Conclusions: Essentially, we found it possible to use Archetypes and Templates to integrate a test set of intensive care data from 2 systems. By applying the openEHR approach for data modeling and integration, detailed clinical models can be used for tasks such as automated constraint checking, error reporting, data persistence, and querying. Although medical scores such as the Glasgow Coma Scale were a good fit for openEHR, voluminous data such as vital signs and ventilation data needed some workarounds to work properly. Especially, the demand of archetypes to be explicit about the meaning of each data element might be problematic in some data integration scenarios. On the one hand, this might be considered an advantage, as it forces EDW developers and system analysts to work thoroughly. On the other hand, this constraint might prevent pragmatic solutions when a fast integration cannot be achieved or interpretation of data can be conducted by the end-users. Although this work illustrates some of the strengths and restrictions of the openEHR approach for data integration tasks, our methodology is limited by the number of used clinical concepts. A possible next step is the investigation of the implications of openEHR-based information retrieval and the semantic interpretation of data.

Key words: clinical information systems, data warehousing, detailed clinical models, health care analytics, openEHR, secondary use.

Disclosure of Interest: None declared.

References

QUALITY MANAGEMENT—NEW PERSPECTIVES FOR MEDICAL DATA MANAGER
A. Haendel; and G. Michelson
University of Erlangen–Nuremberg, Erlangen, Germany
Increasingly, hospitals and other players in the health care sector will inevitably compete in terms of quality. Interinstitutional and cross-sectoral quality assurance has been pushed forward during recent years. Institution-related outcomes are published and accessible to the public. Due to new health laws, in the near future, quality results of hospitals will not only be decisive for reimbursement increases or price reductions of the remuneration but will also be a crucial factor for a hospital’s survival. Hospitals that are not able to get quality deficiencies under control may lose their public supply mandate. Thus, the outcome of hospitals should be measured on the basis of predefined quality indicators to reach the objectives described earlier. Key indicators are, on the one hand, measures of medical performance. In particular, these include, for example, the type and numbers of surgical procedures as well as surgical complications in a certain time period. Also included are structural statistics about continuous medical education such as number of passed training courses for medical doctors and nurses. Moreover, information about patient safety are key indicators for quality assurance. Patient safety indicators, for example, are the number of patient falls and side effects of medication. These parameters have to be registered in a structured form and in a fixed frequency. The method to provide these indicators is a continuous comprehensive quality management, including capturing and monitoring of all relevant data. This requires the establishment of a professional operating system gaining all necessary figures in daily clinical routine. Health information management
MALARIA AWARENESS AMONG UNIVERSITY STUDENTS FROM MUMBAI, INDIA, AND HANNOVER, GERMANY

T. Le1; N. Pisarek1; A. Salameh1; S. Reckemeyer1; M. Kale2; and D. Limaye1
1Hochschule Hannover, Hannover, Germany; and 2Institute of Chemical Technology, Mumbai, India

Background: Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. The disease is transmitted to humans by the bite of Anopheles mosquitoes. It is estimated that over 219 million malaria cases were reported in 2015, resulting in 445,000 deaths, mostly in children under the age of five. The World Health Organization (WHO) considers malaria as one of the major public health problems in the world, particularly in Sub-Saharan Africa and South-East Asia. The disease is caused by Plasmodium species which can infect red blood cells and cause anemia, fever, and cognitive impairment.

Objectives: The present study aimed to assess the awareness and knowledge of malaria among university students from Mumbai, India, and Hannover, Germany.

Methods: A cross-sectional survey was conducted among 210 university students in Mumbai, India, and 220 students in Hannover, Germany. The survey comprised a questionnaire designed to assess their knowledge about malaria, its transmission, symptoms, and prevention methods.

Results: The average age of the students was 22.3 years (SD 1.9) for Mumbai and 23.2 years (SD 2.0) for Hannover. The majority of the students in both cities were aware of the symptoms of malaria, with 92% in Mumbai and 94% in Hannover. However, only 65% of students in Mumbai and 58% in Hannover were aware of the treatment options for malaria.

Discussion: The study highlights the importance of increasing awareness and knowledge about malaria among university students. The findings suggest that there is a significant need for more education and public health campaigns to inform the general population about malaria prevention and treatment.

Key words: malaria, awareness, prevention, treatment, India, Germany.