∈J

(
j + AZ

d
) = Z

d .

For example, if A = 2I ∈ Z
d×d then |a| = 2d , and a full collection of representatives of Z

d/AZ
d is the set of all

vectors in Z
d whose coordinates equal either 0 or 1.

Starting with a shift-invariant space S(u) having a set of n orthonormal basis generators and a dilation matrix A
that preserves the lattice Z

d , we now focus on how to construct an orthonormal basis generator of S(A;u). If J is a full
collection of representatives of Z

d/AZ
d it is easy to see that {DA

1 Tju�; 1 � � � n, j ∈ J} is such a basis generator.
However, the indices in this sequence are elements of the Cartesian product [1, n] × J. We find it more convenient to
use a slightly different formulation in which the indices are linearly ordered.

Theorem 3. Let u = {u1, . . . , un} ⊂ L2(Rd) and assume that T (u) is an orthonormal sequence. Let A be a dilation
matrix preserving the lattice Zd , a := det A, and let J be a full collection of representatives of Zd/AZd . For x > 0
define I (x) := [1, x] ∩ Z, and let

p = (p1,p2) : I (|a|n) −→ [1, n] × J

be a bijection. If

v�(t) := |a|1/2up1(�)

(
At + p2(�)

)
and v := {v1, . . . , v|a|n}, then T (v) is an orthonormal basis of S(A;u), and every Riesz basis generator of S(A;u)

has exactly |a|n functions.

Proof. Let 1 � � � |a|n, r ∈ Z
d , s := p1(�) and j := p2(�). Define k := Ar + j. From the hypotheses we know that

k ∈ Z
d . From the discussion that preceded the statement of this theorem and the nonsingularity of A we see that k is

uniquely determined by j and r. Since T (u) is an orthonormal sequence, a trivial change of variables shows that also
T (A;u) is an orthonormal sequence. But Trv� = DA

1 Tkus , and we deduce that T (v) is an orthonormal sequence in
S(A;u). Moreover, if 1 � s � n and k ∈ Z

d there are (unique) r ∈ Z
d and 1 � � � |a|n such that DA

1 Tkus = Trv�;
thus T (v) is an orthonormal basis of S(A;u).

Since v has exactly |a|n functions, Theorem 1 implies that every other Riesz basis generator of S(A;u) must have
exactly |a|n functions. �

If {Vj ; j ∈ Z} is a multiresolution analysis of multiplicity n and u is an orthonormal basis generator of V0, then
Vj = S(Aj ;u). Therefore Theorem 3 yields

Corollary 3. Let M := {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n generated by a dilation matrix A
that preserves the lattice Z

d , and let W0 denote the orthogonal complement of V0 in V1. Then W0 has a Riesz basis
generator, and every Riesz basis generator of W0 has exactly (|a| − 1)n functions.

Theorem 1 raises the following question: if U has a Riesz basis of translates generated by m functions, V has a
Riesz basis of translates generated by n functions and U is a proper subset of V , how are m and n related? We study
this question within the framework of a multiresolution analysis. Applying Theorem 3 we obtain

Theorem 4. Let {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n generated by a dilation matrix A that
preserves the lattice Z

d , and let a := det A. Then

(a) If r > 0 then Vr has a finite Riesz basis generator.
(b) For any r ∈ Z, any finite Riesz basis generator of Vr must have exactly n|a|r functions.

Proof. For r > 0 the existence of a Riesz basis generator of n|a|r functions follows by repeated application of The-
orem 3. Assume therefore that r < 0 and that Vr has a finite Riesz basis generator of k functions. By repeated
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application of Theorem 3 we deduce that V0 has a Riesz basis generator of k|a|−r functions. But Theorem 1 im-
plies that k|a|−r = n, and the assertion follows. �

It follows from Theorem 4 that Vr cannot have a Riesz basis generator unless n|a|r is an integer. In particular, we
have

Corollary 4. Let M = {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity 1 generated by A := 2I. If r < 0, then
Vr cannot have a Riesz basis generator.

Theorem 4 also yields

Corollary 5. Let {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n generated by a dilation matrix A that
preserves the lattice Z

d , let r > 0, and Uj := Vj+r . Then {Uj ; j ∈ Z} is a multiresolution analysis of multiplicity
n|a|r .

Corollary 6. If {Vj ; j ∈ Z} is a multiresolution analysis of multiplicity n in L2(Rd) then Vj is a proper subset of
Vj+1 for every j ∈ Z.

Proof. If j � 0 the assertion follows from Theorem 4. Assume that there is an integer j < 0 such that Vj = Vj+1. We
can no longer apply Theorem 4, since Vj may not have a Riesz basis generator. We bypass this difficulty by noting
that the definition of multiresolution analysis implies that Vj = Vj+k for every k > 0, and in particular that V0 = V1,
which is impossible. �
3. Linear transformations

At this point, it is convenient to state two auxiliary lemmas and a theorem that will be used in the subsequent
discussion.

Lemma D. T (u1, . . . , um) is an orthonormal sequence in L2(Rd) if and only if Gu(x) = I a.e.

Proof. From e.g. [4, Lemma 2.7] we see that S(v) ⊥ S(w) if and only if [v̂, ŵ](x) = 0 a.e. Moreover, T (v) is an
orthonormal sequence if and only if [v̂, v̂](x) = 1 a.e. �
Lemma E. Let T (u) and T (v1, . . . , vm) be orthonormal sequences in L2(Rd), and assume there are Z

d -periodic
functions p� such that

û(x) =
m∑

�=1

p�(x)v̂�(x) a.e.

Then
m∑

�=1

∣∣p�(x)
∣∣2 = 1 a.e.

Proof. Since both sequences are orthonormal, we have

1 = [û, û](x) =
[

m∑
�=1

p�v̂�,

m∑
�=1

p�v̂�

]
(x) =

m∑
�=1

m∑
j=1

p�(x)pj (x)[v̂�, v̂j ](x) =
m∑

�=1

∣∣p�(x)
∣∣2

(x) a.e. �

A proof of Lemma D may be found in e.g. Soardi [27]. We have included proofs of Lemmas D and E for the sake
of completeness.

The following is a straightforward corollary of [4, Theorem 1.7].
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Theorem F. Let h = {h1, . . . , hm}, ψ = {ψ1, . . . ,ψr}, and assume that S(u) = S(u1, . . . , un) ⊂ S(h). Then there are
Z

d -periodic functions q�,j (x) such that

û�(x) =
m∑

j=1

q�,j (x)ĥj (x) a.e.; � = 1, . . . , n.

The matrix

Q(x) := (
q�,j (x)

)n,m

�,j=1

will be called a transition matrix from the sequence T (h) to the sequence T (u). If h is a basis generator of S(h), then
Q(x) is unique (up to a set of measure 0).

In what follows we assume that T (h) = T (h1, . . . , hm) ⊂ L2(Rd) is a Schauder, orthonormal or Riesz basis of
S(u), and we study the effect of a linear transformation on such a set of functions.

A proof of the identity

Gu(x) = Q(x)Gh(x)Q∗(x) (5)

can be found in e.g. [14]. As remarked in [4, Theorem 2.26], it is clear from (5) that if T (h) is a Riesz sequence, then
T (u) is a Riesz basis of S(h) if n = m and both ‖Q(x)‖ and ‖Q−1(x)‖ are in L∞(Td). We now digress to mention a
related result, of independent interest.

Recall that if u is a finite set of functions such that T (u) is a Riesz basis, then Gu is positive definite for almost
every x ∈ T

d . Thus the square root of Gu (i.e. the unique positive definite matrix Hu such that H 2
u = Gu) exists for

almost every x ∈ T
d .

If T (u) is a Riesz sequence in L2(Rd) it is well known that if ĥ := [û, û]−1/2û, then T (h) is an orthonormal
basis of T (u). A similar assertion is also true in the case of several generators: see Meyer [22, p. 26, Lemma 3] or
[23, p. 25, Lemma 3], where a proof in the time domain is given. There is also a construction in Fourier space that
naturally extends the single generator formulation.

Proposition G. Let h = {h1, . . . , hm}, ψ = {ψ1, . . . ,ψr}, and assume that u := {u1, . . . , um} ⊂ L2(Rd) is such that
T (u) is a Riesz sequence. Let

Q(x) := [
Gu(x)

]−1/2

and (
ĥ1(x), . . . , ĥm(x)

)T := Q(x)
(
û1(x), . . . , ûm(x)

)T
.

Then T (h) is an orthonormal basis of S(u).

To prove this proposition, note that the hypothesis implies that Gu(x) is nonsingular for almost every x ∈ T
d .

Moreover, since Gu(x) is Hermitian so is Q(x). Also, note that Q(x) is Z
d -periodic. Applying (5) (with the roles of h

and u reversed) we deduce that Gh(x) = I for almost every x ∈ T
d ; thus Lemma D implies that T (h) is an orthonormal

sequence in S(u). Applying Theorem 1 we conclude that, moreover, T (h) is a basis of S(u).
Proposition G and the preceding proof may be found in Ashino and Kametani [1], where it is attributed to an

anonymous referee.
In summation, we know that if u is a Riesz basis of S(u) then the same space has an orthonormal basis. It follows

that condition (iv) in the definition of a multiresolution analysis may be replaced by the assumption that V0 has a Riesz
basis.

We now return to [4, Theorem 2.26]. As remarked in the discussion leading to Proposition C, the direct computation
of induced matrix norms (such as, in our case, ‖Q(x)‖ and ‖Q−1(x)‖) may be relatively difficult. We therefore seek
alternative criteria that will allow us to bypass the computation of these norms.

Recall that if

D = (d�,j ; �, j = 1, . . . ,m) ∈ C
m×m
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then the Frobenius norm of D is

‖D‖F :=
(

m∑
�=1

m∑
j=1

|d�,j |2
)1/2

.

Note that this is not an induced matrix norm. However, since

‖D‖ � ‖D‖F �
√

m‖D‖ (6)

both norms are equivalent. The Frobenius norm is clearly easier to estimate. We have

Proposition 1. Let h = {h1, . . . , hm}, ψ = {ψ1, . . . ,ψr}, assume that T (h) is a Riesz sequence in L2(Rd), that ψ is a
set of functions such that S(ψ) ⊂ S(h), and let Q(x) denote the transition matrix from T (h) to T (ψ). Then T (ψ) is
a Riesz basis of S(h) if r = m and both ‖Q(x)‖F and (det[Q(x)])−1 are in L∞(Td). If, moreover, Q(x) is continuous
on T

d , then T (ψ) is a Riesz basis of S(h) if and only if r = m and Q(x) is nonsingular for every x ∈ T
d .

Proof. The assertion follows from [4, Theorem 2.26(iv)], (6), and the identity

Q−1(x) = Adj Q(x)/det Q(x). �
Note that [4, Theorem 2.26(iv)] and Proposition 1 only give sufficient conditions. However, if T (h) is an orthonor-

mal sequence we can do better.

Theorem 5. Let h = {h1, . . . , hm}, ψ = {ψ1, . . . ,ψr}, assume that T (h) is an orthonormal sequence in L2(Rd), that
ψ is a set of functions such that S(ψ) ⊂ S(h), and let Q(x) denote the transition matrix from T (h) to T (ψ). Then

Gψ (x) = Q(x)Q∗(x) a.e., (7)

and the following statements are equivalent:

(a) T (ψ) is a Riesz basis of S(h) with bounds 0 < A � B .
(b) r = m and for almost every x ∈ T

d∥∥Gψ (x)
∥∥ � B and

∥∥G−1
ψ (x)

∥∥ � A−1. (8)

(c) r = m and for almost every x ∈ T
d∥∥Q(x)

∥∥ � B1/2 and
∥∥Q−1(x)

∥∥ � A−1/2. (9)

In particular, T (ψ) is an orthonormal basis of S(h) if and only if r = m and Gψ (x) = I for almost every x ∈ T
d , or,

equivalently, if and only if r = m and Q(x) is a unitary matrix for almost every x ∈ T
d .

Proof. From Lemma E we know that Gh(x) = I. Thus (7) follows from (5).
The equivalence of (a) and (b) follows from [25, Theorem 2.3.6] and Theorem 1.
To prove the equivalence of (b) and (c) we proceed as follows: given a matrix A, let ρ(A) denote its spectral radius.

Since

‖A‖ = √
ρ(A∗A)

(Isaacson and Keller [18]), we have∥∥Q(x)
∥∥ =

√
ρ
(
Q(x)Q∗(x)

) =
√

ρ
(
Gψ (x)

) =
√∥∥Gψ (x)

∥∥ a.e.,

and a similar argument establishes the identity∥∥Q−1(x)
∥∥ =

√∥∥G−1
ψ (x)

∥∥ a.e.

The particular case is a consequence of Lemma D and (7). �
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An alternative way to establish the two preceding displayed equations is by using the identity ‖A1/2‖ = ‖A‖1/2,
which is valid for positive bounded self-adjoint operators, and Theorem 12.34 in Rudin [26].

In [24] Olson and the author proved that if u ∈ L2(R) then T (u) cannot be a Riesz basis of L2(R). As shown by
Christensen et al. in [11], T (u) cannot even be a frame. This result was improved by Deng and Heil in [15, Theorem
5.1], where they showed that if a function g lies in L1(R) ∩ L2(R), then no set of translates of g can be a Schauder
basis for L2(R). We end this section by presenting a further contribution to this problem. Going back to the pertinent
definitions in Section 2, recall that the terms “basis generator” and “Schauder basis generator” mean different things.
We have not discussed how they are related; this will be partially clarified in the proof of Corollary 7 below.

Theorem 6. No finite set of functions in L2(Rd) may be a basis generator of L2(Rd).

Proof. Assume there is a set u = {u1, . . . , uk} such that T (u) is a basis of L2(Rd). Let {Vj ; j ∈ Z} be any multireso-
lution analysis of multiplicity 1 of L2(Rd), let |a|r > k, and let v = {v1, . . . , vm} be a Riesz basis generator of Vr . This
implies that det[Gv(x)] �= 0 for almost every x ∈ T

d . Moreover, from Theorem 4 we know that m = |a|r > k. But [4,
Theorem 3.12(b)] implies that lenS(v) = m. Since lenL2(Rd) � k, we see that m > lenL2(Rd). Thus [5, Theorem
3.12(a)] implies that det[Gv(x)] vanishes a.e., and we have a contradiction. �
Corollary 7. No finite set of functions in L2(Rd) may be a Schauder basis generator of L2(Rd).

Proof. Assume there is a set h = {h1, . . . , hk} such that T (h) is a Schauder basis of L2(Rd), and let u = {u1, . . . , uk}
be an orthonormal sequence in L2(Rd). Then S(u) ⊂ S(h), and Theorem F implies that the transition matrix Q(x)

from T (h) to T (u) exists. Applying (5) and Lemma D we therefore conclude that, for almost every x ∈ T
d ,

I = Q(x)Gh(x)Q∗(x).

Thus Gh(x) is a.e. nonsingular, which means that h is a basis generator of L2(Rd). This contradicts Theorem 6, and
the assertion follows. �
4. Wavelets

In what follows we will assume that A is a fixed dilation matrix preserving the lattice Z
d .

A finite set of functions ψ = {ψ1, . . . ,ψm} ∈ L2(Rd) will be called an orthonormal, frame, or Riesz wavelet system
if the affine sequence⋃

j∈Z

T
(
Aj ;ψ) = {

DA
j Tkψ�; j ∈ Z, k ∈ Z

d, � = 1, . . . ,m
}

is respectively an orthonormal basis, a frame, or a Riesz basis of L2(Rd). If d = 1 we omit the word “system.” If we
need to emphasize the connection with the matrix A, we will say that the wavelet system is generated by A.

Let ψ := {ψ1, . . . ,ψm} be a Riesz wavelet system in L2(Rd) generated by a matrix A; for j ∈ Z we define Pj :=
T (Aj ;ψ) and Vj := ∑

r<j Pr , i.e.,

Vj =
⋃
r<j

T
(
Ar ;ψ)

.

Note that ψ ∈ V1. Following e.g. Wang [28] and Baggett et al. [7] we say that ψ is associated with an MRA, if
M := {Vj ; j ∈ Z} is a multiresolution analysis. If this is the case, we also say that ψ is associated with M . Let Wj

denote the orthogonal complement of Vj in Vj+1. Then ψ is an orthonormal wavelet associated with M if and only if
Pj = Wj for every j ∈ Z, and T (ψ) is an orthonormal basis of W0.

A Riesz wavelet system ψ := {ψ1, . . . ,ψm} ⊂ L2(Rd) generated by a matrix A is called semiorthogonal if j �= q

implies that 〈DA
j Tkψ�,D

A
q Tnψr 〉 = 0 for every k,n ∈ Zd and �, r = 1, . . . ,m. It follows that a finite set ψ ⊂ L2(Rd)

is a semiorthogonal Riesz basis associated with an MRA if and only if Pj = Wj for every j ∈ Z and T (ψ) is a Riesz
basis of W0. In [29] Weiss and Wilson showed that if A = 2I then any orthonormal wavelet system associated with
an MRA of multiplicity 1 has exactly 2d − 1 functions. A generalization of this assertion is implicit in the work of
Bownik and Garrigós [3].
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Theorem H. If ψ is a Riesz wavelet system associated with a multiresolution analysis of multiplicity n generated by
a dilation matrix A that preserves the lattice Z

d and a := det A, then it has exactly (|a| − 1)n functions.

The proof of this theorem follows by noting that, in view of [3, Proposition 2.4], the value D that appears in the
proof of [3, Theorem 3.3] is equal to n.

This result was established for orthonormal wavelet systems by Cabrelli and Gordillo in [8], although it is not stated
as a formal theorem. For semiorthogonal Riesz wavelet systems it follows from Corollary 3, and for biorthogonal Riesz
wavelet systems it follows from a result of Calogero and Garrigós [10, Theorem 2.11].

Now we turn to the problem of proving the existence of an othonormal wavelet system associated with a given
multiresolution analysis M generated by a matrix A ∈ Zd×d . The first result of this nature, for A = 2I, was proved by
Gröchenig [16] (this proof can also be found in [22,23]). See also Jia and Shen [19, Theorem 3.7]. In e.g. Soardi [27]
and Wojtaszczyk [30] it is shown that every multiresolution analysis of multiplicity 1 in L2(Rd) has an orthonormal
wavelet system associated with it. (For work on a different aspect of this problem, see [1,12].) Applying Corollary 3
we have the following generalization of these results.

Theorem 7. Every multiresolution analysis of multiplicity n in L2(Rd) generated by a dilation matrix A that preserves
the lattice Z

d has an orthonormal wavelet system associated with it, and every orthonormal wavelet system associated
with a multiresolution analysis of multiplicity n in L2(Rd) generated by a dilation matrix A that preserves the lattice
Z

d has exactly (|a| − 1)n functions, where a := det A.

We now obtain a representation theorem similar to those obtained by Cabrelli and Gordillo [8, Theorem 4.2] and
Cabrelli and Heil [9, Theorem 4.11].

Theorem 8. Let M := {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n generated by a dilation matrix A
that preserves the lattice Z

d and having scaling functions u1, . . . , un. Let a := det A, m := |a|n, and let {v1, . . . , vm}
be an orthonormal basis generator of V1. The following propositions are equivalent:

(a) {w1, . . .wm−n} is an orthonormal wavelet system associated with M .
(b) There is an m × m matrix Q(x) of Z

d -periodic and measurable functions and a.e. unitary on T d such that, if(
ŷ1(x), . . . , ŷm(x)

)T := Q(x)
(
v̂1(x), . . . , v̂m(x)

)T
,

then

y(�−1)|a|+1 = u�; 1 � � � n,

and

y(�−1)|a|+k = w(�−1)|a|+k−�; 1 � � � n, 2 � k � |a|.

Proof. The proof is obtained by noting that {w1, . . . ,wm−n} is an orthonormal wavelet system if and only if
T (w1, . . . ,wm−n) is an orthonormal basis of W0. Since V1 = W0 ⊕ V0 and u is an orthonormal basis of V0, this
condition in turn is satisfied if and only if

T (u1,w1, . . . ,w|a|−1, . . . , un,wm−n−|a|+2, . . . ,wm−n)

is an orthonormal basis of V1. The assertion now follows from Theorem 5. �
Let M := {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n with scaling functions u := {u1, . . . , un},

generated by a matrix A that preserves the lattice Z
d . By orthogonality we know that

V1 = S(A,u1) ⊕ S(A,u2) ⊕ · · · ⊕ S(A,un).

Theorem 3 implies that there are functions v�,k such that

{v�,1, . . . , v�,|a|} (10)
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is an orthonormal basis of S(A, u�). It follows that{
v�,k; 1 � � � n, 1 � k � |a|}

is an orthonormal basis of V1.
For k > 1 let diag{−eiω,1, . . . ,1}k denote the k × k diagonal matrix with −eiω,1, . . . ,1 as its diagonal entries.

The following proposition was established by Jia and Shen in the discussion that follows the proof of [19, Lemma
3.3] (we adopt the convention that Arg 0 = 0).

Lemma I. Let b = (b1, . . . , bk)
T ∈ C

k be unimodular, e := (1,0, . . . ,0) ∈ R
k , ω := Argb1 and q := b + eiωe. Then

the matrix

Q := diag
{−eiω,1, . . . ,1

}
k

[
I − 2qq∗/q∗q

]
is unitary and has (b1, . . . , bk) as its first row.

We can now prove the following theorem which, combined with Theorem 3, provides an explicit closed form
representation in Fourier space for orthonormal wavelet systems associated with a given multiresolution analysis of
multiplicity n.

Theorem 9. Let M := {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n with scaling functions u :=
{u1, . . . , un}, generated by a matrix A that preserves the lattice Zd . For 1 � � � n, let (10) be an orthonormal basis
of S(A, u�), let

û�(x) =
|a|∑

j=1

b�,j (x)v̂�,j (x), (11)

b�(x) := (
b�,1(x), . . . , b�,|a|(x)

)T
, δ�(x) := ei Argb�,1(x), q�(x) := b�(x) + δ�(x)e,

V(x) := (
v1,1(x), . . . , v1,|a|(x), . . . , vn,1(x), . . . , vn,|a|(x)

)T
,

and

Q�(x) := diag
{−δ�(x),1, . . . ,1

}
|a|

[
I − 2q�(x)q�(x)∗/q�(x)∗q�(x)

]
.

Let a := det A, m := |a|n, and let

Q(x) = (
q�,k(x)

)m

�,k=1

be the m × m block diagonal matrix

Q1(x) ⊕ Q2(x) ⊕ · · · ⊕ Qn(x) =
⎛
⎝Q1(x) 0

. . .

0 Qn(x)

⎞
⎠ .

If (
ŷ1(x), . . . , ŷm(x)

)T := Q(x)V(x),

then

y(�−1)|a|+1 = u�; 1 � � � n, (12)

and {
y(�−1)|a|+k; 1 � � � n, 2 � k � |a|}

is an orthonormal wavelet system associated with M .
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Proof. Since Lemma E implies that

|a|∑
j=1

∣∣b�,j (x)
∣∣2 = 1 a.e.; � = 1, . . . , n,

setting

V�(x) := (
v�,1(x), . . . , v�,|a|(x)

)T
,

and applying Lemma I, we see that(
ŷ�|a|+1(x), . . . , ŷ�|a|+n(x)

)T = Q�(x)V�(x); � = 1, . . . , n,

and that Q�(x) has (b�,1(x), . . . , b�,|a|(x)) as its first row. This implies that for � = 1, . . . , n

q(�−1)|a|+1,k =
{

b�,k−�|a| if (� − 1)|a| + 1 � k < �|a|,
0 otherwise,

and from (11) we see that (12) follows. Since, moreover, the matrices Q�(x) are unitary for almost every x in T
d , it is

clear that also Q(x) is unitary for almost every x in T
d , and the assertion follows from Theorem 8. �

The proofs of the next two propositions are almost identical to the corresponding univariate proofs in the author’s
paper [32], and will be omitted.

Proposition 2. Let u := {u1, . . . , um} ⊂ L2(Rd) and let μ := {μ1, . . . ,μn} be a set of measurable Z
d -periodic func-

tions. Let ψ := {ψ1, . . . ,ψm} ⊂ L2(R) be such that

ψ̂�(x) = μ�(x)û�(x) a.e.; � = 1, . . . ,m. (13)

Then:

(a) If there are constants B,D > 0 such that |μ�(x)|2 � B a.e., � = 1, . . . ,m, and u is a Bessel wavelet system with
bound D, then ψ is a Bessel wavelet system with bound BD.

(b) If there are constants 0 < A � B , 0 < C � D such that A � |μ�(x)|2 � B a.e., � = 1, . . . ,m, and u is a frame
wavelet system with bounds C and D, then ψ is a frame wavelet system with bounds AC and BD.

Proposition 3. Let u := {u1, . . . , um} ⊂ L2(Rd) and let μ := {μ1, . . . ,μn} be a set of measurable Z
d -periodic func-

tions. If the functions ψ are defined by (13) and there are constants C and D, 0 < C < |D|√A/B , such that∣∣μ�(x) − D
∣∣ � C a.e.; � = 1, . . . ,m,

then ψ is a Riesz wavelet system.

The following two theorems generalize the corresponding univariate versions found in [32].

Theorem 10. Let M = {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n generated by a dilation matrix A
that preserves the lattice Z

d . Let a := det A, m := (|a| − 1)n, and ψ := {ψ1, . . . ,ψm} ⊂ L2(Rd). If there is an integer
r < 0 such that ψ ⊂ Vr , then ψ cannot be a Riesz wavelet system.

Proof. If ψ is a Riesz wavelet system then T (ψ) is a Riesz sequence in Vr , and Theorems 1 and 4 imply that
(|a| − 1)n � n|a|r . Since (|a| − 1) � 1, this is only possible if r � 0. �
Theorem 11. Let M = {Vj ; j ∈ Z} be a multiresolution analysis of multiplicity n generated by a dilation matrix A
that preserves the lattice Z

d . Let a := det A, m := (|a| − 1)n, and ψ := {ψ1, . . . ,ψm} ⊂ L2(Rd). If there is an integer
r �= 0 such that ψ ⊂ Wr , then ψ cannot be a Riesz wavelet system.
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Proof. Let ψ be a Riesz wavelet system in Wr . Assume first that r < 0. Since Wr is then a proper subset of V0,
Theorem 1 implies that m < n. Since (|a| − 1) � 1, this is impossible.

Assume now that r > 0. Since Theorem 4 implies that every Riesz basis generator of Wr must have m|a|r functions
and m|a|r > m, this is also impossible. �

Since ψ is an orthonormal wavelet system (respectively a semiorthogonal Riesz wavelet system) associated with an
MRA if and only if T (ψ) is an orthonormal basis (respectively Riesz basis) of W0, Theorem H and Theorem 5 yield
the following theorem which, combined with Theorem 9, provides an explicit closed form representation in Fourier
space for semiorthogonal wavelet systems associated with a given multiresolution analysis of multiplicity n.

Theorem 12. Assume that h = {h1, . . . , hm} is an orthonormal wavelet system in L2(Rd) associated with a mul-
tiresolution analysis M of multiplicity n generated by a dilation matrix A that preserves the lattice Z

d , that
ψ = {ψ1, . . . ,ψr} is a set of functions such that S(ψ) ⊂ S(h), let a := det A, and let Q(x) denote the transition
matrix from T (h) to T (ψ). Then the following statements are equivalent:

(a) ψ is a semiorthogonal Riesz wavelet system with bounds 0 < A � B , associated with M .
(b) r = m = (|a| − 1)n and (8) is satisfied for almost every x ∈ T

d .
(c) r = m = (|a| − 1)n and (9) is satisfied for almost every x ∈ Td .

If, moreover, Q(x) is continuous on T
d , then ψ is a semiorthogonal Riesz wavelet system associated with M if and

only if r = m = (|a| − 1)n and Q(x) is nonsingular for every x ∈ T
d . In particular, ψ is an orthonormal wavelet

system associated with M if and only if r = m = (|a| − 1)n and Q(x) is a unitary matrix for almost every x ∈ T
d , or,

equivalently, if and only if r = m = (|a| − 1)n and Gψ (x) = I for almost every x ∈ T
d .

Example. We will now verify Theorems 8 and 9 for the univariate case.
Let M be a multiresolution analysis in L2(R) generated by binary dilations, having a scaling function u(x) and

associated low-pass filter p(x).
From Theorem 3 we deduce that a basis {v1, v2} of V1 is given by v1(t) = √

2u(2t) and v2(t) = √
2u(2t + 1),

whence

v̂1(x) = 2−1/2û(x/2) and v̂2(x) = 2−1/2eπixû(x/2).

Since û(x) = p(x/2)û(x/2), we see that

û(x) = √
2
[
p(x/2) + p

(
(x + 1)/2

)]
v̂1(x) − √

2p
(
(x + 1)/2

)
e−πix v̂2(x),

and that û(x) = √
2e−πixp(x/2)v̂2(x). Adding both equations, we conclude that

û(x) = b1(x)v̂1(x) + b2(x)v̂2(x), (14)

where b1(x) := 2−1/2[p(x/2) + p((x + 1)/2)] and b2(x) := 2−1/2[p(x/2) − p((x + 1)/2)]e−πix are Z-periodic.
Rewriting (1) we have

ψ̂(x) = 2−1/2ν(x)
[
p
(
(x + 1)/2

) − p(x/2)
]
eπix v̂1(x) + 2−1/2ν(x)

[
p(x/2) + p

(
(x + 1)/2

)]
v̂2(x),

whence

ψ̂(x) = ν(x)
[−b2(x)v̂1(x) + b1(x)v̂2(x)

]
. (15)

Thus, (
û(x), ψ̂(x)

)T = Q(x)
(
v̂1(x), v̂2(x)

)T
,

where

Q(x) =
(

b1(x), b2(x)

−b2(x), b1(x)

)
.

From Lemma E we conclude that Q(x) is unitary, and we have verified Theorem 8 for this particular case.
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Let us now turn to Theorem 9. Let q∗(x) := (q(x))∗ and δ(x) := ei Argb1(x); since

q(x) = (
b1(x) + δ(x), b2(t)

)T
,

we see that

q∗(x)q(x) = (
1 + ∣∣b1(x)

∣∣)2 + ∣∣b2(x)
∣∣2 = 2

(∣∣b1(x)
∣∣ + 1

)
and

q(x)q∗(x) =
( [1 + |b1(x)|]2, [b1(x) + δ(x)]b2(x)

[b1(x) + δ(x)]b2(x), |b2(x)|2
)

.

Thus

q∗(x)q(x)I − 2q(x)q∗(x) =
( −2|b1(x)| − 2|b1(x)|2, −2[b1(x) + δ(x)]b2(x)

−2[b1(x) + δ(x)]b2(x), 2|b1(x)| + 2 − |b2(x)|2
)

.

Since |b2(x)|2 = 1 − |b1(x)|2, we see that 2|b1(x)| + 2 − |b2(x)|2 = 2|b1(x)|(|b1(x)| + 1). Therefore

Q(x) = [
q(x)q∗(x)

]−1
(−δ(x), 0

0, 0

)[
q∗(x)q(x)I − 2q(x)q∗(x)

]
= [

q(x)q∗(x)
]−1

(
2δ(x)|b1(x)|(|b1(x)| + 1), 2δ(x)[b1(x) + δ(x)]b2(x)

−2(b1(x) + δ(x)b2(x)), 2|b1(x)|(|b1(x)| + 1)

)
.

Setting V (x) := (v̂1(x), v̂2(x))T , we see that Q(x)V (x) = (r̂1(x), r̂2(x))T , where

r̂1(x) = [
2
(∣∣b1(x)

∣∣ + 1
)]−1{2δ(x)

∣∣b1(x)
∣∣(∣∣b1(x)

∣∣ + 1
)
v̂1(x) + 2δ(x)

[
b1(x) + δ(x)

]
b2(x)v̂2(x)

}
= [

b1(x)v̂1(x) + b2(x)v̂2(x)
] = u(x)

(the last identity follows from (14)) and

r̂2(x) = [
2
(∣∣b1(x)

∣∣ + 1
)]−1{−2

(
b1(x) + δ(x)

)
b2(x)v̂1(x) + 2

∣∣b1(x)
∣∣(∣∣b1(x)

∣∣ + 1
)
v̂2(x)

}
= δ(x)

[−b2(x)v̂1(x) + b1(x)v̂2(x)
]
.

Since r̂2(x) is of the form (15) we have verified that it is indeed an orthonormal wavelet associated with the multires-
olution analysis M .
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