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A question of Avramov and Foxby concerning injective dimension
of complexes is settled in the affirmative for the class of noetherian
rings. A key step in the proof is to recast the problem on hand
into one about the homotopy category of complexes of injective
modules. Analogous results for flat dimension and projective
dimension are also established.
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1. Introduction

There is a well-established notion of injective dimension for modules over a ring, based on a nat-
ural construction of injective resolutions for modules. However, in extending it from modules to
complexes one can choose from various extensions of the notion of a resolution, and these yield
potentially different notions of injective dimension. The resulting concepts were defined by Avramov
and Foxby in [1] where they proved that they yield the same invariants when the ring has finite
global dimension, and asked if the converse statement holds. In this article we settle this question
for certain classes of rings. To illustrate the issues involved, in the remainder of the Introduction we
focus on the case of modules.

Let R be a ring and M an R-module; in what follows ‘module’ means ‘left module’ and proper-
ties considered are with respect to the left structures, unless stated otherwise. Recall that a classical
injective resolution of M is a complex I of injective R-modules with I j = 0 for j > 0 and H(I) ∼= M ,
and that the injective dimension of M , denoted idR M , is the infimum of those integers n such that
M admits an injective resolution I such that I j = 0 for j < −n. We consider a variant of this notion
where I is no longer limited to non-positive degrees:
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inf

{
n ∈ Z

∣∣∣∣∣ M ∼= H(I) with I a complex of

injectives with I j = 0 for j < −n

}
.

Following [2] we denote2 this number gr-idR M . Evidently, there is an inequality

gr-idR M � idR M.

Avramov and Foxby [1, 3.5] proved that equality holds whenever the ring R has finite global di-
mension, and asked—see Question 3.8 in [1]—if the converse is true. We answer this question in the
affirmative in the class of noetherian rings:

Theorem 1.1. When R is noetherian the following conditions are equivalent.

(1) R is regular.
(2) gr-idR M = idR M for every module M.

Recall that the ring R is said to be regular if every ideal has a finite resolution by finitely gener-
ated projective modules; equivalently, if R is noetherian and the projective dimension of each finitely
generated module is finite. There exist regular rings of infinite global dimension (see [12, Appendix,
Example 1]) so (1) ⇒ (2) above strengthens, for noetherian rings, the result of Avramov and Foxby
[1, 3.5].

Theorem 1.1 follows from Proposition 2.1 and Theorem 2.8. A key step in the proof is to recast
the statement about modules in terms of properties of the homotopy category of complexes of in-
jective modules. Results of Krause [10] on this homotopy category are then invoked to complete the
argument.

The next result is an analogue of Theorem 1.1 for projective and flat modules; it answers another
part of [1, 3.8]. In its statement pdR M and fdR M are the projective dimension and flat dimension of
M respectively, while gr-pdR M and gr-fdR M are the corresponding analogues of gr-idR M . As usual,
R is said to be coherent if finitely generated ideals in R are finitely presented; equivalently, if finitely
generated submodules of free modules are finitely presented. We write ‘Rop’ for the opposite ring
of R , so ‘Rop coherent’ means that R is right coherent.

Theorem 1.2. When Rop is coherent the following conditions are equivalent.

(1) Each bounded complex of finitely presented Rop-modules is perfect.
(2) gr-pdR M = pdR M for every module M.
(3) gr-fdR M = fdR M for every module M.

Recall that a perfect complex is one that is quasi-isomorphic to a bounded complex of finitely
generated projective modules. Note that when Rop is noetherian, (1) is equivalent to the condition
that the ring Rop is regular.

The theorem above is contained in Proposition 3.1 and Theorem 3.8. As for Theorem 1.1, the crucial
idea is to recast the conditions in terms of a homotopy category, but this time the homotopy category
of complexes of projective modules. We then apply results of Jørgensen [17] and Neeman [16] to
complete the proof.

2. Complexes of injectives

Let R be a ring, and let D(R) denote the derived category of (left) R-modules; see Verdier [18]
for a construction of the derived category. We write M � N to indicate that M and N are quasi-

2 In [1] this number is denoted #-idR M .
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isomorphic complexes of R-modules, that is to say, they are isomorphic in D(R). A morphism of
complexes M → N is a quasi-isomorphism if and only if its mapping cone, say C , is acyclic, that
is to say, H(C) = 0 holds.

We recall some notions and results from [1], with terminology borrowed from [2].
Let I be a complex of R-modules. We say that I is graded-injective if each R-module In is in-

jective; equivalently, if the graded R-module underlying I is injective in the category of graded
R-modules. The complex I is semi-injective if it is graded-injective and whenever φ : M → N is a
quasi-isomorphism of complexes, so is HomR(φ, I) : HomR(N, I) → HomR(M, I). For instance, when I
is graded-injective and In = 0 for n � 0, it is semi-injective. For each complex M there exists a quasi-
isomorphism M → I with I semi-injective; such a morphism can also be chosen to be one-to-one.
See [2] for proofs of the assertions above.

Give a class I of complexes of R-modules, consider the number

inf{n ∈ Z | M � I with I ∈ I and I j = 0 for j < −n}.
Taking for I the class of semi-injective complexes one gets the injective dimension of M , denoted
idR M . Taking for I the class of graded-injective complexes, and not only the semi-injective ones,
gives rise to an invariant of M that we denote gr-idR M . When M is a module, viewed as a complex
with M in degree zero and zero otherwise, these definitions yield the same invariants as those in the
Introduction. This is because M � I holds if and only if M ∼= H(I) holds.

It is obvious from definitions that an inequality gr-idR M � idR M holds for each complex M . The
result below describes some conditions under which equality holds for all M . Contractible complexes
of injectives, appearing in condition (4), are the categorically injective complexes of [2].

Proposition 2.1. Let R be a ring. The following conditions are equivalent.

(1) An equality gr-idR M = idR M holds for each complex M of R-modules.
(2) An equality gr-idR M = idR M holds for each R-module M.
(3) Each complex of injective R-modules is semi-injective.
(4) Each acyclic complex of injective R-modules is contractible.

Proof. Clearly, (3) ⇒ (1) and (1) ⇒ (2) hold.
(2) ⇒ (4) Let I be an acyclic complex of injective R-modules. For each integer i the inclusion

Ker(∂i) → ∑−i I�i is a quasi-isomorphism. Thus, gr-idR Ker(∂i) = 0 and so the hypothesis entails
Ker(∂i) is injective. Hence I is contractible.

(4) ⇒ (3) Let I be a complex of injectives and let ι : I → J be a semi-injective resolution of I . Since
ι is a quasi-isomorphism, its mapping cone, say C , is acyclic; since C is also a complex of injectives,
the hypothesis yields that C is contractible. Thus ι is a homotopy equivalence, and hence I is itself
semi-injective. �

Next we translate the equivalent conditions in the preceding proposition to a condition concerning
the homotopy category of complexes of injective R-modules, which we denote K(Inj R). Its objects
are complexes of injective R-modules and its morphisms are homotopy classes of morphisms of com-
plexes; see [18] for details and for a description of the triangulated structure carried by K(Inj R). Let
Kac(Inj R) be the subcategory of K(Inj R) consisting of acyclic complexes; it is a triangulated subcate-
gory. There then exists a canonical localization functor

Q : K(Inj R) → D(R).

Its kernel is precisely Kac(Inj R), so the next result is obvious.

Lemma 2.2. The functor Q : K(Inj R) → D(R) is an equivalence if and only if each acyclic complex of injective
R-modules is contractible.
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Let T be a triangulated category admitting all coproducts. An object X in T is compact if
HomT(X,−) commutes with all coproducts in T. In what follows Tc denotes the full subcategory
of all compact objects in T. We say that T is compactly generated if the isomorphism classes of com-
pact objects form a set, and the smallest triangulated subcategory containing Tc and closed under all
coproducts is T itself. The reader may refer to Neeman’s book [15] for a discussion of these concepts.

A proof of the result below can be found, for example, in [9, §5.3], or [13, 2.2].

2.3. The triangulated category D(R) is compactly generated, and the objects of Dc(R) are the perfect
complexes of R-modules.

We recall a well known, and not difficult to prove, test for equivalence of compactly generated
categories; see, for example, [3, 4.5], or [9, §4.2].

2.4. Let F : S → T be an exact functor of compactly generated triangulated categories which is com-
patible with coproducts. The functor F is then an equivalence of categories if and only if it restricts
to an equivalence of categories Sc → Tc .

Next we focus on the case the ring R is noetherian. In our context, this property is relevant because
of the following result, due to Bass [4, 1.1].

2.5. The ring R is noetherian if and only if any (equivalently, any countable) direct sum of injective
R-modules is injective.

When R is noetherian we write Df
b(R) for the full subcategory of D(R) consisting of complexes M

such that Hi(M) is finitely generated for each i and equal to zero when |i| � 0 holds. Given 2.3, the
next remark is obvious.

2.6. A noetherian R is regular if and only if Dc(R) = Df
b(R) holds.

The next result is due to Krause [10, 2.3].

2.7. When R is noetherian, K(Inj R) is compactly generated and the localization functor Q induces an
equivalence of categories

Q : Kc(Inj R)
∼−→Df

b(R).

Proposition 2.1 and the next result contain Theorem 1.1 from the Introduction.

Theorem 2.8. Let R be a ring. The following conditions are equivalent.

(1) R is regular.
(2) R is noetherian and each acyclic complex of injective modules is contractible.
(3) Countable direct sums of semi-injective complexes are semi-injective.
(4) Arbitrary colimits of semi-injective complexes are semi-injective.

Proof. Injective modules are semi-injective as complexes so conditions (3) and (4) imply that count-
able direct sums of injective modules are injective, and so the ring R is noetherian, by 2.5. Thus, in
the remainder of the proof we assume R is noetherian. The triangulated category K(Inj R) is then
compactly generated, by 2.7, and the localization functor Q : K(Inj R) → D(R) is compatible with co-
products; this fact will be used without further remark.

(1) ⇔ (2) It suffices to verify that R is regular if and only if the functor Q is an equivalence, by
Lemma 2.2. In view of 2.4, the desired result is a consequence of 2.7 and 2.6.
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(2) ⇒ (4) Since R is noetherian, a colimit of complexes of injectives is also a complex of injectives.
Thus Proposition 2.1 provides the desired conclusion.

(4) ⇒ (3) is clear.
(3) ⇒ (2) It is enough to prove that each complex I of injective modules is semi-injective; see

Proposition 2.1. For each integer n set I(n) = I�n; this is a subcomplex of I . Evidently, I = ⋃
n∈N

I(n)

so, with ιn : I(n) ⊆ I(n + 1) the inclusion, there is an exact sequence of complexes of R-modules

0 −→
⊕
n∈N

I(n)
θ−→

⊕
n∈N

I(n) −→ I −→ 0,

where θ(xn) = (xn − ιn−1(xn−1)). Each I(n) is semi-injective, since it is a complex of injectives with
I(n)i = 0 for i > n, so the hypothesis yields that the direct sums above are semi-injective. It follows
that the complex I is semi-injective as well. �

To put the next result in context, we recall that the semi-injective property does not localize; see
[14, 6.5] and [6] for counter-examples.

Corollary 2.9. Let R be a commutative regular ring and U a multiplicatively closed subset of R. If I is a complex
of injective R-modules, then the complex U−1 I is semi-injective over the ring R and also over the ring U−1 R.

Proof. The ring U−1 R is regular, by a result of Auslander, Buchsbaum, and Serre; see [11, 19.3]. If E
is an injective R-module, then U−1 E is injective over R and over U−1 R . The assertion is thus a direct
consequence of Theorem 2.8. �

Next we present a variation of Theorem 2.8 involving covers for complexes.
Following Enochs, Jenda, and Xu [8], we say that a graded-injective complex I is minimal if for

each integer n the inclusion Ker(∂n) ⊆ In is an essential extension.
Let ε : E → X be a morphism of complexes with E acyclic. We say that ε is an acyclic cover (or,

as in [8], an exact cover) of X if each morphism F → X of complexes with F acyclic factors uniquely
through ε. In [8, 3.18] it is proved that ε is an acyclic cover of X if and only if ε is surjective and
Ker(ε) is a minimal semi-injective complex. This result is used without comment in the proof below.

Proposition 2.10. A ring R is regular if and only if each direct sum of acyclic covers of complexes of R-modules
is an acyclic cover.

Proof. Suppose R is regular. Let ελ : Eλ → Xλ , with λ some index set, be a family of acyclic covers.
The complexes Ker(ελ) are semi-injective and minimal; hence the complex K = ⊕

λ Ker(ελ) is also
semi-injective, by Theorem 2.8, and minimal, since minimality is preserved under direct sums. Setting
E = ⊕

λ Eλ and X = ⊕
λ Xλ , one thus obtains an exact sequence of complexes

0 → K → E → X → 0

with E acyclic and K minimal semi-injective. Hence E is an acyclic cover of X .
Assume now that each direct sum of acyclic covers is an acyclic cover. Given Theorem 2.8, it

suffices to verify if that {Iλ} is an arbitrary family of semi-injective complexes, then
⊕

λ Iλ is also
semi-injective.

We may assume that each Iλ is minimal. Indeed, any complex I of injective R-modules is isomor-
phic to I ′ ⊕ I ′′ with I ′ minimal and I ′′ contractible; see [8] or [2]. When I is itself semi-injective, so is
I ′′ and hence it is homotopic to zero. Thus I is homotopically equivalent to I ′ , which is minimal and
semi-injective.

With Cλ the mapping cone of the identity map of Iλ one then obtains that the canonical morphism
ελ : Cλ → ∑

Iλ is an acyclic cover, by [8, 3.21]. Thus our hypothesis implies that the morphism
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ε =
⊕

λ

ελ :
⊕

λ

Cλ −→
⊕

λ

∑
Iλ

is an acyclic cover as well. Therefore the complex Ker(ε), that is to say,
⊕

λ Iλ , is semi-injective, as
desired. �
Remark 2.11. Proposition 2.1 and Theorem 2.8 can be generalized, using similar arguments, to locally
noetherian Grothendieck categories with compactly generated derived categories. In particular, they
yield an analogue of Theorem 1.1 for quasi-coherent sheaves over a noetherian scheme.

3. Complexes of flat modules and of projective modules

We present analogues of results in Section 2 for complexes of flat modules and of projective
modules. Many arguments are similar, so details are provided only when there are noteworthy differ-
ences.

The notions of graded-projective complexes and semi-projective complexes are obvious analogues
of that of graded-injective complexes and semi-injective complexes; see [2], or [1] where they are
called #-projective and DG projective complexes, respectively. The invariants of interest are the pro-
jective dimension:

pdR M = inf

{
n ∈ Z

∣∣∣∣∣ M � P with P semi-projective

and P j = 0 for j > n

}
.

Allowing P above to any graded-projective yields an invariant denoted gr-pdR M .
The statement and proof of the next result parallel Proposition 2.1. Contractible complexes of pro-

jectives are the categorically projective complexes of [2].

Proposition 3.1. Let R be a ring. The following conditions are equivalent.

(1) An equality gr-pdR M = pdR M holds for each complex M of R-modules.
(2) An equality gr-pdR M = pdR M holds for each R-module M.
(3) Each complex of projective R-modules is semi-projective.
(4) Each acyclic complex of projective R-modules is contractible.

Considering, in the same vein as before, graded-flat complexes and semi-flat complexes generates
invariants that we denote gr-fdR M and fdR M , respectively. A complex F of R-modules is said to be
categorically flat if each module Fi is flat and H(M ⊗R F ) = 0 for each right R-module M . Once again
the notions are from [1] but terminology is from [2]. Categorically flat complexes have also been
called ‘flat complexes’; see, for instance, [7].

3.2. Let F be a complex of flat R-modules. The following conditions are equivalent:

(1) F is categorically flat.
(2) HomR(P , F ) is acyclic for each complex P of projective R-modules.
(3) F is acyclic and the R-module Ker(∂ F

i ) is flat for each i.

Indeed, (1) and (3) are readily seen to be equivalent; the equivalence of (2) and (3) is due to
Neeman [16, 8.6].

The next result can be proved along the same lines as Proposition 2.1.

Proposition 3.3. Let R be a ring. The following conditions are equivalent.
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(1) An equality gr-fdR M = fdR M holds for each complex M of R-modules.
(2) An equality gr-fdR M = fdR M holds for each R-module M.
(3) Each complex of flat R-modules is semi-flat.
(4) Each acyclic complex of flat R-modules is categorically flat.

We write K(Proj R) for the homotopy category of complexes of projective modules, viewed as a
triangulated category, and Kac(Proj R) for its full triangulated subcategory consisting of acyclic com-
plexes; see [18]. The canonical localization functor K(Proj R) → D(R) is again denoted Q .

The next result shows that conditions in Propositions 3.1 and 3.3 are equivalent.

Proposition 3.4. Let R be a ring. The following conditions are equivalent.

(1) The localization functor Q : K(Proj R) → D(R) is an equivalence.
(2) Each acyclic complex of projective R-modules is contractible.
(3) Each acyclic complex of flat R-modules is categorically flat.

Proof. (1) ⇔ (2) holds because the kernel of the functor Q is Kac(Proj R).
(2) ⇒ (3) Let F be an acyclic complex of flat R-modules. For each complex P of projective modules

the complex HomR(P , F ) is then acyclic, since P is semi-projective by Proposition 3.1. Hence F is
categorically flat, by 3.2.

(3) ⇒ (2) Let P be an acyclic complex of projective R-modules. The complex P is categorically
flat, so HomR(P , P ) is acyclic, by 3.2. Therefore idP is homologous to zero; equivalently, P is con-
tractible. �

In what follows we write Dfp
b (R) for full subcategory of D(R) consisting of complexes isomorphic

to bounded complexes of finitely presented right R-modules. When R is noetherian this coincides
with the subcategory Df

b(R).
The result below is due to Jørgensen [17, 3.2] under additional hypotheses on R; the general case

is contained in the work of Neeman [16, 7.12, 7.14].

3.5. When Rop is coherent K(Proj R) is compactly generated, and the composition of functors
HomR(−, R) : K(Proj R) → K(Rop) and localization K(Rop) → D(Rop) induces an equivalence of cat-
egories:

Kc(Proj R)
∼−→Dfp

b

(
Rop)

.

We require only the following consequence of the result above:

Lemma 3.6. Assume that the ring Rop is coherent. The localization functor Q : K(Proj R) → D(R) induces an
equivalence of categories Kc(Proj R)

∼−→Dc(R) if and only if each complex in Dfp
b (Rop) is perfect.

Proof. The equivalence in 3.5 implies that each complex in Dfp
b (Rop) is perfect if and only if each

complex in Kc(Proj R) is isomorphic to a bounded complexes of finitely generated projective modules;
that is to say, when Q induces an equivalence of categories Kc(Proj R)

∼−→Dc(R), by 2.3. �
The following characterization of coherent rings is due to Chase [5, 2.1].

3.7. A ring R is right coherent if and only if a product of flat R-modules is flat.

The theorem below and Propositions 3.1 and 3.3 imply Theorem 1.2.

Theorem 3.8. Let R be a ring. The following conditions are equivalent.
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(1) Rop is coherent and each complex in Dfp
b (Rop) is perfect.

(2) Rop is coherent and each acyclic complex of projective modules is contractible.
(3) Products of semi-flat complexes are semi-flat.

Proof. Condition (3) implies that Rop is coherent; this is by 3.7. Thus, in the remainder of the proof
we assume Rop is coherent.

(1) ⇔ (2) The triangulated category K(Proj R) is compactly generated, by 3.5. Given 2.4, the desired
result now follows from Proposition 3.4 and Lemma 3.6.

(2) ⇒ (3) By Proposition 3.4, acyclic complexes of flat modules are categorically flat. It follows
from 3.7 that a product of complexes of flat modules is a complex of flat modules, so the desired
implication is a consequence of Proposition 3.3.

(3) ⇒ (2) By Propositions 3.3 and 3.4, it suffices to prove that if F is a complex of flat R-modules,
then it is semi-flat. Let F (n) = F/F<−n for each integer n � 0 and ε(n) : F (n + 1) → F (n) the obvious
surjection. The complex F is the limit of the surjective system · · · → F (n + 1) → F (n) → ·· · so there
is an exact sequence

0 −→ F −→
∏
n∈N

F (n)
ν−→

∏
n∈N

F (n) −→ 0,

of complexes of flat R-modules, where ν(xn) = (xn − ε(n)(xn+1)). Since each F (n) is a complex of flat
modules with F (n)i = 0 for i < n, it is semi-flat, and hence the complex

∏
n∈N

F (n) is also semi-flat,
by hypothesis. The exact sequence above implies that F is semi-flat, as desired. �
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