

Sums and products with smooth numbers

William D. Banks, David J. Covert*
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

A R T I C L E I N F O

Article history:

Received 22 September 2010
Accepted 2 November 2010
Available online 12 February 2011
Communicated by Robert C. Vaughan

MSC:

11B75
11N25
Keywords:
Sumset
Productset
Smooth numbers
Combinatorics
Number theory

Abstract

We estimate the sizes of the sumset $\mathcal{A}+\mathcal{A}$ and the productset $\mathcal{A} \cdot \mathcal{A}$ in the special case that $\mathcal{A}=\mathcal{S}(x, y)$, the set of positive integers $n \leqslant x$ free of prime factors exceeding y.

Published by Elsevier Inc.

1. Background

For any nonempty subset \mathcal{A} of a ring, the sumset and productset of \mathcal{A} are defined as

$$
\mathcal{A}+\mathcal{A}=\left\{a+a^{\prime}: a, a^{\prime} \in \mathcal{A}\right\} \quad \text { and } \quad \mathcal{A} \cdot \mathcal{A}=\left\{a \cdot a^{\prime}: a, a^{\prime} \in \mathcal{A}\right\}
$$

respectively. A famous problem of Erdős and Szemerédi [6] asks one to show that the sumset and productset of a finite set of integers cannot both be small.

Conjecture (Erdős-Szemerédi). For any fixed $\delta>0$ the lower bound
holds for all finite sets $\mathcal{A} \subset \mathbb{Z}$.

[^0]0022-314X/\$ - see front matter Published by Elsevier Inc.
doi:10.1016/j.jnt.2010.11.001

Erdős and Szemerédi [6] took the first step towards this conjecture by showing that for some $\epsilon>0$, one has a lower bound of the form

$$
\begin{equation*}
\max \{|\mathcal{A}+\mathcal{A}|,|\mathcal{A} \cdot \mathcal{A}|\} \geqslant c(\epsilon)|\mathcal{A}|^{1+\epsilon} \tag{1}
\end{equation*}
$$

for all finite sets $\mathcal{A} \subset \mathbb{Z}$. Nathanson [10] gave the first explicit bound by showing that one can take $\epsilon=\frac{1}{31}$ and $c(\epsilon)=0.00028 \ldots$ in this inequality, and later, Ford [8] showed that $\epsilon=\frac{1}{15}$ is acceptable. Establishing an important connection between the sum-product problem and geometric incidence theory, Elekes [3] showed that one can take $\epsilon=\frac{1}{4}$ via a clever application of the Szemerédi-Trotter incidence theorem (which counts incidences between points and lines in the plane); moreover, his argument readily extends to finite sets of real numbers. Further improvements, including the best known bound to date, have been given by Solymosi [12,13]; he has shown that (1) holds with any $\epsilon<\frac{1}{3}$ for all finite sets $\mathcal{A} \subset \mathbb{R}$.

Although the Erdős-Szemerédi conjecture remains open, it is known that the productset must be large whenever the sumset is sufficiently small. In fact, Nathanson and Tenenbaum [11] have shown that

$$
\begin{equation*}
|\mathcal{A} \cdot \mathcal{A}| \geqslant \frac{c|\mathcal{A}|^{2}}{\log |\mathcal{A}|} \quad \text { if }|\mathcal{A}+\mathcal{A}| \leqslant 3|\mathcal{A}|-4 \tag{2}
\end{equation*}
$$

The aforementioned best known bound to date, given by Solymosi [13], follows from his more general inequality

$$
\begin{equation*}
|\mathcal{A}+\mathcal{A}|^{2}|\mathcal{A} \cdot \mathcal{A}| \geqslant \frac{|\mathcal{A}|^{4}}{4\lceil\log |\mathcal{A}|\rceil} \tag{3}
\end{equation*}
$$

Note that (3) provides a quantitive generalization of the Nathanson-Tenenbaum result (2) (see also the results in $[3,4,12]$); it implies that $|\mathcal{A} \cdot \mathcal{A}| \geqslant|\mathcal{A}|^{2-\delta_{\epsilon}}$ whenever $|\mathcal{A}+\mathcal{A}|<|\mathcal{A}|^{1+\epsilon}$, where $\delta_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$.

In the opposite direction, Chang [2] has shown that the sumset must be large whenever the productset is sufficiently small. More precisely, she has shown that

$$
\begin{equation*}
|\mathcal{A}+\mathcal{A}|>36^{-\alpha}|\mathcal{A}|^{2} \quad \text { if }|\mathcal{A} \cdot \mathcal{A}|<\alpha|\mathcal{A}| \text { for some constant } \alpha \tag{4}
\end{equation*}
$$

A great deal of attention has also been given to the sum-product problem in other rings, including (but not limited to) finite fields, polynomial rings, and matrix rings. For a thorough account of the subject, we refer the reader to [14] and the references contained therein.

2. Statement of results

Let Ω be any infinite collection of finite sets within a given ring. We shall say that Ω has the Erdős-Szemerédi property if

$$
\max \{|\mathcal{A}+\mathcal{A}|,|\mathcal{A} \cdot \mathcal{A}|\}=|\mathcal{A}|^{2+o(1)} \quad \text { as }|\mathcal{A}| \rightarrow \infty \text { with } \mathcal{A} \in \Omega
$$

Then, the Erdős-Szemerédi conjecture is the assertion that the collection consisting of all finite sets of integers has the Erdős-Szemerédi property.

In this paper, we study the Erdős-Szemerédi property with collections of sets of smooth numbers, i.e., sets of the form

$$
\mathcal{S}(x, y)=\left\{n \leqslant x: P^{+}(n) \leqslant y\right\} \quad(x \geqslant y \geqslant 2)
$$

where $P^{+}(n)$ denotes the largest prime factor of an integer $n \geqslant 2$, and $P^{+}(1)=1$. These sets are well known in analytic number theory; for a background on integers free of large prime factors, we refer the reader to [15, Chapter III.5] (see also the survey [9]).

Theorem 1. There is an absolute constant $c>0$ for which the collection

$$
\Omega=\{\mathcal{S}(x, y): 2 \leqslant y \leqslant c \log x\}
$$

has the Erdős-Szemerédi property.
Remarks. In Theorem 4 we show that for values of y of size $o(\log x)$, the productset of $\mathcal{A}=S(x, y)$ has size $|\mathcal{A}|^{1+o(1)}$; thus, only the sumset is large in this region. Using only Theorem 4 and Chang's result (4), one can show that the smaller collection

$$
\Omega=\{\mathcal{S}(x, y): 2 \leqslant y \leqslant C(\log \log \log x)(\log \log \log \log x)\}
$$

has the Erdős-Szemerédi property for any constant $C<1 / \log 2$.
Theorem 2. Let f be an arbitrary real-valued function such that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$. Then, the collection

$$
\Omega=\{\mathcal{S}(x, y): f(x) \log x \leqslant y \leqslant x\}
$$

has the Erdős-Szemerédi property.
Remark. For slightly larger values of y exceeding $(\log x)^{f(x)}$ we show that the sumset of $\mathcal{A}=\mathcal{S}(x, y)$ has size $|\mathcal{A}|^{1+o(1)}$ (see Theorem 5), and hence only the productset is large in this region.

Since each set $\mathcal{S}(x, y)$ is multiplicatively defined, it is quite difficult to estimate the size of the sumset $\mathcal{S}(x, y)+\mathcal{S}(x, y)$ for values of y close to $\log x$. It is reasonable to expect that for every fixed $\kappa>0$ one has

$$
|\mathcal{S}(x, y)+\mathcal{S}(x, y)|=|\mathcal{S}(x, y)|^{2+o(1)} \quad(x \rightarrow \infty, y=\kappa \log x)
$$

In view of (12), the Erdős-Szemerédi conjecture implies that this is true. A partial result in this direction is provided by (13). We also expect that for any fixed $A>1$ one has

$$
|\mathcal{S}(x, y)+\mathcal{S}(x, y)|=|\mathcal{S}(x, y)|^{\beta_{A}+o(1)} \quad\left(x \rightarrow \infty, y=(\log x)^{A}\right)
$$

for some constant β_{A} in the open interval (1,2). For $A>2$, a partial result in this direction is provided by Theorem 8.

3. Preliminaries

As before, we write

$$
\mathcal{S}(x, y)=\left\{n \leqslant x: P^{+}(n) \leqslant y\right\} \quad(x \geqslant y \geqslant 2),
$$

and we now set

$$
\Psi(x, y)=|\mathcal{S}(x, y)| \quad(x \geqslant y \geqslant 2) .
$$

We also put

$$
G(t)=\log (1+t)+t \log \left(1+t^{-1}\right) \quad(t>0)
$$

From this definition we immediately derive the crude estimates

$$
\begin{equation*}
G(t)=\log t\left\{1+O\left(\frac{1}{\log t}\right)\right\} \quad(t \geqslant 2) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
G(t)=t \log t^{-1}\left\{1+O\left(\frac{1}{\log t^{-1}}\right)\right\} \quad(0<t \leqslant 1 / 2) \tag{6}
\end{equation*}
$$

The following result is due to de Bruijn [1].
Lemma 1. Uniformly for $x \geqslant y \geqslant 2$ we have

$$
\log \Psi(x, y)=\frac{\log x}{\log y} G\left(\frac{y}{\log x}\right)\left\{1+O\left(\frac{1}{\log y}+\frac{1}{\log \log 2 x}\right)\right\} .
$$

For smaller values of y, we need the following result of Ennola [5].
Lemma 2. Uniformly for $2 \leqslant y \leqslant \sqrt{\log x \log \log x}$ we have

$$
\Psi(x, y)=\frac{1}{\pi(y)!} \prod_{p \leqslant y} \frac{\log x}{\log p}\left\{1+O\left(\frac{y^{2}}{\log x \log y}\right)\right\},
$$

where $\pi(y)=|\{p \leqslant y\}|$.
For any finite set of primes S, let \mathcal{O}_{S}^{*} denote the group of S-units in \mathbb{Q}^{*}; that is,

$$
\mathcal{O}_{S}^{*}=\left\{a / b \in \mathbb{Q}^{*}: p \mid a b \Rightarrow p \in S\right\} .
$$

The next statement is a special case of a more general result of Evertse on solutions to S-unit equations (see [7, Theorem 3]).

Lemma 3. Given $a_{1} \cdots a_{n} \in \mathbb{Q}^{*}$ and a finite set of primes S of cardinality $|S|=s$, the S-unit equation

$$
a_{1} u_{1}+\cdots+a_{n} u_{n}=1 \quad\left(u_{1}, \ldots, u_{n} \in \mathcal{O}_{S}^{*}\right)
$$

has at most $\left(2^{35} n^{2}\right)^{n^{3} s}$ solutions $\left(u_{1}, \ldots, u_{n}\right)$ with $\sum_{j \in \mathcal{J}} a_{j} u_{j} \neq 0$ for every nonempty subset $\mathcal{J} \subseteq\{1, \ldots, n\}$.
To get a better handle on productsets of smooth numbers, we shall apply the following technical lemma.

Lemma 4. We have

$$
\Psi\left(x^{2} / y, y\right) \leqslant|\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)| \leqslant \Psi\left(x^{2}, y\right) \quad(x \geqslant y \geqslant 2) .
$$

Proof. It is easy to see that $\mathcal{S}(x, y) \cdot \mathcal{S}(x, y) \subseteq \mathcal{S}\left(x^{2}, y\right)$, which yields the second inequality. For the first inequality, it suffices to show that $\mathcal{S}\left(x^{2} / y, y\right)$ is contained in the productset $\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)$. To this end, let $n \in \mathcal{S}\left(x^{2} / y, y\right)$, and let d be the largest divisor of n that does not exceed x. Note that $\max \left\{P^{+}(d), P^{+}(n / d)\right\} \leqslant y$. There are three possibilities for the number d :
(i) $d>x / y$;
(ii) $d=n \leqslant x / y$;
(iii) $d \leqslant x / y$ and $d<n$.

In case (i) we have $n / d \leqslant x$, hence we can write $n=d \cdot(n / d)$ where d and n / d both lie in $\mathcal{S}(x, y)$; this shows that $n \in \mathcal{S}(x, y) \cdot \mathcal{S}(x, y)$ as required. In case (ii) the number n lies in the set $\mathcal{S}(x / y, y)$, which is a subset of $\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)$. To finish the proof, we need only show that the case (iii) is not possible. Indeed, suppose $d \leqslant x / y$ and $d<n$, and let p be any prime factor of n / d; then $p \leqslant P^{+}(n / d) \leqslant y$, $d p \mid n$, and $d p \leqslant x$, which contradicts the maximal property of d.

4. Small values of \boldsymbol{y}

Theorem 3. There is an absolute constant $c>0$ such that the estimate

$$
|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \sim \frac{1}{2} \Psi(x, y)^{2} \quad(x \rightarrow \infty)
$$

holds uniformly for $2 \leqslant y \leqslant c \log x$.
Proof. We have

$$
\Psi(x, y)^{2}=|\mathcal{S}(x, y)|^{2}=\sum_{n \in \mathcal{S}(x, y)+\mathcal{S}(x, y)} \sum_{\substack{m_{1}, m_{2} \in \mathcal{S}(x, y) \\ m_{1}+m_{2}=n}} 1 .
$$

Using the Cauchy inequality it follows that

$$
\Psi(x, y)^{4} \leqslant|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \cdot|\mathcal{T}|
$$

where \mathcal{T} is the set of quadruples ($m_{1}, m_{2}, m_{3}, m_{4}$) with entries in $\mathcal{S}(x, y)$ such that $m_{1}+m_{2}=$ $m_{3}+m_{4}$. It is easy to see that there are precisely $2 \Psi(x, y)^{2}-\Psi(x, y)$ quadruples in \mathcal{T} for which $m_{1}=m_{3}$ or $m_{1}=m_{4}$. Let \mathcal{T}^{*} be the set of quadruples in \mathcal{T} with $m_{1} \neq m_{3}$ and $m_{1} \neq m_{4}$ (thus, $m_{2} \neq m_{3}$ and $m_{2} \neq m_{4}$ as well). If we put $a_{1}=a_{2}=1$ and $a_{3}=-1$, the equation $m_{1}+m_{2}=m_{3}+m_{4}$ becomes

$$
\begin{equation*}
a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=1 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{1}=\frac{m_{1}}{m_{4}}, \quad u_{2}=\frac{m_{2}}{m_{4}} \quad \text { and } \quad u_{3}=\frac{m_{3}}{m_{4}} . \tag{8}
\end{equation*}
$$

Let S be the set of primes $p \leqslant y$, and let \mathcal{O}_{S}^{*} be the group of S-units in \mathbb{Q}^{*}. According to Lemma 3, there are at most $\left(2^{35} 9\right)^{27 \pi(y)}$ solutions to the S-unit equation (7) with $u_{j} \in \mathcal{O}_{S}^{*}, j=1,2,3$, and $\sum_{j \in \mathcal{J}} a_{j} u_{j} \neq 0$ for each nonempty subset $\mathcal{J} \subseteq\{1,2,3\}$. On the other hand, for every fixed solution $\left(u_{1}, u_{2}, u_{3}\right)$ to (7) there are at most $\Psi(x, y)$ quadruples $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ in \mathcal{T}^{*} for which (8) holds (since each choice of $m_{4} \in \mathcal{S}(x, y)$ determines m_{1}, m_{2}, m_{3} uniquely). Putting everything together, it follows that the bound

$$
\Psi(x, y)^{4} \leqslant|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \cdot\left(2 \Psi(x, y)^{2}-\Psi(x, y)+\exp \left(c_{1} y / \log y\right) \Psi(x, y)\right)
$$

holds with some absolute constant $c_{1}>0$. Taking into account the trivial upper bound

$$
|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \leqslant \frac{1}{2}\left(\Psi(x, y)^{2}+\Psi(x, y)\right)
$$

it suffices to show that there is an absolute constant $c>0$ such that for all sufficiently large x, we have

$$
\begin{equation*}
\exp \left(c_{1} y / \log y\right) \leqslant \Psi(x, y)^{1 / 2} \quad(2 \leqslant y \leqslant c \log x) . \tag{9}
\end{equation*}
$$

For every sufficiently large integer N, Lemma 1 implies that:

$$
\log \Psi(x, y) \geqslant \frac{1}{2} \frac{\log x}{\log y} G\left(\frac{y}{\log x}\right) \quad(x \geqslant y>N)
$$

if x is sufficiently large. Let $N \geqslant 2$ be fixed with this property. For every sufficiently small constant $c>0$ we also have by (6):

$$
G(t) \geqslant \frac{1}{2} t \log t^{-1} \quad(0<t \leqslant c) .
$$

Let $0<c \leqslant e^{-8 c_{1}}$ be fixed with this property. Combining the two bounds, we see that

$$
\log \Psi(x, y) \geqslant \frac{\log (1 / c)}{4} \frac{y}{\log y} \geqslant 2 c_{1} \frac{y}{\log y} \quad(N<y \leqslant c \log x)
$$

if x is large enough; this implies (9) in the range $N<y \leqslant c \log x$. For the smaller values of y in the range $2 \leqslant y \leqslant N$, we simply observe that $\exp \left(c_{1} y / \log y\right)=O(1)$, whereas

$$
\Psi(x, y) \geqslant \Psi(x, 2)=1+\left\lfloor\frac{\log x}{\log 2}\right\rfloor \rightarrow \infty \quad \text { as } x \rightarrow \infty
$$

Hence, (9) also holds for these values of y if x is sufficiently large. This completes the proof.
Theorem 4. Suppose that $y \geqslant 2$ and $y=o(\log x)$. Then

$$
|\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)|=\Psi(x, y)^{1+o(1)} .
$$

Proof. By Lemma 4 we have

$$
\Psi(x, y) \leqslant \Psi\left(x^{2} / y, y\right) \leqslant|\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)| \leqslant \Psi\left(x^{2}, y\right)
$$

hence it suffices to show that $\Psi\left(x^{2}, y\right)=\Psi(x, y)^{1+o(1)}$ as $x \rightarrow \infty$.
First, suppose that $2 \leqslant y \leqslant \sqrt{\log x}$. By Lemma 2 we have

$$
\Psi(x, y) \sim \frac{1}{\pi(y)!} \prod_{p \leqslant y} \frac{\log x}{\log p} \quad(x \rightarrow \infty)
$$

and

$$
\Psi\left(x^{2}, y\right) \sim \frac{1}{\pi(y)!} \prod_{p \leqslant y} \frac{\log x^{2}}{\log p} \sim 2^{\pi(y)} \Psi(x, y) \quad(x \rightarrow \infty) .
$$

Since the inequality $\pi(y)!\leqslant y^{\pi(y)}$ implies

$$
\Psi(x, y) \geqslant(1+o(1))\left(\frac{\log x}{y \log y}\right)^{\pi(y)} \geqslant(1+o(1))\left(\frac{2 \sqrt{\log x}}{\log \log x}\right)^{\pi(y)}
$$

it follows that $2^{\pi(y)}=\Psi(x, y)^{o(1)}$; thus, $\Psi\left(x^{2}, y\right)=\Psi(x, y)^{1+o(1)}$ as required.
Next, suppose that $y>\sqrt{\log x}$ and $y=o(\log x)$ as $x \rightarrow \infty$. Using Lemma 1 together with (6) we see that the estimate

$$
\log \Psi(z, y)=\frac{y}{\log y} \log \left(\frac{\log z}{y}\right)\left\{1+O\left(\frac{1}{\log ((\log x) / y)}\right)\right\}
$$

holds uniformly for all z in the range $x \leqslant z \leqslant x^{2}$. Applying this estimate with $z=x$ and with $z=x^{2}$, we derive that $\Psi\left(x^{2}, y\right)=\Psi(x, y)^{1+o(1)}$ in this case as well.

5. Large values of \boldsymbol{y}

For values of y exceeding any fixed power of $\log x$, we have:
Theorem 5. Suppose that $(\log y) / \log \log x \rightarrow \infty$. Then,

$$
|\mathcal{S}(x, y)+\mathcal{S}(x, y)|=\Psi(x, y)^{1+o(1)} \quad(x \rightarrow \infty) .
$$

Proof. Using Lemma 1 and (5) we see that

$$
\log \Psi(x, y) \sim \frac{\log x}{\log y} G\left(\frac{y}{\log x}\right) \sim \frac{\log x}{\log y}(\log y-\log \log x) \sim \log x \quad(x \rightarrow \infty),
$$

since $(\log \log x) / \log y \rightarrow 0$; that is,

$$
\Psi(x, y)=x^{1+o(1)} \quad(x \rightarrow \infty)
$$

Using the trivial bounds

$$
\Psi(x, y) \leqslant|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \leqslant 2 x
$$

together with the previous estimate, we obtain the desired result.
Theorem 6. Let $y / \log x \rightarrow \infty$. Then,

$$
\begin{equation*}
|\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)|=\Psi(x, y)^{2+o(1)} \quad(x \rightarrow \infty) \tag{10}
\end{equation*}
$$

Proof. In the case that $(\log y) / \log \log x \rightarrow \infty$, we can apply Theorem 5 together with (3) to obtain (10) immediately. Thus, we can assume that $\log y \asymp \log \log x$. Since $y / \log x \rightarrow \infty$, we derive from Lemma 1 and (5) the estimate

$$
\begin{equation*}
\log \Psi(x, y)=\frac{\log x}{\log y} \log \left(\frac{y}{\log x}\right)\{1+o(1)\}, \tag{11}
\end{equation*}
$$

whereas both $\log \Psi\left(x^{2} / y, y\right)$ and $\log \Psi\left(x^{2}, y\right)$ are of the size

$$
\frac{\log x}{\log y} \log \left(\frac{y}{\log x}\right)\{2+o(1)\} .
$$

Therefore,

$$
\Psi\left(x^{2} / y, y\right)=\Psi(x, y)^{2+o(1)} \quad \text { and } \quad \Psi\left(x^{2}, y\right)=\Psi(x, y)^{2+o(1)}
$$

and the estimate (10) follows from Lemma 4.

6. Intermediate values of \boldsymbol{y}

Theorem 7. Suppose that $y=\kappa \log x$, where $\kappa>0$ is fixed. Then,

$$
\begin{equation*}
|\mathcal{S}(x, y) \cdot \mathcal{S}(x, y)|=\Psi(x, y)^{\alpha_{k}+o(1)} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \geqslant \Psi(x, y)^{\left(4-\alpha_{\kappa}\right) / 2+o(1)}, \tag{13}
\end{equation*}
$$

where

$$
\alpha_{\kappa}=\frac{2 \log (1+\kappa / 2)+\kappa \log (1+2 / \kappa)}{\log (1+\kappa)+\kappa \log (1+1 / k)} .
$$

Remark. For every positive real number κ we have $1<\alpha_{\kappa}<2$. Also, $\alpha_{\kappa} \rightarrow 1$ as $\kappa \rightarrow 0^{+}$and $\alpha_{\kappa} \rightarrow 2$ as $\kappa \rightarrow \infty$.

Proof. First note that (13) follows from combining (12) and (3). It remains to prove (12). By Lemma 1 we have

$$
\log \Psi(x, y)=(G(\kappa)+o(1)) \frac{\log x}{\log \log x} \quad(x \rightarrow \infty)
$$

and

$$
\log \Psi\left(x^{2}, y\right)=(2 G(\kappa / 2)+o(1)) \frac{\log x}{\log \log x} \quad(x \rightarrow \infty)
$$

where the functions implied by $o(1)$ depend only on κ. Since G is continuous it is also easy to see that

$$
\log \Psi\left(x^{2} / y, y\right)=(2 G(\kappa / 2)+o(1)) \frac{\log x}{\log \log x} \quad(x \rightarrow \infty)
$$

Using Lemma 4, the above estimates, and the fact that $\alpha_{\kappa}=2 G(\kappa / 2) / G(\kappa)$, the result follows.
Theorem 8. Suppose that $y \asymp(\log x)^{A}$, where $A>2$ is fixed. Then,

$$
|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \leqslant \Psi(x, y)^{\frac{A}{A-1}+o(1)} \quad(x \rightarrow \infty)
$$

Proof. If $y \asymp(\log x)^{A}$ for some $A>1$, then the estimate $\Psi(x, y)=x^{\frac{A-1}{A}+o(1)}$ follows immediately from (11). Taking into account the trivial bound $|\mathcal{S}(x, y)+\mathcal{S}(x, y)| \leqslant 2 x$, we obtain the stated result (which is nontrivial in the range $A>2$).

Acknowledgments

The authors would like to thank Derrick Hart, Alex Iosevich, and Igor Shparlinski for helpful conversations.

References

[1] N.G. de Bruijn, On the number of positive integers $\leqslant x$ and free of prime factors $>y$, Nederl. Acad. Wetensch. Proc. Ser. A 54 (1951) 50-60.
[2] M.-C. Chang, The Erdős-Szemerédi problem on sum set and product set, Ann. of Math. 157 (2003) 939-957.
[3] Gy. Elekes, On the number of sums and products, Acta Arith. 81 (1997) 365-367.
[4] Gy. Elekes, I. Rusza, Few sums, many products, Studia Sci. Math. Hungar. 40 (3) (2003) 301-308.
[5] V. Ennola, On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. A I 440 (1969), 16 pp.
[6] P. Erdős, E. Szemerédi, On sums and products of integers, in: Stud. Pure Math., Birkhäuser, Basel, 1983, pp. 213-218.
[7] J.-H. Evertse, The number of solutions of decomposable form equations, Invent. Math. 122 (3) (1995) 559-601.
[8] K. Ford, Sums and products from a finite set of real numbers, Ramanujan J. 2 (1998) 59-66.
[9] A. Granville, Smooth numbers: computational number theory and beyond, in: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, in: Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 267-323.
[10] M.B. Nathanson, On sums and products of integers, Proc. Amer. Math. Soc. 125 (1997) 9-16.
[11] M. Nathanson, G. Tenenbaum, Inverse theorems and the number of sums and products, in: Structure Theory of Set Addition, Astérisque 258 (xiii) (1999) 195-204.
[12] J. Solymosi, On the number of sums and products, Bull. Lond. Math. Soc. 37 (2005) 491-494.
[13] J. Solymosi, Bounding multiplicative energy by the sumset, Adv. Math. 222 (2) (2009) 402-408.
[14] T. Tao, The sum-product phenomenon in arbitrary rings, Contrib. Discrete Math. 4 (2) (2009) 59-82.
[15] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math., vol. 46, Cambridge Univ. Press, Cambridge, 1995.

[^0]: * Corresponding author.

 E-mail addresses: BanksWD@missouri.edu (W.D. Banks), CovertDJ@missouri.edu (D.J. Covert).

