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A · A in the special case that A = S(x, y), the set of positive
integers n � x free of prime factors exceeding y.
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1. Background

For any nonempty subset A of a ring, the sumset and productset of A are defined as

A + A = {
a + a′: a,a′ ∈ A

}
and A · A = {

a · a′: a,a′ ∈ A
}
,

respectively. A famous problem of Erdős and Szemerédi [6] asks one to show that the sumset and
productset of a finite set of integers cannot both be small.

Conjecture (Erdős–Szemerédi). For any fixed δ > 0 the lower bound

max
{|A + A|, |A · A|}�

δ
|A|2−δ

holds for all finite sets A ⊂ Z.
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Erdős and Szemerédi [6] took the first step towards this conjecture by showing that for some
ε > 0, one has a lower bound of the form

max
{|A + A|, |A · A|} � c(ε)|A|1+ε (1)

for all finite sets A ⊂ Z. Nathanson [10] gave the first explicit bound by showing that one can take
ε = 1

31 and c(ε) = 0.00028 . . . in this inequality, and later, Ford [8] showed that ε = 1
15 is acceptable.

Establishing an important connection between the sum–product problem and geometric incidence
theory, Elekes [3] showed that one can take ε = 1

4 via a clever application of the Szemerédi–Trotter
incidence theorem (which counts incidences between points and lines in the plane); moreover, his
argument readily extends to finite sets of real numbers. Further improvements, including the best
known bound to date, have been given by Solymosi [12,13]; he has shown that (1) holds with any
ε < 1

3 for all finite sets A ⊂ R.
Although the Erdős–Szemerédi conjecture remains open, it is known that the productset must be

large whenever the sumset is sufficiently small. In fact, Nathanson and Tenenbaum [11] have shown
that

|A · A| � c|A|2
log |A| if |A + A| � 3|A| − 4. (2)

The aforementioned best known bound to date, given by Solymosi [13], follows from his more general
inequality

|A + A|2|A · A| � |A|4
4�log |A|� . (3)

Note that (3) provides a quantitive generalization of the Nathanson–Tenenbaum result (2) (see also
the results in [3,4,12]); it implies that |A · A| � |A|2−δε whenever |A + A| < |A|1+ε , where δε → 0
as ε → 0.

In the opposite direction, Chang [2] has shown that the sumset must be large whenever the prod-
uctset is sufficiently small. More precisely, she has shown that

|A + A| > 36−α|A|2 if |A · A| < α|A| for some constant α. (4)

A great deal of attention has also been given to the sum–product problem in other rings, including
(but not limited to) finite fields, polynomial rings, and matrix rings. For a thorough account of the
subject, we refer the reader to [14] and the references contained therein.

2. Statement of results

Let Ω be any infinite collection of finite sets within a given ring. We shall say that Ω has the
Erdős–Szemerédi property if

max
{|A + A|, |A · A|} = |A|2+o(1) as |A| → ∞ with A ∈ Ω.

Then, the Erdős–Szemerédi conjecture is the assertion that the collection consisting of all finite sets
of integers has the Erdős–Szemerédi property.

In this paper, we study the Erdős–Szemerédi property with collections of sets of smooth numbers,
i.e., sets of the form

S(x, y) = {
n � x: P+(n) � y

}
(x � y � 2),
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where P+(n) denotes the largest prime factor of an integer n � 2, and P+(1) = 1. These sets are well
known in analytic number theory; for a background on integers free of large prime factors, we refer
the reader to [15, Chapter III.5] (see also the survey [9]).

Theorem 1. There is an absolute constant c > 0 for which the collection

Ω = {
S(x, y): 2 � y � c log x

}

has the Erdős–Szemerédi property.

Remarks. In Theorem 4 we show that for values of y of size o(log x), the productset of A = S(x, y)

has size |A|1+o(1); thus, only the sumset is large in this region. Using only Theorem 4 and Chang’s
result (4), one can show that the smaller collection

Ω = {
S(x, y): 2 � y � C(log log log x)(log log log log x)

}

has the Erdős–Szemerédi property for any constant C < 1/ log 2.

Theorem 2. Let f be an arbitrary real-valued function such that f (x) → ∞ as x → ∞. Then, the collection

Ω = {
S(x, y): f (x) log x � y � x

}

has the Erdős–Szemerédi property.

Remark. For slightly larger values of y exceeding (log x) f (x) we show that the sumset of A = S(x, y)

has size |A|1+o(1) (see Theorem 5), and hence only the productset is large in this region.

Since each set S(x, y) is multiplicatively defined, it is quite difficult to estimate the size of the
sumset S(x, y) + S(x, y) for values of y close to log x. It is reasonable to expect that for every fixed
κ > 0 one has

∣∣S(x, y) + S(x, y)
∣∣ = ∣∣S(x, y)

∣∣2+o(1)
(x → ∞, y = κ log x).

In view of (12), the Erdős–Szemerédi conjecture implies that this is true. A partial result in this
direction is provided by (13). We also expect that for any fixed A > 1 one has

∣∣S(x, y) + S(x, y)
∣∣ = ∣∣S(x, y)

∣∣βA+o(1) (
x → ∞, y = (log x)A)

for some constant βA in the open interval (1,2). For A > 2, a partial result in this direction is provided
by Theorem 8.

3. Preliminaries

As before, we write

S(x, y) = {
n � x: P+(n) � y

}
(x � y � 2),

and we now set

Ψ (x, y) = ∣∣S(x, y)
∣∣ (x � y � 2).
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We also put

G(t) = log(1 + t) + t log
(
1 + t−1) (t > 0).

From this definition we immediately derive the crude estimates

G(t) = log t

{
1 + O

(
1

log t

)}
(t � 2) (5)

and

G(t) = t log t−1
{

1 + O

(
1

log t−1

)}
(0 < t � 1/2). (6)

The following result is due to de Bruijn [1].

Lemma 1. Uniformly for x � y � 2 we have

logΨ (x, y) = log x

log y
G

(
y

log x

){
1 + O

(
1

log y
+ 1

log log 2x

)}
.

For smaller values of y, we need the following result of Ennola [5].

Lemma 2. Uniformly for 2 � y �
√

log x log log x we have

Ψ (x, y) = 1

π(y)!
∏
p�y

log x

log p

{
1 + O

(
y2

log x log y

)}
,

where π(y) = |{p � y}|.

For any finite set of primes S , let O∗
S denote the group of S-units in Q∗; that is,

O∗
S = {

a/b ∈ Q∗: p | ab ⇒ p ∈ S
}
.

The next statement is a special case of a more general result of Evertse on solutions to S-unit equa-
tions (see [7, Theorem 3]).

Lemma 3. Given a1 · · ·an ∈ Q∗ and a finite set of primes S of cardinality |S| = s, the S-unit equation

a1u1 + · · · + anun = 1
(
u1, . . . , un ∈ O∗

S

)

has at most (235n2)n3s solutions (u1, . . . , un) with
∑

j∈J a ju j �= 0 for every nonempty subset J ⊆ {1, . . . ,n}.

To get a better handle on productsets of smooth numbers, we shall apply the following technical
lemma.

Lemma 4. We have

Ψ
(
x2/y, y

)
�

∣∣S(x, y) · S(x, y)
∣∣ � Ψ

(
x2, y

)
(x � y � 2).
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Proof. It is easy to see that S(x, y) · S(x, y) ⊆ S(x2, y), which yields the second inequality. For the
first inequality, it suffices to show that S(x2/y, y) is contained in the productset S(x, y) · S(x, y). To
this end, let n ∈ S(x2/y, y), and let d be the largest divisor of n that does not exceed x. Note that
max{P+(d), P+(n/d)} � y. There are three possibilities for the number d:

(i) d > x/y;
(ii) d = n � x/y;

(iii) d � x/y and d < n.

In case (i) we have n/d � x, hence we can write n = d · (n/d) where d and n/d both lie in S(x, y); this
shows that n ∈ S(x, y) · S(x, y) as required. In case (ii) the number n lies in the set S(x/y, y), which is
a subset of S(x, y) · S(x, y). To finish the proof, we need only show that the case (iii) is not possible.
Indeed, suppose d � x/y and d < n, and let p be any prime factor of n/d; then p � P+(n/d) � y,
dp | n, and dp � x, which contradicts the maximal property of d. �
4. Small values of y

Theorem 3. There is an absolute constant c > 0 such that the estimate

∣∣S(x, y) + S(x, y)
∣∣ ∼ 1

2
Ψ (x, y)2 (x → ∞)

holds uniformly for 2 � y � c log x.

Proof. We have

Ψ (x, y)2 = ∣∣S(x, y)
∣∣2 =

∑
n∈S(x,y)+S(x,y)

∑
m1,m2∈S(x,y)

m1+m2=n

1.

Using the Cauchy inequality it follows that

Ψ (x, y)4 �
∣∣S(x, y) + S(x, y)

∣∣ · |T |,
where T is the set of quadruples (m1,m2,m3,m4) with entries in S(x, y) such that m1 + m2 =
m3 + m4. It is easy to see that there are precisely 2Ψ (x, y)2 − Ψ (x, y) quadruples in T for which
m1 = m3 or m1 = m4. Let T ∗ be the set of quadruples in T with m1 �= m3 and m1 �= m4 (thus,
m2 �= m3 and m2 �= m4 as well). If we put a1 = a2 = 1 and a3 = −1, the equation m1 + m2 = m3 + m4
becomes

a1u1 + a2u2 + a3u3 = 1, (7)

where

u1 = m1

m4
, u2 = m2

m4
and u3 = m3

m4
. (8)

Let S be the set of primes p � y, and let O∗
S be the group of S-units in Q∗ . According to Lemma 3,

there are at most (2359)27π(y) solutions to the S-unit equation (7) with u j ∈ O∗
S , j = 1,2,3, and∑

j∈J a ju j �= 0 for each nonempty subset J ⊆ {1,2,3}. On the other hand, for every fixed solution
(u1, u2, u3) to (7) there are at most Ψ (x, y) quadruples (m1,m2,m3,m4) in T ∗ for which (8) holds
(since each choice of m4 ∈ S(x, y) determines m1, m2, m3 uniquely). Putting everything together, it
follows that the bound

Ψ (x, y)4 �
∣∣S(x, y) + S(x, y)

∣∣ · (2Ψ (x, y)2 − Ψ (x, y) + exp(c1 y/ log y)Ψ (x, y)
)
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holds with some absolute constant c1 > 0. Taking into account the trivial upper bound

∣∣S(x, y) + S(x, y)
∣∣ � 1

2

(
Ψ (x, y)2 + Ψ (x, y)

)
,

it suffices to show that there is an absolute constant c > 0 such that for all sufficiently large x, we
have

exp(c1 y/ log y) � Ψ (x, y)1/2 (2 � y � c log x). (9)

For every sufficiently large integer N , Lemma 1 implies that:

logΨ (x, y) � 1

2

log x

log y
G

(
y

log x

)
(x � y > N)

if x is sufficiently large. Let N � 2 be fixed with this property. For every sufficiently small constant
c > 0 we also have by (6):

G(t) � 1

2
t log t−1 (0 < t � c).

Let 0 < c � e−8c1 be fixed with this property. Combining the two bounds, we see that

logΨ (x, y) � log(1/c)

4

y

log y
� 2c1

y

log y
(N < y � c log x)

if x is large enough; this implies (9) in the range N < y � c log x. For the smaller values of y in the
range 2 � y � N , we simply observe that exp(c1 y/ log y) = O (1), whereas

Ψ (x, y) � Ψ (x,2) = 1 +
⌊

log x

log 2

⌋
→ ∞ as x → ∞.

Hence, (9) also holds for these values of y if x is sufficiently large. This completes the proof. �
Theorem 4. Suppose that y � 2 and y = o(log x). Then

∣∣S(x, y) · S(x, y)
∣∣ = Ψ (x, y)1+o(1).

Proof. By Lemma 4 we have

Ψ (x, y) � Ψ
(
x2/y, y

)
�

∣∣S(x, y) · S(x, y)
∣∣ � Ψ

(
x2, y

)
,

hence it suffices to show that Ψ (x2, y) = Ψ (x, y)1+o(1) as x → ∞.
First, suppose that 2 � y �

√
log x. By Lemma 2 we have

Ψ (x, y) ∼ 1

π(y)!
∏
p�y

log x

log p
(x → ∞)

and

Ψ
(
x2, y

) ∼ 1

π(y)!
∏
p�y

log x2

log p
∼ 2π(y)Ψ (x, y) (x → ∞).
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Since the inequality π(y)! � yπ(y) implies

Ψ (x, y) �
(
1 + o(1)

)( log x

y log y

)π(y)

�
(
1 + o(1)

)( 2
√

log x

log log x

)π(y)

,

it follows that 2π(y) = Ψ (x, y)o(1); thus, Ψ (x2, y) = Ψ (x, y)1+o(1) as required.
Next, suppose that y >

√
log x and y = o(log x) as x → ∞. Using Lemma 1 together with (6) we

see that the estimate

log Ψ (z, y) = y

log y
log

(
log z

y

){
1 + O

(
1

log((log x)/y)

)}

holds uniformly for all z in the range x � z � x2. Applying this estimate with z = x and with z = x2,
we derive that Ψ (x2, y) = Ψ (x, y)1+o(1) in this case as well. �
5. Large values of y

For values of y exceeding any fixed power of log x, we have:

Theorem 5. Suppose that (log y)/ log log x → ∞. Then,

∣∣S(x, y) + S(x, y)
∣∣ = Ψ (x, y)1+o(1) (x → ∞).

Proof. Using Lemma 1 and (5) we see that

logΨ (x, y) ∼ log x

log y
G

(
y

log x

)
∼ log x

log y
(log y − log log x) ∼ log x (x → ∞),

since (log log x)/ log y → 0; that is,

Ψ (x, y) = x1+o(1) (x → ∞).

Using the trivial bounds

Ψ (x, y) �
∣∣S(x, y) + S(x, y)

∣∣ � 2x

together with the previous estimate, we obtain the desired result. �
Theorem 6. Let y/ log x → ∞. Then,

∣∣S(x, y) · S(x, y)
∣∣ = Ψ (x, y)2+o(1) (x → ∞). (10)

Proof. In the case that (log y)/ log log x → ∞, we can apply Theorem 5 together with (3) to ob-
tain (10) immediately. Thus, we can assume that log y � log log x. Since y/ log x → ∞, we derive from
Lemma 1 and (5) the estimate

logΨ (x, y) = log x

log y
log

(
y

log x

){
1 + o(1)

}
, (11)
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whereas both log Ψ (x2/y, y) and log Ψ (x2, y) are of the size

log x

log y
log

(
y

log x

){
2 + o(1)

}
.

Therefore,

Ψ
(
x2/y, y

) = Ψ (x, y)2+o(1) and Ψ
(
x2, y

) = Ψ (x, y)2+o(1),

and the estimate (10) follows from Lemma 4. �
6. Intermediate values of y

Theorem 7. Suppose that y = κ log x, where κ > 0 is fixed. Then,

∣∣S(x, y) · S(x, y)
∣∣ = Ψ (x, y)αk+o(1) (12)

and

∣∣S(x, y) + S(x, y)
∣∣ � Ψ (x, y)(4−ακ )/2+o(1), (13)

where

ακ = 2 log(1 + κ/2) + κ log(1 + 2/κ)

log(1 + κ) + κ log(1 + 1/k)
.

Remark. For every positive real number κ we have 1 < ακ < 2. Also, ακ → 1 as κ → 0+ and ακ → 2
as κ → ∞.

Proof. First note that (13) follows from combining (12) and (3). It remains to prove (12). By Lemma 1
we have

logΨ (x, y) = (
G(κ) + o(1)

) log x

log log x
(x → ∞)

and

logΨ
(
x2, y

) = (
2G(κ/2) + o(1)

) log x

log log x
(x → ∞),

where the functions implied by o(1) depend only on κ . Since G is continuous it is also easy to see
that

logΨ
(
x2/y, y

) = (
2G(κ/2) + o(1)

) log x

log log x
(x → ∞).

Using Lemma 4, the above estimates, and the fact that ακ = 2G(κ/2)/G(κ), the result follows. �
Theorem 8. Suppose that y � (log x)A , where A > 2 is fixed. Then,

∣∣S(x, y) + S(x, y)
∣∣ � Ψ (x, y)

A
A−1 +o(1) (x → ∞).
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Proof. If y � (log x)A for some A > 1, then the estimate Ψ (x, y) = x
A−1

A +o(1) follows immediately
from (11). Taking into account the trivial bound |S(x, y) + S(x, y)| � 2x, we obtain the stated result
(which is nontrivial in the range A > 2). �
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