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INTRODUCTION 

Recently, Mond, Chandra, and Husain [3] established duality results 
for a variational problem under more general convexity conditions, called 
invex, than Mond and Hanson [4]. In a similar fashion, the results of 
Mond and Hanson [S] for duality in control problems are extended to 
more general convex, or invex, functions. It is also shown that for invex 
functions, the necessary conditions for optimality in the control problem 
are also sufficient. 

CONTROL PROBLEM AND DUAL 

Consider the real scalar function f(t, x, U) where t E [to, zr], x E R”, and 
u E R”. Here t is the independent variable, u(t) is the control variable, and 
x(t) is the state variable; u is related to x via the state equations 
G( t, x, u) = x’, where prime denotes derivative with respect to t. 

If x = (xl, . . . . x”)~, the gradient vector offwith respect to x is denoted by 

For an r-dimensional vector function R(t, x, u), the gradient with respect to 
x is 
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Gradients with respect to u are defined analogously. It is assumed thatf, G, 
and R have continuous second derivatives. 

The control problem is to transfer the state variable from an initial state 
x0 at t, to a final state x, at t,- so as to minimize a given functional, subject 
to constraints on the control and state variables. 

Stated formally, this is: 

Problem P (Primal). Minimize J;;,f(t, x, U) dt subject to 

44)) =x0, x( ff) = x, 

G( t, x, u) = x’ 

R( t, x, u) > 0. 

The following dual problem is given in [S]. 

Prublem D (Ika1). Maximize [i; [f(t, x, U) - 3.(t)T(G(t, 
p(t)’ R(t, x, u)] dr subject to 

x(to) =x0, x(t,) = x/ 

f,(c x, u)- G.,(t, x, u) 4t) - R,(t, x, u) p(f) = j-‘(f) 

f,(t, x, u) - Cult, x, u) l(t) - R,(c x, ~1 p(t) = 0 

p(t) 3 0, 

where 1: [to, t,] I+ R” and cc: [It,, r,] H R’. 

X, 

(1) 

(2) 

(3) 

u)-x’)- 

(4) 

(5) 

(6) 

(7) 

x(t) and u(t) are required to be piecewise smooth functions on [It,, tr-]; 
their derivatives are continuous except perhaps at points of discontinuity of 
u(t), which has piecewise continuous first and second derivatives. 

The constraints (2), (3), (5), and (6) may fail to hold at these points of 
discontinuity of U, but (2) and (5) must hold for left- and right-hand limits. 

Remark. Iff, G, and R are independent of r (without loss of generality, 
assume tf- to = 1 ), then the problems (P) and (D) reduce to a static primal 
and dual of mathematical programming. 

Putting z = (;), we have: 
Problem PS. Minimize f(z) subject to 

G(z) = 0 

R(z) 2 0. 

Problem DS. Maximize f(z) - A’G(z) - ,uTR(z) subject to 

f;(z) - G;(z) iv - R;(z) p = 0 

P 3 0, 

where I E R”, p E R’. 
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INVEXITY 

In [5], (P) and (D) are shown to be a dual pair if.f; -ITG, and -R are 
all convex in x and u. Here we extend this duality by weakening the 
convexity requirement. 

DEFINITION. If there exist vector functions ~(t, x, x*, x’, x*‘, U, u*) E R”, 
with q =0 at t if x(t) =x*(t), and ((t, x, x*, x’, x*‘, u, u*)6Rm such that 
for the scalar function h(t, x, x’, U) the functional 

H(x, x’, u) z j” h(t, x, x’, u) dt 
to 

satisfies 

H(x, x’, u) - H(x*, x*‘, u*) 

> “(?fh&,x*,x*‘, u*)+$h.~(t,x*,x*t, u*) I 10 
+ <‘h,(t, x*, x*‘, u*)) dt 

then His said to be invex in x, x’, and u on [to, tlI] with respect to q and 4. 

Remark. Invexity is defined here for functionals instead of functions, 
unlike the definition given in Mond, Chandra, and Husain [3]. This has 
been done so that invexity of a functional H is necessary and sufficient for 
its critical points to be global minima, which coincides with the original 
concept of an invex function being one for which critical points are also 
global minima (Craven and Glover [Z]). We thus have the following 
characterization result. 

LEMMA. H(x, x’, u) = {$ h( t, x, x’, u) dt is invex iff every critical point of 
H is a global minimum. 

(Note. (x*, u*) is a critical point of H if h&t, x*, x*‘, u*)= 
(d/dt) h,r(t, x*, x*‘, u*) and h,(t, x*, x*‘, u*) =0 almost everywhere in 
[to, tf]. If x(t,) and x( tf) are free, the transversality conditions 
h.,.(t, x*, x*‘, u*) = 0 at t, and tt. are included.) 

Proof (a) Assume that there exist functions q and 5 such that H is 
invex with respect to 4 and 5 on [to, tf]. Let (x*, u*) be a critical point of 
H. Then 
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H(x, x', u) - H(x*, x*', u*) 

3 
s 

I' (qTh,(t, x*, x*', u*) +$h,,(t, x*, x*', u*) 
01 

+ (‘h,(t, x*, x*‘, u*)) dt 

= 
i 

” (Y/7h,(t, x*, x*‘, a*) - q’-&(t, x*, x*‘, a*) 
4 

+ cThl,(t, x*, x*‘, u*)) dt 

+ YfTh.,,(t, x*,x*‘, u*)l;{ by integration by parts 

zz 0 

as (x*, u*) is a critical point, and either fixed boundary conditions imply 
that q = 0 at t, and t,, or free boundary conditions imply that h,. = 0 at t, 
and tl-. 

Therefore, (x*, u*) is a global minimum of H. 
(b) Assume every critical point is a global minimum. 

If (x*, u*) is a critical point, put ye = 5 = 0. 
If (x*, u*) is not a critical point, then 

if h.,# (d/dt) h,. at (x*, u*) put 

h(t, x, x’, u) - h(t, x*, x*‘, u*) 
’ = 2(h,- (d/dr) h,.)T(h, - (d/dt) h,.) (h, - (Or) A,,) 

or, if h., = (d/dt h,. put q = 0; and if h, # 0, put 

5= 
h(t, x, x’, u) - h(t, x*, x*‘, u*) h 

2h,‘h, u 

or if h, = 0 put f = 0. 
Then H is invex on [to, +] with respect to q and 5. 1 

DUALITY 

We prove that problems (P) and (D) are a dual pair subject to invexity 
conditions on the objective and constraint functions. 

THEOREM 1 (Weak Duality). If J$fdt, 1:; - IT(G - x’) dr, and f;/, - 
pT R dt, for any A(t) E R” and p(t) E R’ with p(t) 2 0, are all inoex with 
respect to the same functions q and [, then inf(P) > sup(D). 
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Proof. Let (x*, u*) be feasible for problem (P), and let (x, u, A, p) be 
feasible for problem (D). Then 

.i ” (.f ( t, x*, u*) -,f (1, x, 24)) dl 
10 

2 s ,I (v’fr:(c -y, u) + tTf,(t, A u)) dt by invexity of “.f.(r, x, u) dt 
j to 

= “~‘[1.‘(t)+G,(t,x,~)~(f)+R,(~,x,u)~(t)] dt s Ill 

+ j” tTCG,(f, x, u) j-(f) + MC x, u) p(t)1 df by (5) and (6) 10 
‘1 =qTrl(t) - I J “~E.(t)dt+j”[qTG,,(t_x,u)i:(t) 
1” ,cj dt 41 

+ t’G,(t, x, u) A(t)] dr 

+ I ” [rf R,(t, x, u) At) + t’ RAG x, u) 1401 dl 
10 

by integration by parts 

as fixed boundary conditions give q = 0 at t, and t, 

>/ 
i 

‘/ A(t)T[G(t, x*, u*) - x*’ - G(t, x, u) +x’] dt 
10 

‘/ 
+ 

s 
p( t)T[R( t, x*, u*) - R( t, x, u)] dt 

hl 

by invexity of s ” 10 
-AT(G-x’)dt and j”-pTRdt 

kl 

3 s ” [ -A(t)‘[G(t, x, u)-x’(t)] -p(t)‘R(t, x, u)] dr 
‘0 

by (2), (3), and (7). 
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Therefore 

s “f( t, x*, u*) dt 
(0 

2 I ,I' Cf(c x,u)-2(t)T[G(t,~,u)-x’(t)]-,u(r)TR(t,x,u)]dr. 

As (x*, u*) and (x, U, L, p) are arbitrary feasible solutions of (P) and (D), 
respectively, we have inf( P) > sup(D). 1 

Assuming the constraint conditions for the existence of multipliers L(t) 
and p(t) at extrema of (P) hold, the necessary conditions for (x*, u*) to be 
optimal for (P) are (Berkovitz [ 1 I): 

There exist & E R, E,(t), p(t) such that 

F~l,,f-A(t)=[G-x’]-CAR 

satisfies 

F.X =; F,, (8) 

F,,=O (9) 

$R’= 0, i= 1, . . . . r (10) 

pa0 (11) 

at almost all t E [to, tJ] (except that at t corresponding to discontinuities of 
u*(t), (8) holds for right-and left-hand limits.) 

It is assumed from now on that the minimizing solution (x*, u*) of(P) is 
normal; that is, & is non-zero, so that without loss of generality, we can 
take il,= 1. 

THEOREM 2 (Strong Duality). Under the invexity conditions of 
Theorem 1, if(x*, u*) is an optimal solution of(P), then there exist l(t) and 
p(t) such that (x*, u*, 2, p) is optimal for (D), and the corresponding 
objective values are equal. 

ProoJ: The conditions (8), (9), and (11) imply that there exist n(l) and 
p(t) such that (x*, u*, 2, p) is feasible for (D). 

Since G(t, x*, u*) = x*‘, and p(t)‘R(t, x*, u*) =0 by (lo), the dual 
objective has the same value as the primal objective, so by Theorem 1, 
tx*, u*, 2, ,u) is optimal for (D). 1 

Similarly, converse duality holds if we further assume [Mond and 
Hanson [S]] that f, G, and R have continuous third derivatives, and, 
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writing (6) as p(t, X, U, 2, p) = 0, the matrix (dP’/dzj), i = 1, . . . . m, j= 1, . . . . 
n + m where z = (z), has rank m. 

THEOREM 3 (Converse Duality). Zf (x*, u*, E.*, p*) is optimal for (D), 
and tf 

fr, - (G, A), - (R.a).r 

(f 

fu, - (WL - (R.x~)u 
xu - (Gujw).r - (R,P)., fuu - (Guj.L- (RsL)u > 

is non-singular for all t E [to, t.r], then (x*, u*) is optimal for (P), and the 
corresponding objective values are equal. 

Proof: See Mond and Hanson [5]. # 

SUFFICIENCY 

It can be shown that, for invex functions, the necessary conditions of 
Berkovitz [ 11, together with normality of the constraints, are sufficient for 
optimality. 

THEOREM 4. Zf there exists (x*, u*, A*, p*) such that conditions (8), 
(9), (lo), and (11) hold, with (x*, u*) feasible for (P), and j:/,fdz, 
J:/,-A*T(G-x’)dt, andJ:;-u *T R dt are all invex with respect to the same 
functions n and 5, then (x*, u*) is optimal for (P). 

Proof: Assume (x*, u*) is not optimal for (P). Then there exists 
(4 u) f lx*, u*), (x, u) feasible for (P), such that 

i‘ 'Tc t,x,u)dt< ‘f(t,x*,u*)dt. '0 i 4 

As {:/of dt is invex with respect to 9 and 5, it follows that 

s ‘/ (q’f,(t, x*, u*) + tTf&, x*, u*)) dt <O. 
m 

Now, 

A*(t)‘[G(r, x, u)-x’] =O=A*(t)TIG(t, x*, u*)-x*‘] 

implies 

(12) 

s “-~*(t)T~G(t,x,u)-x’-G(~,X*,U*)+X~qdt~odo~ 10 
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Thus, by invexity of 1;: - i.* ‘[G - x’] dt, 

rfGJt,x*,u*)A*(t)-~~~*(t)+~‘G,(t,x*;u*)1.*(t) 1 dt60. 

(13) 

Also, 

implies 

p*(t)rR(t, x, u)zo=p*(t)TR(t, x*, u*) 

I 
‘/ 

-,u*(tJT[R(t, x, u)-R(t, x*, u*)] dr<O. 
4 

By invexity of s$, - p*T R dt, 

- I I’ [UT R&t, x*, u*) p*(t) + tr R,(t, x*, u*)] dt ~0. (14) 
10 

Combining (12), (13), and (14), 

- 
[ 

qTG,(t, x*, u*) A*(t) -s,*(t) + tTG,(t, x*, u*) A*(t) 1 
- [tj’R.,(t, x*, u*) p*(t) + tTR,(t, x*, u*) p*(t)] 

> 
dt <O. (15) 

Now, premultiplying (8) by qr and (9) by t’, adding and integrating gives 

s ,r (r Tfxk x*, u*) + STfu(t, x*, u*) 

- t-qTG,(t, x*, u*) A*(t) + gTG,(t, x*, u*) A*(t)] 

- [~/~R,(t,x*, ~*)p*(t)+<~RJt,x*, u*)p*(t)]-q’i*‘(t))dt=O. 

But 

s ‘q’A*‘(t) dt =q’L*(t) 
10 

i 
vdqT =- -A*(t) dt 
to dt 
as fixed boundary conditions give ye = 0 at t, and tf 

This contradicts Eq. (15). Hence (x*, u*) is optimal for (P). 1 
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FREE BOUNDARY CONDITIONS 

The above results may also be applied to the control problem with free 
boundary conditions. If the “targets” x(t,) and x(t,) are not restricted, we 
have 

Problem PF (Primal). Minimize s:{J( t, X, u) dt subject to 

G(t, x, u) = x’ 

R(t, x, u) 20. 

The dual now includes the transversality conditions F.,, = 0 at r, and t,.as 
new constraints. That is, F,. = A(t) = 0 at to and t,. This gives: 

Problem DF (Dual). Maximixe 1:; [f( t, x, U) - A( t)T[ G( t, X, U) -AC’] - 
P(I)’ R( t, x, u)] dt subject to 

A( to) = 0, A( ‘f) = 0 

.#Jt, -x, u) - G,(t, x, u) A(t) - R,Jt, x, u) p(t) = J’(f) 

f,(t, x, u) - G,(t, x, u) i(t) - R,(t, x, u) At) = 0 

p(t) 20. 

In order to prove the results corresponding to Theorems 1 and 4, it is 
necessary only to alter the reason for discarding the term vTA(f)/$ instead 
of having x(t,) = x0 and x( t,.) = xt. so that r] = 0 at t, and t,, we have 
A( to) = A( tf) = 0. 

For problems with mixed boundary conditions, the transversality 
condition associated with the free end is maintained in the dual, and the 
fact that q =0 at the lixed end is utilized. 
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