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1. I~YTR~D~CTI~N 

In several recent papers [2-4, 61 R. K. Brayton and W. L. Miranker 
have discussed certain nonlinear mixed initial-boundary problems arising 
from transmission line theory. Much of their work depends on the fact that 
the boundary problem can be replaced by an initial value problem for an 
associated differential-difference equation. l This replacement was achieved, 
however, by special physical considerations, and the published discussions 
deal only with rather special boundary problems. 

The purpose of this paper is to generalize and systematize this approach 
to initial-boundary problems. We first of all formulate a more general class 
of such problems for transmission lines. This class contains linear hyperbolic 
systems of two linear partial differential equations with nonlinear integro- 
differential boundary conditions. Second, we present a systematic procedure 
for reducing such problems to initial value problems for differential-difference 
or integrodifferential-difference equations. This procedure is based on the 
method of characteristics, and is applicable to hyperbolic systems of the 
type indicated, irrespective of their physical origin. 

It is clear that the replacement of a mixed initial-boundary problem for a 
partial differential system by a pure initial value problem for a differential- 
difference system has important theoretical and practical ramifications. For 
example, it should provide an efficient method for numerical integration. 
In later papers we shall investigate some of these ramifications, including 
uniqueness and global existence theorems, series and integral representations 
of solutions, stability questions, and the extension of the method to higher 
order systems corresponding to linked transmission lines. 

In Section 2 of this paper, we shall describe the problem of Brayton and 
Miranker and briefly indicate their method of reducing it to a differential- 

* This work was partially supported by National Science Foundation grant GP4029. 
1 See Bellman and Cooke, [l 1, for the theory of such equations. 
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difference equation. Readers not interested in the physical problem can 
skip directly to Section 3, where we describe our method of reduction for 
systems of linear partial differential equations in normal hyperbolic form. 
In Section 4 we formulate a boundary problem of fairly general sort for a 
transmission line, and in Section 5 we convert this to a problem in normal 
form to which the technique of Section 3 is applicable. Finally, in Section 6 we 
briefly sketch an iterative technique applicable to nonlinear initial-boundary 
problems for semilinear systems of partial differential equations. This 
technique replaces the given problem by a sequence of initial value problems 
for differential-difference equations. 

2. THE PROBLEM OF BRAYTON AND MIRANKER 

The problem of Brayton and Miranker is to determine the current and 
voltage in a transmission line terminated at each end by linear or nonlinear 
circuit elements. Take an x-axis in the direction of the line, with the ends 
of the line at x = 0 and x = 1. Let i(x, t) denote the current flowing in the 
line at time t and distance x down the line, and let CD(X, t) denote the voltage 
across the line at t and x. It is well-known that the functions ZI and i satisfy the 
partial differential equations 

av 
ax=- (Ri,,$) +e, 

a; 
ax=- (Gv+C$), 

where R, L, G, C are the resistance, inductance, conductance, and capacitance 
per unit length of the line, and e is the voltage per unit length impressed 
along the line in series with it. In this paper, we shall assume that R = G = 0 
(lossless line), so that the basic equations are 

av 
zc= -Lg+e, z= -cav at. 

This assumption results in a simpler case since if L and C are constants and 
e = 0, the variables v and i satisfy the wave equation. We shall later permit L 
and C to be functions of x and t, but in this section we assume that they are 
constants. 

If v and i satisfy (2), with L and C constant, it is well-known that each can 
be represented as a superposition of traveling waves moving to the left and 
right with velocity c = 1/(LC)1/2. 
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Thus we have 
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v(x, q = -3- [4(x - ct) + #(x + ct)], 

i(x, t) = & [$(x - ct) - $qx + ct)], (3) 

where the functions 4 and $ must be determined from the boundary con- 
ditions, which will be certain integrodifferential relations. For example, for 
the terminations in the case treated by Brayton (see Fig. 1) they are 

- v(0, t) = R&(0, t) 

av(l, t) i(1, t) = Cl----- at +f(v(lY t))’ (4) 

Here f(v(4 t>) re P resents a nonlinear resistance. 

FIG. 1 

The method of Brayton and Miranker for obtaining a differential-difference 
equation is based on the following physical ideas. The term 4(x - ct) repre- 
sents a wave disturbance moving to the right with speed c, whereas 9(x + ct) 
represents a wave moving to the left. It is expected that these waves will be 
reflected at the endpoints, and in particular that a wave moving to the left 
at x = 1 will be reflected back as a wave moving to the right at x = 1 at 
time T = 2/c later, but with an attenuation depending on the resistance R, 
at x = 0. That is, a solution should satisfy a relation 

#(l + ct) = a+(1 - C(t + T)) (5) 
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for all t. Indeed, by using (3) in the first equation in (4) we obtain 
#(ct) = a~$( - ct) for t > 0, where a = (R, + Lc)/(& - Lc). Replacing t by 
t + l/c and using T = 21 c we get (5). Now finally if we use (3) and (5) 
in the second equation of (4), we obtain an equation for the unknown $ and 4’ 
evaluated at arguments 1 - ct and 1 - ct - CT. That is, we have a dif- 
ferential-difference equation for 4. 

In Section 3 we shall describe a way to make the reduction to a differential- 
difference equation which depends only on the well-known method of 
characteristics. 

3. REDUCTION OF INITIAL-BOUNDARY PROBLEMS TO 
INITIAL VALUE PROBLEMS FOR DIFFERENTIAL-DIFFERENCE EQUATIONS 

In this section we shall present a method for reducing a class of initial- 
boundary-value problems for hyperbolic partial differential equations to 
initial value problems for integro-differential-difference equations. The 
method applies to a system of two linear partial differential equations which 
can be brought into the special normal hyperbolic form2 

where 

z&t) = (;$;;;) , D = i”‘;’ t, ’ 
72(x, t) 

) , (2) 

and where .rl(x, t) > 0 and T~(x, t) < 0. The initial conditions are of the form 

u(x, 0) = qx), O<x<l (3) 

and the boundary conditions are of the form 

fi(U1(O, t), uI”(0, q, p(o, t), q, t), 4q1, t), P(L 0, $(O, t>, @(O, t), 

PP, t), %(l, t) , f&l, t), z&1)(1, t), t) = 0 (i= 1,2;t 20). (4) 

Here the notation is defined by the equations 

z$)(u, t> = 2 K(0, t) (k=1,2;a=Oorl) 

z&)(u, t) = 11 ~+.(a, T) fh (k = 1, 2; a = 0 or 1). (5) 

The functions fi and fi are given, as is the vector function u,, . 

a Cf. R. Courant, [S], p. 424. 
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The form of the boundary conditions in (4) is suggested by the physical 
model of a transmission line which we formulate in Section 4. The require- 
ment that the linear system (1) contain no term in u seems to be an essential 
limitation of the method as described in this section, but in Section 6 below 
we shall outline an extension of our method to general semilinear systems 

In any case, the boundary equations (4) can be very general nonlinear 
relations. The requirement that (1) b e a system of only two equations is not 
fundamental, and in a later paper we plan to extend the method to systems 
of higher order with boundary conditions suggested by the consideration of 
linked transmission lines. 

The characteristics for (1) form two families of curves of slopes dtjdx = 1 /pi 
and dtjdx = l/r2 . We assume that through each point (x, t) in 0 < x < 1, 
0 < t, there are two characteristics, C, with positive slope and C, with 
negative slope. The curve C, extends to the right until it intersects x = 1, 
and to the left until it intersects either x = 0 or t = 0, whereas Ca intersects 
x = 0 on the left and either x = 1 or t = 0 on the right. Now if we introduce 
the directional differentiation 

Q = ; + T~(x, t) ; (i = 1,2) 

along the characteristic Ci , the system (1) can be written in the form 

Diui = &(x, t) (i = 1, 2). (7) 

A characteristic C, through a point (0, f) of the x - t region intersects 
the boundary x = 1 at some point (1, t” + T,), where Tl can be found by 
integration of the relation dtjdx = l/~i . For example, if the curves C, are 
described by the integral g(x, t) = const, then the curve through (0, 2) is 
g(x, t) = g(0, t^). Setting x = 1 and t = t^ + Tl we get g(l, t^ + TJ = g(0, f). 
In any event, Tl = Tl(f) is a well-defined function of 2. Similarly, a character- 
istic C, through a point (1, 2) intersects x = 0 at a point (0, 8 + T,) where 
T, = T,(f) depends only on T~(x, t). See Fig. 2. 

Now let us integrate the equation D,u, = $r along a characteristic C, from 
a point (0, t) to the point (1, t + T,(t)). Clearly we obtain 

u,(l, t + T,(t)) = 40, t) + A(t), t > 0, 03) 

W) = j:+=ltt) Ah , tl) 4 , (9) 

the integration being a line integral along Cr . 
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FIG. 2 

In the same way by integrating D,u, = d2 , along a characteristic C, from 
(0, t + T,(t)) to (1, t) we obtain 

Hence 

d 
@(O, t> = z %( 1, t + T,(t)) - g(t) 

= [I + q(t)] 2 (1, t + T,(t)) - SW). 

Substitution of the relations (8) and (10) into the boundary conditions (4) 
will yield the equations we are seeking. In fact, let us define 

rdt) = %(L t)9 Y&) = %(O, 0. (12) 
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Then by (8) we have 

4-1)(o, t) = jIYl(T + T,(T)) dT - ! 1 #l(T) &. (13) 

Likewise from (10) we get 

u!-l’( 1, t) = j: yg(~ + T,(r)) dT + j; +a(~) d7. 2 (14) 

If we substitute these relations into (4), we obtain two equations 

j j'k, dr, j:Yk + T,(T)) dT, t) = 0 (t 3 o), (i = 1,2). (15) 

In other words, the result is a system of two integrodifferential-difference 
equations in two unknown functions. 

Moreover, the system (15) is equivalent to the original problem. We have 
already shown that a solution of (l), (3), (4) yields a solution of (15). Con- 
versely, suppose that yr(t) and y&t) satisfy (15) for t > 0. Define ul( 1, t) and 
~~(0, t) for t 3 0 by (12). D e fi ne z+(x, t) and ua(x, t) throughout the strip 
0 < x < 1,O < t by integrating (7) along characteristics and using the known 
values of ~~(1, t) and of ~~(0, t), respectively. Clearly Eqs. (8) and (10) are 
then valid, and also (13) and (14). Th ere ore f Eq. (15) leads at once to (4). 
Equation (1) is satisfied, since u,(x, t), u,(x, t) satisfy (7). Thus, every solution 
of (15) yields in a unique way a solution of (1) and (4). (We assume here that 
T:(t) #= -1 and that the characteristics are of the kind previously assumed). 

We also observe that an initial condition (3) leads, by integration along 
characteristics C, emanating from the segment 0 < x < 1, t = 0, to values of 
~~(1, t) (or-y,(t)) on x = 1,O < t < T,(O), and by integration along character- 
istics C, emanating from this segment to values of ~~(0, t) (or ys(t)) on x = 0, 
0 < t < T,(O). (See Fig. 3.) These values of yl(t) and ya(t) will in general 
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FIG. 3 

be appropriate initial values for the system (15). However, we shall defer a 
detailed analysis of the existence-uniqueness question for the resulting 
initial-value problem to a later occasion. 

We may summarize by stating that in this section we have described a 
general method for establishing a correspondence between mixed problems 
of the form (l), (3) (4) an initial-value problems for systems of ordinary d 
differential-difference equations. In this way, known theory and technique 
for either kind of problem can be applied to the other. 

4. TRANSMISSION LINE WITH GENERAL TERMINATIONS 

We shall now illustrate our method by considering the physical problem of 
a lossless transmission line terminated by more general circuit elements in 
series or parallel at the ends of the line. In this section we formulate the 
problem, and in the next section we transform it to normal hyperbolic form 
so that the method of Section 3 can be applied. 

Let us consider a linear lossless line described by equations 

av ai 
- - L(x, t) - + e(x, t), 

ai 

ax- at - = - C(x, t) g , ax 
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with initial conditions 

Q(% 0) = %(X), i(x, 0) = i,(x), O<X,<l, (2) 

where D,,(X) and ia are given functions. We shall suppose that the line is 
terminated by parallel or series circuits as in Fig. 4 or 5. For the sake of 

FIG. 4a FIG. 4b 

generality, we allow all the lumped elements to be arbitrary functions of the 
voltage or current, rather than requiring linear elements. For a series termina- 
tion as in Figure 4, we have for the voltages between nodes3 

- $0, t) = - v,, = vaa - 71bc = vba - E,(t), 

- ql, q = y&(0, t)) + co (S)(O, T) d7) + 4J ($ (0, t,) - E,(t), (3) 

and similarly 

41, t) =r,(i(l,t)) + Cl (J+)dr) + 4 (f(W) +4(f). (4) 

3 Here we assume that i(O,O) = i(l,O) = 0. 
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In these equations, r,,(i), co(i), /s(i), yl(i), cl(i), and /r(z) are considered to be 
arbitrary functions of the real variable i. If all circuit elements are linear, we 
have 

Yk(i(k, t)) = R,i(k, t) (k = 1,2) 

ck (j” i(k, T) d~j = & \‘i(k, T) dT (k = 1,2) 
b 0 - 0 

lk ($ (k, t)> = L, $ (k, t) (k = 19% (5) 

where 4 , 4 , C, , Cl , 4, , L, are constants, the ordinary resistance, capa- 
citance, and inductance in the terminations. 

For a parallel termination as in Fig. 5a, we have $0, t) = D,, , E,,(t) = wbC , 
and i(0, t) = it + & + i, , where it, i, , i, are the currents through the 
inductive, capacitative, and resistive branches. We assume that these currents 
are related to the impressed voltage by relations of the form 

(6) 

wher cc, , &s , and y. are known functions of one independent variable. Using 
the relation w,,, = ~(0, t) - B,,(t), we therefore obtain 

- i(0, t) = - co (E;(t) - $a(O, t)) - f, (j: [E,,(T) - ~(0, T)] d’] 

- y&l(t) - 40, t)). (7) 
Similarly 

i(l) t) = - cl (E;(t) - $ ~(1, t)) - 4 (!I [&CT) - v(l,~)l dT) 

- y,(~,(~) - 4, a. (8) 
In case the circuit elements are all linear, the relations (6) reduce to 

1 
te = - ( jt (‘%(T) - v(o,~)) d7) v 

Lo 0 

iT = + [-4(t) - 6491, 
0 

(9) 



LINEAR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS 383 

where L, , CO , R,, are the ordinary inductance, capacitance, and resistance, 
and (7) reduces to 

Similarly, (8) becomes 

Ml, t) 
i(l,t)=C, dt - + t ~(1, t) + i j: $0, T> dT 

- C,&(t) - +- E,(t) - $ j; E,(T) dr. (11) 

The various boundary conditions above can all be subsumed under the 
general form 

jgl bW’(O, t), t) + &(i’j’(O, t), t)] =fl(t) 

jlc, M~‘Yl, 9, t) + 6 (i(j)(l, t), t)] =f2(t), 

where 

+l’(k, t) = i 
t V(k, T) dT, 
0 

i’-“(k, t) = 
I 

t i(k, T) dT, (k = 0,l) 
0 

t>o (12) 

(13) 

and where aj(w, t), ,&(i, t), ~~(0, t), and S,(i, t) are given functions of their 
arguments. In the special case in which the line is terminated with linear 
time-invariant circuit elements, Eqs. (12) take the simpler form 

,ill Wj’U, t) + $i(‘)(l, t)] =f.Jt), 
r > 0 (14) 
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where mj , & , yj , and Sj are constants. Moreover, for the special terminations 
in Figures 4 and 5 we have the following special values: 

Parallel on left: 

6-l = 81 = 0, PO== 1, all aj 30; 

Parallel on right: 

s-, = s, = 0, so= - 1, all yj 20; 

Series on left: 

01-l = a1 = 0, 010 = 1, all Pj 30; 

Series on right: 

y-1 = K = 0, yo=---1, all sj > 0. (15) 

5. REDUCTION TO NORMAL HYPERBOLIC FORM 

I n this section we shall use standard methods to replace the initial-bound- 
ary-value problem (4-l), (4-2), (4-12) by a problem in the normal hyperbolic 
form of Section 3. 

If we let 

V 
w= 0 i 

(1) 

Eq. (4-l) can be written 

where 
wt + Aw, = E, (2) 

(3) 

The eigenvalues of A are ~r(x, t) = l/dLz T~(x, t) = - l/m, and cor- 
responding row eigenvectors are (e 2/z) and (- < z/z). Consequent- 
ly we let 

(4) 

and make the substitution 
z=Hw. (5) 

Since HA = DH, we obtain the equation (in normal hyperbolic form) 

zt + Dz, = Bz + 5, (6) 
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where 

e(x, t)l(W, W2 
+(X7 4 = HE = (e(x, t)/(L(x, t))l’2 1 

B=(z+D$+. 

(7) 

(8) 

If B is zero, Eq. (6) is of the form discussed in Section 3. Moreover, since 

2d/cv=zl-zxz, 2dEi=z,+z,, (9) 

the initial conditions (4-2) yield 

dx, 0) = d\/c(x,v&) + dL(x, 0) G(x), 

x2(x, 0) = - dC(x, 0) vo(x) + 1/L@, 0) &(x>, (10) 

and the boundary conditions (4-12) take the form 

where &(z, 4, /%(z, t>, ?&, 0, &(z, t) are given functions. For the linear 
case (4-14), the boundary conditions may be written as 

jl [“2#(L 4 + bzi$(l, t)] =f2(q t>o (12) 

where 

blj = - -!t??-= + .-.!%= 
2 z/c 2 dL 

b2j = - AL. 
2 dL (13) 

Thus, if B = 0, the problem is reduced to one of the form treated in 
Section 3. A sufficient condition for B = 0 is that C and L be constants. 
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6. SEMILINEAR SYSTEMS AND DIFFERENTIAL-DIFFERENCE EQUATIONS 

The method of Section 3 cannot be applied in the indicated form to semi- 
linear systems 

Indeed, integration along a characteristic C, yields 

41, t + T,(t)) = 4, t) + j:"""' #A , t, , u(x1 3 q> dt, , 

where the integral is a line integral. It is no longer true that the values of ur 
on x = 1 depend only on the values of ul on x = 0 at earlier times. 

However, it appears to be possible to replace a mixed initial boundary 
problem for (1) by a sequence of initial value problems for a system of dif- 
ferential-difference equations, by using a method of successive approxima- 
tions. Suppose that the initial and boundary conditions are those in (3-3) 
and (3-4). Let u = w(x, t) be an initial approximation, defined in 0 < x < 1, 
0 < t. The problem 

ut + D(x, t) % = 4(x, t, $x, 9, (2) 

where u satisfies (3-3) and (3-4), is then of the type considered in Section 3, 
and can therefore be replaced by a differential-difference system of the type 
in (3-15). The solution of this problem yields ul( 1, t) and us(0, t) and then, by 
integration along characteristics, ur(x, t) and ua(x, t). These components now 
define a new w(x, t). Inserting in (2) we obtain a new problem, again of the 
type treated in Section 3. 

Continuing in this way, we can generate a sequence of initial-value problems 
for differential-difference systems and a sequence of solutions thereto. We 
leave for a later paper the discussion of whether this sequence converges to a 
solution of the mixed initial boundary problem for (1) with boundary con- 
ditions as in (3-4), and of numerical methods based on these ideas. It is also 
possible to apply similar ideas to a nonlinear system in which D depends on 
x, t, u. 
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