On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group

Paul Baginski ${ }^{\text {a,1 }}$, S.T. Chapman ${ }^{\text {b,* }}$, Ryan Rodriguez ${ }^{\text {c,2 }}$, George J. Schaeffer ${ }^{\text {a }}$, Yiwei She ${ }^{\text {d }}$
${ }^{\text {a }}$ University of California at Berkeley, Department of Mathematics, Berkeley, CA 94720, United States
${ }^{\mathrm{b}}$ Sam Houston State University, Department of Mathematics and Statistics, Box 2206, Huntsville, TX 77341-2206, United States
${ }^{\text {c }}$ Texas A\&MM University, Department of Mathematics, College Station, TX, United States
${ }^{\text {d }}$ Northwestern University, Department of Mathematics, Evanston, IL, United States

ARTICLE INFO

Article history:

Received 27 March 2009
Received in revised form 12 August 2009
Available online 11 November 2009 Communicated by J. Walker

MSC:

20M14
20D60
11B75

Abstract

Let M be a Krull monoid with divisor class group \mathbb{Z}, and let $S \subseteq \mathbb{Z}$ denote the set of divisor classes of M which contain prime divisors. We find conditions on S equivalent to the finiteness of both $\Delta(M)$, the Delta set of M, and $c(M)$, the catenary degree of M. In the finite case, we obtain explicit upper bounds on max $\Delta(M)$ and $c(M)$. Our methods generalize and complement a previous result concerning the elasticity of M.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Because of their relevance to non-unique factorizations in algebraic number theory, Krull monoids M with finite divisor class group have been well studied. It is known in this case that the sets of lengths of M are almost-arithmetic multiprogressions (see [8] for a study of such sequences). When the divisor class group of M is not finite, we know considerably less about the structure of the length sets. In particular, if each divisor class of M contains a prime divisor, then a result of Kainrath [12] implies that each finite subset of $\{2,3,4, \ldots\}$ can be obtained as a set of lengths. In [11], Hassler gives conditions on this distribution of divisor classes with primes which yield "thin" sets of lengths. About 10 years ago, a series of papers appeared $[2,3]$ which considered problems involving the elasticity of Krull monoids with divisor class group \mathbb{Z}. In such a Krull monoid, let S represent the set of divisor classes of M which contain prime divisors and write S as a disjoint union $S^{+} \cup S^{-}$where $S^{+}=\{s \in S \mid s \geq 0\}$ and $S^{-}=\{s \in S \mid s<0\}$. The main result of [2] (Theorems 2.1 and 2.3) implies that the elasticity, $\rho(M)$, is finite if and only if either S^{+}or S^{-}is finite. In this note, we show that this result extends to the cardinality of the Delta set of $M, \Delta(M)$, as well as the catenary degree of $M, c(M)$. In particular, the results of the next two sections along with the result mentioned above from [2] will constitute a proof of the following.

Theorem 1.1. Let M be a Krull monoid with divisor class group \mathbb{Z} where $S=S^{+} \cup S^{-}$corresponds to the set of divisor classes which contain prime divisors. The following are equivalent:

[^0](1) $\rho(M)$ is finite,
(2) $\Delta(M)$ is finite,
(3) $c(M)$ is finite,
(4) Either S^{+}or S^{-}is finite.

By [10, Theorem 1.6.3], we have for all atomic monoids that $(3) \Rightarrow(2)$. Few other general relationships exist between (1), (2), and (3). For instance, Example 4.8 .11 in [10] yields a monoid M with $\rho(M)<\infty$ and $|\Delta(M)|=\infty$ (other pathological type examples are found in [10] in Examples 1.6.11, 1.6.3.3, and Theorem 3.1.5).

We proceed with a brief summary of the necessary background and notation for the remainder of our work. For a commutative cancellative monoid M, let M^{\times}denote its subgroup of units; M is called reduced if $M^{\times}=\{1\}$. Let $\mathcal{A}(M)$ denote the set of irreducible elements or atoms of M. If $x \in M$, an atomic factorization is an expression of the form $F: x=\alpha_{1} \cdots \alpha_{n}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{A}(M)$; in this case we say that $|F|=n$ is the length of this atomic factorization. If $x \in M \backslash M^{\times}$we define

$$
\mathscr{L}(x)=\{n \mid x \text { has an atomic factorization of length } n\}
$$

and $\mathfrak{L}(M)=\left\{\mathscr{L}(x) \mid x \in M \backslash M^{\times}\right\} . M$ is called atomic if every element has an atomic factorization. If M is atomic, $x \in M$, and $\alpha \in \mathcal{A}(M)$ divides x, then there is an atomic factorization of x in which α appears.

For any $x \in M \backslash M^{\times}$the ratio sup $\mathcal{L}(x) / \min \mathcal{L}(x)$ is called the elasticity of x, denoted $\rho(x)$. If M is not a group, we define the elasticity of the monoid M by

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M \backslash M^{\times}\right\}
$$

A review of the main facts concerning the elasticity can be found in [10, Chapter 1.4]. Given $x \in M \backslash M^{\times}$, write its length set in the form $\mathcal{L}(x)=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ where $n_{i}<n_{i+1}$ for $1 \leq i \leq k-1$. The Delta set of x is then defined by

$$
\Delta(x)=\left\{n_{i+1}-n_{i} \mid 1 \leq i<k\right\}
$$

and the Delta set of M by

$$
\Delta(M)=\bigcup_{x \in M \backslash M^{\times}} \Delta(x)
$$

(see again [10, Chapter 1.4]). If $\Delta(M)$ is nonempty, $\min \Delta(M)=\operatorname{gcd} \Delta(M)$ (see [10, Proposition $1,4,4]$). Computations of Delta sets for various types of monoids can be found in [4,5].

Suppose that M is reduced, $x \in M$ is not the identity, and that

$$
F: x=\alpha_{1} \cdots \alpha_{n} \beta_{1} \cdots \beta_{s} \quad \text { and } \quad F^{\prime}: x=\alpha_{1} \cdots \alpha_{n} \gamma_{1} \cdots \gamma_{t}
$$

are distinct atomic factorizations such that $\beta_{i} \neq \gamma_{j}$ for all i, j. With notation as above, we define $\operatorname{gcd}\left(F, F^{\prime}\right)=\alpha_{1} \cdots \alpha_{n}$ and the distance between F and F^{\prime} by $d\left(F, F^{\prime}\right)=\max \{s, t\}$. Extend d to all pairs of factorizations by $d(F, F)=0$. The basic properties of the factorization distance function can be found in [10, Proposition 1.2.5].

An N-chain of factorizations from F to F^{\prime} is a sequence F_{0}, \ldots, F_{k} such that each F_{i} is a factorization of $x, F_{0}=F$ and $F_{k}=F^{\prime}$, and $d\left(F_{i}, F_{i+1}\right) \leq N$ for all $i<k$. The catenary degree of x, denoted $c(x)$, is the least $N \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ such that for any two factorizations F, F^{\prime} of x there is an N-chain between F and F^{\prime}. The catenary degree of the monoid M is defined as

$$
c(M)=\sup \left\{c(x) \mid x \in M \backslash M^{\times}\right\}
$$

A review of the known facts concerning the catenary degree can be found in [10, Chapter 3]. An algorithm which computes the catenary degree of a finitely generated monoid can be found in [6] and a more specific version for numerical monoids in [7].

A monoid M is called a Krull monoid if there is an injective monoid homomorphism $\varphi: M \rightarrow D$ where D is a free abelian monoid and φ satisfies the following two conditions:
(1) If $a, b \in M$ and $\varphi(a) \mid \varphi(b)$ in D, then $a \mid b$ in M,
(2) For every $\alpha \in D$ there exists $a_{1}, \ldots, a_{n} \in M$ with $\alpha=\operatorname{gcd}\left\{\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right\}$.

The basis elements of D are called the prime divisors of M. The above properties guarantee that $\mathrm{Cl}(M)=D / \varphi(M)$ is an abelian group, which we call the divisor class group of M (see [10, Section 2.3]). Note that since any Krull monoid is isomorphic to a submonoid of a free abelian monoid, a Krull monoid is commutative, cancellative, and atomic.

Given an abelian group G (written additively), it is easy to explicitly construct a Krull monoid with divisor class group isomorphic to G. Let $\mathcal{F}(G)$ denote the free abelian monoid (written multiplicatively on the set G) and let $\theta: \mathcal{F}(G) \rightarrow G$ be the homomorphism $\prod_{g \in G} g^{a_{g}} \mapsto \sum_{g \in G} a_{g} \cdot g$. Then it is easy to check that the kernel of this homomorphism is a Krull monoid, where $D=\mathcal{F}(G)$ and φ is inclusion. We denote this monoid, called the block monoid on G by

$$
\mathscr{B}(G)=\left\{\prod_{g \in G} g^{a_{g}} \in \mathcal{F}(G) \mid \sum_{g \in G} a_{g} \cdot g=0\right\}
$$

and we refer to elements of $\mathscr{B}(G)$ as blocks or zero sequences from G. Note that every divisor class of $\mathscr{B}(G)$ contains a prime divisor: The divisor class corresponding to $g \in G$ contains the basis element g of $\mathscr{F}(G)$.

If D is a free monoid, f is a basis element of D, and $X \in D$, we write $v_{f}(X)$ for the power of f appearing in X. We say that X is supported on some subset S of the basis of D if and only if $v_{f}(X)=0$ for all $f \notin S$. For any $S \subseteq G$, the set

$$
\mathscr{B}(G, S)=\{B \in \mathscr{B}(G) \mid B \text { is supported on } S\}
$$

forms a submonoid of $\mathscr{B}(G)$ called the restriction of $\mathcal{B}(G)$ to $S . \mathscr{B}(G, S)$ is again a Krull monoid, and it is not difficult to check that the divisor class corresponding to some $g \in G$ contains a prime divisor if and only if $g \in S$.

Restricted block monoids play an important role in the theory of non-unique factorizations, as the following proposition indicates.
Proposition 1.2 ([9], Proposition 1 see also [10], Theorem 3.4.10(5)). Suppose that M is a Krull monoid with divisor class group G and let $S \subseteq G$ denote the set of divisor classes which contain prime divisors. We have the equality

$$
\mathfrak{L}(M)=\mathfrak{L}(\mathscr{B}(G, S))
$$

and the inequality

$$
c(\mathscr{B}(G, S)) \leq c(M) \leq \max \{c(\mathscr{B}(G, S)), 2\}
$$

In particular, $\Delta(M)=\Delta(\mathcal{B}(G, S))$. Moreover, if $c(\mathcal{B}(G, S)) \geq 2$, then $c(M)=c(\mathscr{B}(G, S))$ and if $c(\mathcal{B}(G, S))=0$, then $c(M)=0$ or 2 .

Due to Proposition 1.2 and [1, Lemma 3.3], to prove Theorem 1.1, it suffices to consider block monoids of the form $\mathfrak{B}(\mathbb{Z}, S)$, where $S=S^{+} \cup S^{-}$, and both S^{+}and S^{-}are nonempty. Moreover, if $0 \in S^{+}$, then the irreducible block represented by 0 is prime in $\mathcal{B}(\mathbb{Z}, S)$ and does not effect any factorization properties, since it must appear in every factorization of a block that contains 0 .

2. The unbounded case

Theorem 2.1. If S^{+}and S^{-}are infinite, then $\Delta(\mathcal{B}(\mathbb{Z}, S))$ and $c(\mathscr{B}(\mathbb{Z}, S))$ are infinite.
Proof. Assume hereafter that S^{+}and S^{-}are infinite.

- Fix an integer $j \geq 2$.
- Let $-m \in S^{-}$(so $\left.m>0\right)$.
- Since S^{+}is infinite, there exists an infinite $S^{\prime} \subseteq S^{+}$all of whose elements lie in the same congruence class modulo m. Choose $n \in S^{\prime}$ such that $n \geq m$ and let $e=\operatorname{lcm}\{n, m\}$.
- Fix $-M \in S^{-}$such that $M>e j$.
- Finally, fix $N \in S^{\prime}$ so that $N>2 e M$.
- Let α be the least positive integer such that $\alpha M \equiv b n \bmod m$ for some $b \in \mathbb{Z}$, and let β be the least such b which also satisfies $b n \geq \alpha M$. Define k to be the least nonnegative integer such that $(\beta+1) n \leq e(j+k)$.

We infer a number of immediate consequences from these definitions:

- α is the order of M in the group $(\mathbb{Z} / m \mathbb{Z}) /(n \cdot \mathbb{Z} / m \mathbb{Z})$, so $\alpha \mid m$. In particular, $\alpha \leq e$.
- $\beta>e / n$, since $\beta \geq \alpha M / n>\alpha e j / n \geq e / n$ and $\alpha, j \geq 1$.
- By the choice of $k, 0 \leq e(j+k) / n-\beta-1<e / n$.
- We have $\beta n-\alpha M<2 e$. Otherwise we could replace β with the smaller positive integer $\beta^{\prime}=\beta-e / n$ which satisfies the same conditions.
- Because $N \equiv n \bmod m$ and $m \mid e$,

$$
q=\frac{(N-e M)+e(j+k)-n}{m}
$$

is an integer. In fact, q is a positive integer satisfying $q>e M / m$ and $q>j+k$.
By this last remark,

$$
B=[N][-M]^{e}[n]^{e(j+k) / n-1}[-m]^{q}
$$

is an element of $\mathcal{B}(\mathbb{Z}, S)$. We will show that $\mathcal{L}(B)=\{2, j+k\}$. The following observations will be used repeatedly in the remainder of the proof:
(i) $P=[n]^{e / n}[-m]^{e / m}$ is the unique atom of $\mathscr{B}(\mathbb{Z}, S)$ supported on $\{n,-m\}$. Any element of $\mathscr{B}(\mathbb{Z}, S)$ which is supported on $\{n,-m\}$ factors uniquely as a power of P.
(ii) Suppose that $X \in \mathscr{B}(\mathbb{Z}, S)$ is supported on $\{n,-M,-m\}$. We claim the following:

$$
\text { If } v_{[-M]}(X)>0 \text { then } v_{[n]}(X) \geq \beta
$$

To prove this, write $X=[n]^{x}[-M]^{y}[-m]^{z}$ where x, y, z are nonnegative integers satisfying $x n=y M+z m$. Then $x n \equiv y M \bmod m$, so since y is positive, $y \geq \alpha$ by the choice of α. Since we also have $x n \geq \alpha M$, it follows that $x \geq \beta$, as desired.

Now, let F be an atomic factorization of B as an element of $\mathcal{B}(\mathbb{Z}, S)$. Since $v_{[N]}(B)=1$, there is exactly one atom A of $\mathcal{B}(\mathbb{Z}, S)$ appearing in F which satisfies $v_{[N]}(A)=1$. F now falls into one of two cases, depending on the value of $v_{[-M]}(A)$.

CASE 1: Suppose that $v_{[-M]}(A)=e$. Then B / A is supported on $\{n,-m\}$ so by (i), B / A factors uniquely as P^{r}.
Let us compute r. Write $A=[N][-M]^{e}[n]^{f}[-m]^{g}$ where f, g are nonnegative integers and $N+f n=e M+g m$. Since $N \equiv n \bmod m$ and $m \mid e$, we have $(f+1) n \equiv 0 \bmod m$. Hence $e \mid(f+1) n$, so $f \geq e / n-1$. We claim that equality holds: $f \geq e / n$ and $N>2 e M$ together would imply $g m=(N-e M)+f n>e$. But then $g>e / m$, so P would be a proper divisor of A, contradicting the hypothesis that A is irreducible. Thus $v_{[n]}(A)=e / n-1$ and

$$
r=\frac{v_{[n]}(B / A)}{e / n}=\frac{e(j+k) / n-1-(e / n-1)}{e / n}=j+k-1 .
$$

So in this case, $F: B=A P^{j+k-1}$ and $|F|=j+k$.
To show that $j+k \in \mathcal{L}(B)$, it remains to show that such a factorization F actually exists. That is, we must show that there is an atomic factor A_{1} of B which satisfies the conditions of this case. By the preceding arguments, the only candidate is $A_{1}=[N][-M]^{e}[n]^{e / n-1}[-m]^{q-(j+k-1)}$. Since $q>j+k$ by an earlier remark, $A_{1} \in \mathscr{B}(\mathbb{Z}, S)$. Suppose that $X \in \mathscr{B}(\mathbb{Z}, S)$ is a divisor of A_{1} such that $v_{[N]}(X)=0$. Since $v_{[n]}\left(A_{1}\right)<e / n \leq \beta$, observation (ii) guarantees that $v_{[-M]}(X)=0$. Thus by (i), $X=P^{d}$ for some $d \geq 0$, but $v_{[n]}(X)<e / n$, so $d=0, X=1$, and A_{1} is irreducible.

CASE 2: Suppose instead that $v_{[-M]}(A)<e$. Then B / A has an irreducible factor Y such that $v_{[-M]}(Y)>0$. Since we also have $v_{[N]}(Y)=0$, (ii) implies that $v_{[n]}(A Y) \geq \beta$, so

$$
v_{[n]}(B / A Y) \leq \frac{e(j+k)}{n}-1-\beta<e / n
$$

Moreover, $v_{[N]}(B / A Y)=0$, so (ii) guarantees that $v_{[-M]}(B / A Y)=0$, and hence by (i), $B / A Y=P^{d}$ for some nonnegative integer d. However, since $v_{[n]}(B / A Y)<e / n$, we must have $d=0$. So $B / A=Y$ is irreducible, $F: B=A(B / A)$ and any factorization obtained in this case has length 2.

It remains to show that such a factorization exists. Let $r=(\beta n-\alpha M) / m$. By the definitions of α and β, r is a positive integer, so $Y^{\prime}=[-M]^{\alpha}[n]^{\beta}[-m]^{r}$ is an element of $\mathcal{B}(\mathbb{Z}, S)$. By earlier remarks, $\alpha \leq e, \beta \leq e(j+k) / n-1$, and $r<2 e / m \leq e M / m<q$. It follows that Y^{\prime} divides B, so there is an atom A_{2} dividing B / Y^{\prime} such that $v_{[N]}\left(A_{2}\right)=1$. Since $\alpha>0$, we have $v_{[-M]}\left(A_{2}\right)<e$, so $A=A_{2}$ satisfies the conditions of this case and it follows that B has a factorization of length 2.

By Case 1 and Case 2, we have $\mathcal{L}(B) \subseteq\{2, j+k\}$. Conversely, we have shown that appropriate factorizations exist in both cases, so $\mathcal{L}(B)=\{2, j+k\}$. From the length set, we calculate $\Delta(B)=\{j+k-2\}$ and, since distinct factorizations of length 2 and $j+k \geq 2$ cannot share any common factors, $c(B)=j+k$. Since j may be taken arbitrarily large, the result follows.

3. When either S^{+}or S^{-}is finite

The main theorem of this section is the following:
Theorem 3.1. Suppose that $S^{\prime}=\left\{-m_{r}, \ldots,-m_{1}, n_{1}, \ldots, n_{k}\right\} \subseteq S$ where $m_{i}, n_{i}>0$ for all i and $-m_{r}=\min S^{\prime}$. If B is an element of $\mathcal{B}(\mathbb{Z}, S)$ supported on S^{\prime}, then

$$
\max \Delta(B) \leq m_{r}\left(m_{r}+r^{2}\right)-2
$$

(if $\Delta(B)$ is nonempty) and

$$
c(B) \leq m_{r}\left(m_{r}+r^{2}\right)
$$

The above is sufficient to complete the proof of Theorem 1.1. If S is bounded from either above or below, we may assume that S^{-}is finite, possibly after replacing S with $-S$. From the above it follows then that if $\Delta(\mathscr{B}(\mathbb{Z}, S))$ is nonempty, then it is bounded above by $M\left(M+\left|S^{-}\right|^{2}\right)-2$ where $-M=\min \left(S^{-}\right)$. Similarly, we obtain $c(\mathscr{B}(\mathbb{Z}, S)) \leq M\left(M+\left|S^{-}\right|^{2}\right)$.

The proof is based on a result of Lambert, which we now present adapted to the language of block monoids. Since the proof makes use of elements of $\mathcal{F}(\mathbb{Z})$ outside $\mathcal{B}(\mathbb{Z})$, we define some convenient notation. As before, we let $\theta: \mathcal{F}(\mathbb{Z}) \rightarrow \mathbb{Z}$ be the obvious homomorphism (so that $\mathcal{B}(\mathbb{Z})=\operatorname{ker} \theta$). We define another homomorphism $\varphi: \mathcal{F}(\mathbb{Z}) \rightarrow \mathbb{Z}_{\geq 0}$ by

$$
\varphi: X \mapsto \sum_{n \in S^{+}} v_{[n]}(X)
$$

If $X, Y \in \mathcal{F}(\mathbb{Z})$, then we write $X \leq Y$ whenever $v_{[z]}(X) \leq v_{[z]}(Y)$ for all $z \in \mathbb{Z}$.
Theorem 3.2 (Lambert [13]). If S^{-}is finite with $\min \left(S^{-}\right)=-M$, then $\varphi(A) \leq M$ for all atoms A of $\mathcal{B}(\mathbb{Z}, S)$.

Proof. Let $A=\left[n_{1}\right]^{a_{1}} \cdots\left[n_{k}\right]^{a_{k}}\left[-m_{1}\right]^{b_{1}} \cdots\left[-m_{r}\right]^{b_{r}}$ be an atom of $\mathcal{B}(\mathbb{Z}, S)$. An element X of $\mathcal{F}(\mathbb{Z})$ is called a positive subsequence of A if $X \leq A$ and $\theta(X) \geq 0$.

We construct a strictly increasing chain $1=X_{0}<\cdots<X_{\varphi(A)}=A$ of positive subsequences of A. Given X_{i} when $0<i<\varphi(A)$, consider all positive subsequences X of A such that $\varphi(X)=\varphi\left(X_{i}\right)+1$. Such an X must exist, since $\varphi\left(X_{i}\right)<\varphi(A)$ implies that there is some j with $X_{i}\left[n_{j}\right] \leq A$, and $\varphi\left(X_{i}\left[n_{j}\right]\right)=\varphi\left(X_{i}\right)+1$. Let X_{i+1} be such an X with $\theta\left(X_{i+1}\right)$ as small as possible.

We claim that $\theta\left(X_{i}\right)<M$ for all i. This is clear when $i=0$ or $i=\varphi(A)$. When $0<i<\varphi(A)$, then since X_{i} is a positive subsequence, there exists j such that $X_{i}\left[-m_{j}\right] \leq A$. If we had $\theta\left(X_{i}\right) \geq M$, then $X_{i}\left[-m_{j}\right]$ would be a positive subsequence of A, but then $0 \leq \theta\left(X_{i}\left[-m_{j}\right]\right)<\theta\left(X_{i}\right)$, which contradicts the choice of X_{i}.

If $0<i<\varphi(A)$, then $\theta\left(X_{i}\right)>0$ as otherwise X_{i} would be a proper nontrivial divisor of A in $\mathscr{B}(\mathbb{Z}, S)$ which contradicts the hypothesis that A is irreducible. Thus the set $\left\{\theta\left(X_{1}\right), \ldots, \theta\left(X_{\varphi(A)-1}\right)\right\}$ is a set of size $\varphi(A)-1$ contained in $\{1, \ldots, M-1\}$. Hence, if $\varphi(A)>M$ there would exist distinct i, j with $i<j$ such that $\theta\left(X_{i}\right)=\theta\left(X_{j}\right)$. But then $A^{\prime}=X_{j} / X_{i} \in \mathscr{B}(\mathbb{Z}, S)$ and A^{\prime} is a proper nontrivial divisor of A, which is impossible. Thus $\varphi(A) \leq M$ as desired.
Proof of Theorem 3.1. We proceed by induction on $\max \mathcal{L}(B)$. In the base case B is irreducible, so $\Delta(B)$ is empty and $c(B)=0$.

Suppose then that B is not irreducible, let $L=\max \mathscr{L}(B) \geq 2$ and let $\ell \in \mathscr{L}(B)$. Write $B=\left[n_{1}\right]^{d_{1}} \cdots\left[n_{k}\right]^{d_{k}}$ $\left[-m_{1}\right]^{e_{1}} \cdots\left[-m_{r}\right]^{e_{r}}$. Fix an atomic factorization $F^{*}: B=A_{1} \cdots A_{L}$ of maximal length, and let $F_{*}: B=C_{1} \cdots C_{\ell}$ be any atomic factorization of B. For i, j, set $e_{i j}=v_{\left[m_{j}\right]}\left(A_{i}\right)$.

Claim: There is an index f and a subset $I \subseteq\{1, \ldots, \ell\}$ of cardinality at most $m_{r}+r^{2}$ such that A_{f} divides $\prod_{i \in I} C_{i}$.
Proof of the Claim. If $r>\ell$, then by taking any index f and $I=\{1, \ldots, \ell\}$ satisfies the claim. Hence, let us assume $r \leq \ell$. We will find f with $1 \leq f \leq L$ and $e_{f j} / e_{j} \leq r / L$ for all j. Note that

$$
\sum_{i=1}^{L} \max _{j} \frac{e_{i j}}{e_{j}} \leq \sum_{i=1}^{L} \sum_{j=1}^{r} \frac{e_{i j}}{e_{j}}=\sum_{j=1}^{r}\left(\frac{1}{e_{j}} \sum_{i=1}^{L} e_{i j}\right)=r
$$

since $\sum_{i} e_{i j}=e_{j}$. If for all i we had $\max _{j}\left(e_{i j} / e_{j}\right)>r / L$, then

$$
\sum_{i=1}^{L} \max _{j} \frac{e_{i j}}{e_{j}}>\sum_{i=1}^{L} \frac{r}{L}=r
$$

which is a contradiction, so a desired f must exist. After reordering, we may assume $f=L$.
If $J \subseteq\{1, \ldots \ell\}$ we set $C_{J}=\prod_{i \in J} C_{i}$. By the pigeonhole principle and the fact that $r \leq \ell$, for each $j=1, \ldots, r$ there is a subset $I_{j} \subseteq\{1, \ldots, \ell\}$ with $\left|I_{j}\right| \leq r$ such that $v_{\left[-m_{j}\right]}\left(C_{I_{j}}\right) \geq r e_{j} / \ell$. But since $\ell \leq L$, this means that $v_{\left[-m_{j}\right]}\left(C_{I_{j}}\right) \geq e_{f j}$. Furthermore, we know by Theorem 3.2 that $\varphi\left(A_{f}\right) \leq m_{r}$, so we may choose $I_{0} \subseteq\{1, \ldots, \ell\}$ such that $\left|I_{0}\right| \leq m_{r}$ and $v_{[n]}\left(A_{f}\right) \leq v_{[n]}\left(C_{I_{0}}\right)$ for all $n \in S^{+}$. Finally, take $I=I_{0} \cup I_{1} \cup \cdots \cup I_{r}$. Then by construction, C_{I} is divisible by A_{f}. Moreover, $|I| \leq\left|I_{0}\right|+\sum_{j}\left|I_{j}\right| \leq m_{r}+r^{2}$. This completes the proof of the claim and after reordering the C_{i} 's, we may assume $I=\{1, \ldots, q\}$ for some

$$
\begin{equation*}
q \leq m_{r}+r^{2} \tag{*}
\end{equation*}
$$

We have

$$
B=A_{1} \cdots A_{L}=C_{1} \cdots C_{\ell}=\left(A_{L} D_{1} \cdots D_{t}\right)\left(C_{q+1} \cdots C_{\ell}\right)
$$

where $A_{L} D_{1} \cdots D_{t}$ is a factorization of $C_{1} \cdots C_{q}$ in which A_{L} appears. We denote the factorization $A_{L} D_{1} \cdots D_{t} C_{q+1} \cdots C_{\ell}$ by F.
Applying Theorem 3.2 to the identity $\varphi\left(A_{L} D_{1} \cdots D_{t}\right)=\varphi\left(C_{1} \cdots C_{q}\right)$, we find

$$
\begin{equation*}
t+1 \leq \sum_{i=1}^{q} \varphi\left(C_{i}\right) \leq q m_{r} \leq m_{r}\left(m_{r}+r^{2}\right) \tag{**}
\end{equation*}
$$

and $q \leq \varphi\left(A_{L}\right)+\sum_{i=1}^{t} \varphi\left(D_{i}\right) \leq(t+1) m_{r}$.
We now demonstrate the desired bounds on the Delta set. Note that if $q=1$ or $t+1=1$ then $F=F_{*}$. Otherwise, $\left||F|-\left|F_{*}\right|\right|=|(t+1)-q| \leq \max \{t-1, q-2\} \leq m_{r}\left(m_{r}+r^{2}\right)-2$ (that $t-1 \leq m_{r}\left(m_{r}+r^{2}\right)-2$ follows from (**), similarly $q-2 \leq m_{r}\left(m_{r}+r^{2}\right)-2$ by $\left.(*)\right)$. Let \tilde{F} and \tilde{F}^{*} denote the factorizations of B / A_{L} obtained from F and F^{*} (the long factorization of $B)$ by removing the irreducible factor A_{L}. By induction, if $\Delta\left(B / A_{L}\right)$ is nonempty, max $\Delta\left(B / A_{L}\right) \leq m_{r}\left(m_{r}+r^{2}\right)-2$. Hence, there is an increasing sequence $|\tilde{F}|=\ell_{0}, \ldots, \ell_{S}=\left|\tilde{F}^{*}\right|$ of lengths of atomic factorizations of B / A_{L} such that $\ell_{i+1}-\ell_{i} \leq m_{r}\left(m_{r}+r^{2}\right)-2$ for all $i<s$ (if $\Delta\left(B / A_{L}\right)$ is empty, it follows that F and F^{*} have the same length). By concatenating the corresponding factorizations with A_{L}, we find $\left\{\ell,|F|=\ell_{0}+1, \ldots, \ell_{s}+1\right\} \subseteq \mathscr{L}(B)$. As listed, the consecutive terms differ by no more than $m_{r}\left(m_{r}+r^{2}\right)$, with the first term being $\left|F_{*}\right|=\ell$ and the last being $\left|F^{*}\right|=\ell_{s}+1$. Hence if $\Delta(B)$ is nonempty, the arbitrary choice of F_{*} has shown max $\Delta(B) \leq m_{r}\left(m_{r}+r^{2}\right)-2$.

To show the bound on the catenary degree, we again pass to factorizations of B / A_{L} and use the induction hypothesis. Thus we have an $m_{r}\left(m_{r}+r^{2}\right)$-chain from \tilde{F} to \tilde{F}^{*}, and this lifts to a $m_{r}\left(m_{r}+r^{2}\right)$-chain from F to F^{*} after multiplying every term in the chain by A_{L}. Finally, $d\left(F_{*}, F\right) \leq t+1 \leq m_{r}\left(m_{r}+r^{2}\right)$, so appending F_{*} to this chain proves $c(B) \leq m_{r}\left(m_{r}+r^{2}\right)$.

Acknowledgements

The first, third, fourth and fifth authors received support from the National Science Foundation, Grant \#DMS-0648390. The authors wish to thank Nathan Kaplan for discussions related to this work.

References

[1] D.D. Anderson, S.T. Chapman, F. Halter-Koch, M. Zafrullah, Criteria for unique factorization in integral domains, J. Pure Appl. Algebra 127 (1998) 205-218.
[2] D.F. Anderson, S.T. Chapman, W.W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96 (1994) 97-112.
[3] D.F. Anderson, S.T. Chapman, W.W. Smith, On Krull half-factorial domains with infinite cyclic divisor class group, Houston J. Math. 20 (1994) 561-570.
[4] P. Baginski, S.T. Chapman, G. Schaeffer, 'On the Delta set of a singular arithmetical congruence monoid, J. Théor. Nombres Bordeaux 20 (2008) 45-59.
[5] C. Bowles, S.T. Chapman, N. Kaplan, D. Reiser, On Δ-sets of numerical monoids, J. Pure Appl. Algebra 5 (2006) 1-24.
[6] S.T. Chapman, P.A. García-Sánchez, D. Lena, V. Ponomarenko, J.C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscripta Math. 120 (2006) 253-264.
[7] S.T. Chapman, P.A. García-Sánchez, D. Llena, The catenary and tame degree of numerical semigroups, Forum Math 21 (2009) 117-129.
[8] G. Freiman, A. Geroldinger, An addition theorem and its arithmetical application, J. Number Theory 85 (2000) 59-73.
[9] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math Z. 197 (1988) 505-529.
[10] A. Geroldinger, F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, in: Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[11] W. Hassler, Factorization properties of Krull monoids with infinite class group, Colloq. Math. 92 (2002) 229-242.
[12] F. Kainrath, Factorization in Krull monoids with infinite class group, Colloq. Math. 80 (1999) 23-30.
[13] J.-L. Lambert, Une borne pour les générateurs des solutions entiéres positives dune équation diophantienne linéaire, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987) 3940.

[^0]: * Corresponding author.

 E-mail addresses: baginski@math.univ-lyon1.fr (P. Baginski), scott.chapman@shsu.edu (S.T. Chapman), rmrodriguez@math.ucsd.edu (R. Rodriguez), gschaeff@math.berkeley.edu (G.J. Schaeffer), yiweishe2010@u.northwestern.edu (Y. She).
 ${ }^{1}$ Current address: Institut Camille Jordan, Université Lyon 1, 69622 Villeurbanne, France.
 2 Current address: University of California, San Diego, Department of Mathematics, La Jolla, CA 92093, United States.

