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Let M be a Krull monoid with divisor class group Z, and let S ⊆ Z denote the set of
divisor classes ofM which contain prime divisors.We find conditions on S equivalent to the
finiteness of both∆(M), the Delta set ofM , and c(M), the catenary degree ofM . In the finite
case, we obtain explicit upper bounds onmax∆(M) and c(M). Ourmethods generalize and
complement a previous result concerning the elasticity ofM .
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1. Introduction

Because of their relevance to non-unique factorizations in algebraic number theory, Krull monoids M with finite
divisor class group have been well studied. It is known in this case that the sets of lengths of M are almost-arithmetic
multiprogressions (see [8] for a study of such sequences). When the divisor class group of M is not finite, we know
considerably less about the structure of the length sets. In particular, if each divisor class of M contains a prime divisor,
then a result of Kainrath [12] implies that each finite subset of {2, 3, 4, . . .} can be obtained as a set of lengths. In [11],
Hassler gives conditions on this distribution of divisor classes with primes which yield ‘‘thin’’ sets of lengths. About 10 years
ago, a series of papers appeared [2,3] which considered problems involving the elasticity of Krull monoids with divisor class
group Z. In such a Krull monoid, let S represent the set of divisor classes of M which contain prime divisors and write S as
a disjoint union S+ ∪ S− where S+ = { s ∈ S | s ≥ 0 } and S− = { s ∈ S | s < 0 }. The main result of [2] (Theorems 2.1
and 2.3) implies that the elasticity, ρ(M), is finite if and only if either S+ or S− is finite. In this note, we show that this result
extends to the cardinality of the Delta set ofM ,∆(M), as well as the catenary degree ofM , c(M). In particular, the results of
the next two sections along with the result mentioned above from [2] will constitute a proof of the following.

Theorem 1.1. Let M be a Krull monoid with divisor class group Z where S = S+ ∪ S− corresponds to the set of divisor classes
which contain prime divisors. The following are equivalent:

∗ Corresponding author.
E-mail addresses: baginski@math.univ-lyon1.fr (P. Baginski), scott.chapman@shsu.edu (S.T. Chapman), rmrodriguez@math.ucsd.edu (R. Rodriguez),

gschaeff@math.berkeley.edu (G.J. Schaeffer), yiweishe2010@u.northwestern.edu (Y. She).
1 Current address: Institut Camille Jordan, Université Lyon 1, 69622 Villeurbanne, France.
2 Current address: University of California, San Diego, Department of Mathematics, La Jolla, CA 92093, United States.

0022-4049/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2009.10.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82779693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jpaa
http://www.elsevier.com/locate/jpaa
mailto:baginski@math.univ-lyon1.fr
mailto:scott.chapman@shsu.edu
mailto:rmrodriguez@math.ucsd.edu
mailto:gschaeff@math.berkeley.edu
mailto:yiweishe2010@u.northwestern.edu
http://dx.doi.org/10.1016/j.jpaa.2009.10.015


P. Baginski et al. / Journal of Pure and Applied Algebra 214 (2010) 1334–1339 1335

(1) ρ(M) is finite,
(2) ∆(M) is finite,
(3) c(M) is finite,
(4) Either S+ or S− is finite.

By [10, Theorem 1.6.3], we have for all atomic monoids that (3)⇒ (2). Few other general relationships exist between (1),
(2), and (3). For instance, Example 4.8.11 in [10] yields a monoidM with ρ(M) <∞ and |∆(M)| = ∞ (other pathological
type examples are found in [10] in Examples 1.6.11, 1.6.3.3, and Theorem 3.1.5).
We proceed with a brief summary of the necessary background and notation for the remainder of our work. For a

commutative cancellativemonoidM , letM× denote its subgroup of units;M is called reduced ifM× = {1}. LetA(M) denote
the set of irreducible elements or atoms ofM . If x ∈ M , an atomic factorization is an expression of the form F : x = α1 · · ·αn
where α1, . . . , αn ∈ A(M); in this case we say that |F | = n is the length of this atomic factorization. If x ∈ M \M× we define

L(x) = { n | x has an atomic factorization of length n }

and L(M) = {L(x) | x ∈ M \ M× }.M is called atomic if every element has an atomic factorization. IfM is atomic, x ∈ M ,
and α ∈ A(M) divides x, then there is an atomic factorization of x in which α appears.
For any x ∈ M \M× the ratio supL(x)/minL(x) is called the elasticity of x, denoted ρ(x). IfM is not a group, we define

the elasticity of the monoidM by

ρ(M) = sup{ ρ(x) | x ∈ M \M× }.

A review of the main facts concerning the elasticity can be found in [10, Chapter 1.4]. Given x ∈ M \M×, write its length set
in the formL(x) = {n1, n2, . . . , nk}where ni < ni+1 for 1 ≤ i ≤ k− 1. The Delta set of x is then defined by

∆(x) = { ni+1 − ni | 1 ≤ i < k }

and the Delta set ofM by

∆(M) =
⋃

x∈M\M×
∆(x)

(see again [10, Chapter 1.4]). If ∆(M) is nonempty, min∆(M) = gcd∆(M) (see [10, Proposition 1,4,4]). Computations of
Delta sets for various types of monoids can be found in [4,5].
Suppose thatM is reduced, x ∈ M is not the identity, and that

F : x = α1 · · ·αnβ1 · · ·βs and F ′ : x = α1 · · ·αnγ1 · · · γt
are distinct atomic factorizations such that βi 6= γj for all i, j. With notation as above, we define gcd(F , F ′) = α1 · · ·αn
and the distance between F and F ′ by d(F , F ′) = max{s, t}. Extend d to all pairs of factorizations by d(F , F) = 0. The basic
properties of the factorization distance function can be found in [10, Proposition 1.2.5].
An N-chain of factorizations from F to F ′ is a sequence F0, . . . , Fk such that each Fi is a factorization of x, F0 = F and

Fk = F ′, and d(Fi, Fi+1) ≤ N for all i < k. The catenary degree of x, denoted c(x), is the least N ∈ Z≥0 ∪ {∞} such that for
any two factorizations F , F ′ of x there is an N-chain between F and F ′. The catenary degree of the monoidM is defined as

c(M) = sup{ c(x) | x ∈ M \M× }.

A review of the known facts concerning the catenary degree can be found in [10, Chapter 3]. An algorithm which computes
the catenary degree of a finitely generated monoid can be found in [6] and a more specific version for numerical monoids
in [7].
A monoidM is called a Krull monoid if there is an injective monoid homomorphism ϕ : M → Dwhere D is a free abelian

monoid and ϕ satisfies the following two conditions:

(1) If a, b ∈ M and ϕ(a) | ϕ(b) in D, then a | b inM ,
(2) For every α ∈ D there exists a1, . . . , an ∈ M with α = gcd{ϕ(a1), . . . , ϕ(an)}.

The basis elements ofD are called the prime divisors ofM . The above properties guarantee that Cl(M) = D/ϕ(M) is an abelian
group, which we call the divisor class group ofM (see [10, Section 2.3]). Note that since any Krull monoid is isomorphic to a
submonoid of a free abelian monoid, a Krull monoid is commutative, cancellative, and atomic.
Given an abelian group G (written additively), it is easy to explicitly construct a Krull monoid with divisor class group

isomorphic to G. Let F (G) denote the free abelian monoid (written multiplicatively on the set G) and let θ : F (G) → G
be the homomorphism

∏
g∈G g

ag 7→
∑
g∈G ag · g . Then it is easy to check that the kernel of this homomorphism is a Krull

monoid, where D = F (G) and ϕ is inclusion. We denote this monoid, called the block monoid on G by

B(G) =

{∏
g∈G

gag ∈ F (G) |
∑
g∈G

ag · g = 0

}
and we refer to elements ofB(G) as blocks or zero sequences from G. Note that every divisor class ofB(G) contains a prime
divisor: The divisor class corresponding to g ∈ G contains the basis element g of F (G).
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If D is a free monoid, f is a basis element of D, and X ∈ D, we write vf (X) for the power of f appearing in X . We say that
X is supported on some subset S of the basis of D if and only if vf (X) = 0 for all f /∈ S. For any S ⊆ G, the set

B(G, S) = { B ∈ B(G) | B is supported on S }

forms a submonoid ofB(G) called the restriction ofB(G) to S.B(G, S) is again a Krull monoid, and it is not difficult to check
that the divisor class corresponding to some g ∈ G contains a prime divisor if and only if g ∈ S.
Restricted block monoids play an important role in the theory of non-unique factorizations, as the following proposition

indicates.

Proposition 1.2 ([9], Proposition 1 see also [10], Theorem 3.4.10(5)). Suppose that M is a Krull monoid with divisor class group
G and let S ⊆ G denote the set of divisor classes which contain prime divisors. We have the equality

L(M) = L
(
B(G, S)

)
and the inequality

c(B(G, S)) ≤ c(M) ≤ max{c(B(G, S)), 2}.

In particular, ∆(M) = ∆
(
B(G, S)

)
. Moreover, if c(B(G, S)) ≥ 2, then c(M) = c

(
B(G, S)

)
and if c(B(G, S)) = 0, then

c(M) = 0 or 2.

Due to Proposition 1.2 and [1, Lemma3.3], to prove Theorem1.1, it suffices to consider blockmonoids of the formB(Z, S),
where S = S+ ∪ S−, and both S+ and S− are nonempty. Moreover, if 0 ∈ S+, then the irreducible block represented by 0 is
prime inB(Z, S) and does not effect any factorization properties, since it must appear in every factorization of a block that
contains 0.

2. The unbounded case

Theorem 2.1. If S+ and S− are infinite, then∆
(
B(Z, S)

)
and c

(
B(Z, S)

)
are infinite.

Proof. Assume hereafter that S+ and S− are infinite.

• Fix an integer j ≥ 2.
• Let−m ∈ S− (som > 0).
• Since S+ is infinite, there exists an infinite S ′ ⊆ S+ all of whose elements lie in the same congruence class modulo m.
Choose n ∈ S ′ such that n ≥ m and let e = lcm{n,m}.
• Fix−M ∈ S− such thatM > ej.
• Finally, fix N ∈ S ′ so that N > 2eM .
• Let α be the least positive integer such that αM ≡ bnmodm for some b ∈ Z, and let β be the least such b which also
satisfies bn ≥ αM . Define k to be the least nonnegative integer such that (β + 1)n ≤ e(j+ k).

We infer a number of immediate consequences from these definitions:

• α is the order ofM in the group (Z/mZ)/(n · Z/mZ), so α | m. In particular, α ≤ e.
• β > e/n, since β ≥ αM/n > αej/n ≥ e/n and α, j ≥ 1.
• By the choice of k, 0 ≤ e(j+ k)/n− β − 1 < e/n.
• We have βn − αM < 2e. Otherwise we could replace β with the smaller positive integer β ′ = β − e/n which satisfies
the same conditions.
• Because N ≡ nmodm andm | e,

q =
(N − eM)+ e(j+ k)− n

m
is an integer. In fact, q is a positive integer satisfying q > eM/m and q > j+ k.

By this last remark,

B = [N][−M]e[n]e(j+k)/n−1[−m]q

is an element of B(Z, S). We will show that L(B) = {2, j + k}. The following observations will be used repeatedly in the
remainder of the proof:

(i) P = [n]e/n[−m]e/m is the unique atom ofB(Z, S) supported on {n,−m}. Any element ofB(Z, S)which is supported on
{n,−m} factors uniquely as a power of P .

(ii) Suppose that X ∈ B(Z, S) is supported on {n,−M,−m}. We claim the following:

If v[−M](X) > 0 then v[n](X) ≥ β .

To prove this, write X = [n]x[−M]y[−m]z where x, y, z are nonnegative integers satisfying xn = yM + zm. Then
xn ≡ yMmodm, so since y is positive, y ≥ α by the choice of α. Since we also have xn ≥ αM , it follows that x ≥ β , as
desired.
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Now, let F be an atomic factorization of B as an element of B(Z, S). Since v[N](B) = 1, there is exactly one atom A of
B(Z, S) appearing in F which satisfies v[N](A) = 1. F now falls into one of two cases, depending on the value of v[−M](A).

Case 1: Suppose that v[−M](A) = e. Then B/A is supported on {n,−m} so by (i), B/A factors uniquely as P r .
Let us compute r . Write A = [N][−M]e[n]f [−m]g where f , g are nonnegative integers and N + fn = eM + gm. Since

N ≡ nmodm and m | e, we have (f + 1)n ≡ 0modm. Hence e | (f + 1)n, so f ≥ e/n − 1. We claim that equality holds:
f ≥ e/n and N > 2eM together would imply gm = (N − eM) + fn > e. But then g > e/m, so P would be a proper divisor
of A, contradicting the hypothesis that A is irreducible. Thus v[n](A) = e/n− 1 and

r =
v[n](B/A)
e/n

=
e(j+ k)/n− 1− (e/n− 1)

e/n
= j+ k− 1.

So in this case, F : B = AP j+k−1 and |F | = j+ k.
To show that j + k ∈ L(B), it remains to show that such a factorization F actually exists. That is, we must show that

there is an atomic factor A1 of Bwhich satisfies the conditions of this case. By the preceding arguments, the only candidate
is A1 = [N][−M]e[n]e/n−1[−m]q−(j+k−1). Since q > j + k by an earlier remark, A1 ∈ B(Z, S). Suppose that X ∈ B(Z, S) is
a divisor of A1 such that v[N](X) = 0. Since v[n](A1) < e/n ≤ β , observation (ii) guarantees that v[−M](X) = 0. Thus by (i),
X = Pd for some d ≥ 0, but v[n](X) < e/n, so d = 0, X = 1, and A1 is irreducible.

Case 2: Suppose instead that v[−M](A) < e. Then B/A has an irreducible factor Y such that v[−M](Y ) > 0. Since we also
have v[N](Y ) = 0, (ii) implies that v[n](AY ) ≥ β , so

v[n](B/AY ) ≤
e(j+ k)
n
− 1− β < e/n.

Moreover, v[N](B/AY ) = 0, so (ii) guarantees that v[−M](B/AY ) = 0, and hence by (i), B/AY = Pd for some nonnegative
integer d. However, since v[n](B/AY ) < e/n, we must have d = 0. So B/A = Y is irreducible, F : B = A(B/A) and any
factorization obtained in this case has length 2.
It remains to show that such a factorization exists. Let r = (βn − αM)/m. By the definitions of α and β , r is a positive

integer, so Y ′ = [−M]α[n]β [−m]r is an element of B(Z, S). By earlier remarks, α ≤ e, β ≤ e(j + k)/n − 1, and
r < 2e/m ≤ eM/m < q. It follows that Y ′ divides B, so there is an atom A2 dividing B/Y ′ such that v[N](A2) = 1. Since
α > 0, we have v[−M](A2) < e, so A = A2 satisfies the conditions of this case and it follows that B has a factorization of
length 2.
By Case 1 and Case 2, we haveL(B) ⊆ {2, j+k}. Conversely, we have shown that appropriate factorizations exist in both

cases, soL(B) = {2, j+ k}. From the length set, we calculate∆(B) = {j+ k− 2} and, since distinct factorizations of length
2 and j+ k ≥ 2 cannot share any common factors, c(B) = j+ k. Since jmay be taken arbitrarily large, the result follows. �

3. When either S+ or S− is finite

The main theorem of this section is the following:

Theorem 3.1. Suppose that S ′ = {−mr , . . . ,−m1, n1, . . . , nk} ⊆ S where mi, ni > 0 for all i and −mr = min S ′. If B is an
element ofB(Z, S) supported on S ′, then

max∆(B) ≤ mr(mr + r2)− 2

(if∆(B) is nonempty) and

c(B) ≤ mr(mr + r2).

The above is sufficient to complete the proof of Theorem 1.1. If S is bounded from either above or below, wemay assume
that S− is finite, possibly after replacing S with−S. From the above it follows then that if ∆

(
B(Z, S)

)
is nonempty, then it

is bounded above byM(M + |S−|2)− 2 where−M = min(S−). Similarly, we obtain c
(
B(Z, S)

)
≤ M(M + |S−|2).

The proof is based on a result of Lambert, which we now present adapted to the language of block monoids. Since the
proof makes use of elements of F (Z) outsideB(Z), we define some convenient notation. As before, we let θ : F (Z)→ Z
be the obvious homomorphism (so thatB(Z) = ker θ ). We define another homomorphism ϕ : F (Z)→ Z≥0 by

ϕ : X 7→
∑
n∈S+

v[n](X)

If X, Y ∈ F (Z), then we write X ≤ Y whenever v[z](X) ≤ v[z](Y ) for all z ∈ Z.

Theorem 3.2 (Lambert [13]). If S− is finite with min(S−) = −M, then ϕ(A) ≤ M for all atoms A ofB(Z, S).
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Proof. Let A = [n1]a1 · · · [nk]ak [−m1]b1 · · · [−mr ]br be an atom of B(Z, S). An element X of F (Z) is called a positive
subsequence of A if X ≤ A and θ(X) ≥ 0.
We construct a strictly increasing chain 1 = X0 < · · · < Xϕ(A) = A of positive subsequences of A. Given Xi when

0 < i < ϕ(A), consider all positive subsequences X of A such thatϕ(X) = ϕ(Xi)+1. Such an X must exist, sinceϕ(Xi) < ϕ(A)
implies that there is some jwith Xi[nj] ≤ A, and ϕ(Xi[nj]) = ϕ(Xi)+1. Let Xi+1 be such an X with θ(Xi+1) as small as possible.
We claim that θ(Xi) < M for all i. This is clear when i = 0 or i = ϕ(A). When 0 < i < ϕ(A), then since Xi is a positive

subsequence, there exists j such that Xi[−mj] ≤ A. If we had θ(Xi) ≥ M , then Xi[−mj] would be a positive subsequence of
A, but then 0 ≤ θ(Xi[−mj]) < θ(Xi), which contradicts the choice of Xi.
If 0 < i < ϕ(A), then θ(Xi) > 0 as otherwise Xi would be a proper nontrivial divisor of A inB(Z, S)which contradicts the

hypothesis that A is irreducible. Thus the set {θ(X1), . . . , θ(Xϕ(A)−1)} is a set of size ϕ(A) − 1 contained in {1, . . . ,M − 1}.
Hence, if ϕ(A) > M there would exist distinct i, j with i < j such that θ(Xi) = θ(Xj). But then A′ = Xj/Xi ∈ B(Z, S) and A′
is a proper nontrivial divisor of A, which is impossible. Thus ϕ(A) ≤ M as desired. �

Proof of Theorem 3.1. We proceed by induction on maxL(B). In the base case B is irreducible, so ∆(B) is empty and
c(B) = 0.
Suppose then that B is not irreducible, let L = maxL(B) ≥ 2 and let ` ∈ L(B). Write B = [n1]d1 · · · [nk]dk

[−m1]e1 · · · [−mr ]er . Fix an atomic factorization F∗ : B = A1 · · · AL of maximal length, and let F∗ : B = C1 · · · C` be any
atomic factorization of B. For i, j, set eij = v[mj](Ai).

Claim: There is an index f and a subset I ⊆ {1, . . . , `} of cardinality at mostmr + r2 such that Af divides
∏
i∈I Ci.

Proof of the Claim. If r > `, then by taking any index f and I = {1, . . . , `} satisfies the claim. Hence, let us assume r ≤ `.
We will find f with 1 ≤ f ≤ L and efj/ej ≤ r/L for all j. Note that

L∑
i=1

max
j

eij
ej
≤

L∑
i=1

r∑
j=1

eij
ej
=

r∑
j=1

(
1
ej

L∑
i=1

eij

)
= r

since
∑
i eij = ej. If for all iwe had maxj(eij/ej) > r/L, then
L∑
i=1

max
j

eij
ej
>

L∑
i=1

r
L
= r

which is a contradiction, so a desired f must exist. After reordering, we may assume f = L.

If J ⊆ {1, . . . `} we set CJ =
∏
i∈J Ci. By the pigeonhole principle and the fact that r ≤ `, for each j = 1, . . . , r there

is a subset Ij ⊆ {1, . . . , `} with |Ij| ≤ r such that v[−mj](CIj) ≥ rej/`. But since ` ≤ L, this means that v[−mj](CIj) ≥ efj.
Furthermore, we know by Theorem 3.2 that ϕ(Af ) ≤ mr , so we may choose I0 ⊆ {1, . . . , `} such that |I0| ≤ mr and
v[n](Af ) ≤ v[n](CI0) for all n ∈ S

+. Finally, take I = I0 ∪ I1 ∪ · · · ∪ Ir . Then by construction, CI is divisible by Af . Moreover,
|I| ≤ |I0| +

∑
j |Ij| ≤ mr + r2. This completes the proof of the claim and after reordering the Ci’s, we may assume

I = {1, . . . , q} for some

q ≤ mr + r2. (∗)

We have

B = A1 · · · AL = C1 · · · C` = (ALD1 · · ·Dt)(Cq+1 · · · C`).

where ALD1 · · ·Dt is a factorization of C1 · · · Cq in which AL appears. We denote the factorization ALD1 · · ·DtCq+1 · · · C` by F .
Applying Theorem 3.2 to the identity ϕ(ALD1 · · ·Dt) = ϕ(C1 · · · Cq), we find

t + 1 ≤
q∑
i=1

ϕ(Ci) ≤ qmr ≤ mr(mr + r2) (∗∗)

and q ≤ ϕ(AL)+
∑t
i=1 ϕ(Di) ≤ (t + 1)mr .

We now demonstrate the desired bounds on the Delta set. Note that if q = 1 or t + 1 = 1 then F = F∗. Otherwise,
| |F |−|F∗| | = |(t+1)−q| ≤ max{t−1, q−2} ≤ mr(mr+ r2)−2 (that t−1 ≤ mr(mr+ r2)−2 follows from (∗∗), similarly
q−2 ≤ mr(mr+ r2)−2 by (∗)). Let F̃ and F̃∗ denote the factorizations of B/AL obtained from F and F∗ (the long factorization
of B) by removing the irreducible factor AL. By induction, if ∆(B/AL) is nonempty, max∆(B/AL) ≤ mr(mr + r2) − 2.
Hence, there is an increasing sequence |F̃ | = `0, . . . , `s = |F̃∗| of lengths of atomic factorizations of B/AL such that
`i+1−`i ≤ mr(mr+r2)−2 for all i < s (if∆(B/AL) is empty, it follows that F and F∗ have the same length). By concatenating
the corresponding factorizations with AL, we find {`, |F | = `0 + 1, . . . , `s + 1} ⊆ L(B). As listed, the consecutive terms
differ by no more than mr(mr + r2), with the first term being |F∗| = ` and the last being |F∗| = `s + 1. Hence if ∆(B) is
nonempty, the arbitrary choice of F∗ has shown max∆(B) ≤ mr(mr + r2)− 2.
To show the bound on the catenary degree, we again pass to factorizations of B/AL and use the induction hypothesis. Thus

we have anmr(mr + r2)-chain from F̃ to F̃∗, and this lifts to amr(mr + r2)-chain from F to F∗ after multiplying every term
in the chain by AL. Finally, d(F∗, F) ≤ t + 1 ≤ mr(mr + r2), so appending F∗ to this chain proves c(B) ≤ mr(mr + r2). �
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