On the Leibniz (co)homology of the Lie algebra of the Euclidean group

Guy Roger Biyogmam

Mathematical Sciences, 100 Campus Drive, Southwestern Oklahoma State University, Weatherford, OK 73096, USA

1. Introduction

Recall that the Euclidean group $E(n)$ consists of all distance-preserving transformations of the Euclidean n-space; i.e. all transformations $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ of the form

$$\varphi(v) = v_0 + Ov,$$

where O is a $n \times n$ orthogonal matrix and v_0 is a fixed element of \mathbb{R}^n. For $n \geq 3$, let h_n denote the Lie algebra of the affine orthogonal Lie group (the connected component of $E(n)$). Then h_n is the Lie algebra of the Euclidean group.

The Leibniz (co)-homology of h_n suggests several interesting questions in many fields in Physics. For instance, Schroek [14] has proven that the discovery of Leibniz homology opens new directions in Quantum Mechanics to unsolved problems related to the Poincaré group; more precisely, the determination of the Leibniz homology of h_3 provides a considerable amount of information to the Leibniz homology of the Lie algebra of the Poincaré group which is a double cover of $so(3)$; thus provides additional inputs for the resolution of these problems (cf. [14]).

The tools used to calculate the Leibniz algebra homology of h_n, i.e. $HL^*(h_n)$ include the Hochschild–Serre spectral sequence for Lie-algebra (co)homology, the Pirashvili spectral sequence for Leibniz homology, and the identification of certain orthogonal invariants of h_n which are not detectable from the exterior algebra used in the computation of Lie-algebra homology. The method used to compute these invariants improves Lodder’s calculations in [11]. We prove in Section 5 that there is an isomorphism of graded vector spaces

$$HL^*(h_n) \cong (\mathbb{R} \otimes \langle \tilde{\alpha}_n \rangle) \otimes T^*(\tilde{\gamma}_n),$$

where $\langle \tilde{\alpha}_n \rangle$ denotes a 1-dimensional vector space in degree n on

$$\tilde{\alpha}_n = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \frac{\partial}{\partial x^{\sigma(1)}} \otimes \frac{\partial}{\partial x^{\sigma(2)}} \otimes \frac{\partial}{\partial x^{\sigma(3)}} \otimes \cdots \otimes \frac{\partial}{\partial x^{\sigma(n)}}$$

E-mail address: guy.biyogmam@swosu.edu.

1 The author is very indebted to his advisor Pr. Jerry Lodder, and the results in this paper are included in his Ph.D. dissertation (2010).
and $T^*(\tilde{\gamma}_n)$ denotes the tensor algebra on the $(n - 1)$-degree generator
\[
\tilde{\gamma}_n = \sum_{1 \leq i < j \leq n, \sigma \in S_{n-2}} (-1)^{i+j+1} X_{ij} \otimes \left(\sum_{\alpha \in n} \frac{\partial}{\partial x^{\alpha(i)}} \otimes \cdots \otimes \frac{\partial}{\partial x^{\alpha(j)}} \right) \otimes X_{ij}.
\]

We show in Section 4 that $\tilde{\alpha}_n$ and $\tilde{\gamma}_n$ are h_n-invariant. Dually for cohomology, there is an isomorphism of dual Leibniz algebras
\[
HL^* (h_n) \cong (R \oplus \tilde{\alpha}_n^d) \otimes T^* (\tilde{\gamma}_d),
\]
where
\[
\tilde{\alpha}_n^d = \sum_{\sigma \in S_n} \text{sgn} (\sigma) dx^{\sigma(1)} \otimes dx^{\sigma(2)} \otimes \cdots \otimes dx^{\sigma(n)},
\]
and
\[
\tilde{\gamma}_n^d = \sum_{1 \leq i < j \leq n, \sigma \in S_{n-2}} (-1)^{i+j} X_{ij}^* \otimes dx^{\sigma(1)} \otimes \cdots \otimes dx^{\sigma(j)} \otimes \cdots \otimes dx^{\sigma(n)}.
\]

The new invariant $\tilde{\gamma}_n^d$ is different from Lodder's invariants in [11]. It can be viewed as factored from the volume element $\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n}$, where certain factors from \mathcal{J}^n are replaced with their corresponding elements in $so(n)$ via an isomorphism $\mathcal{J}^n \xrightarrow{\sim} so(n)$ of $so(n)$-modules, and constitutes the core of this paper.

2. The Lie algebra of the Euclidean group

In this paper, we treat at once h_n for the orthogonal Lie algebras of type B_l and D_l.

Assume that \mathbb{R}^n is given the coordinates (x_1, x_2, \ldots, x_n), and let $\frac{\partial}{\partial x^i}$ be the unit vector fields parallel with the x_i axes respectively. It is easy to show that the Lie algebra generated by the family B_1 below the vector fields (endowed with the bracket of vector fields) is isomorphic to the real orthogonal Lie algebra $so(n)$:
\[
B_1 = \left\{ X_{ij} := -x_i \frac{\partial}{\partial x^j} + x_j \frac{\partial}{\partial x^i} \; : \; 1 \leq i \neq j \leq n \right\}.
\]

Let \mathcal{J}_n denote the Abelian Lie algebra with vector space basis $B_2 = \left\{ \frac{\partial}{\partial x^i} \; : \; 1 \leq i \leq n \right\}$. The Lie algebra h_n has an \mathbb{R}-vector space basis $B_1 \cup B_2$ and there is a short exact sequence of Lie algebras [6, p. 203]
\[
0 \longrightarrow \mathcal{J}_n \longrightarrow h_n \longrightarrow so(n) \longrightarrow 0
\]
where i is the inclusion map and π is the projection
\[
h_n \longrightarrow (h_n/\mathcal{J}_n) \cong so(n).
\]

Note that \mathcal{J}_n is an Abelian ideal of h_n with \mathcal{J}_n acting on h_n via the bracket of vector fields. The bracket on $h_n \cong \mathcal{J}_n \oplus so(n)$ can be defined by
\[
[[m_1, x_1], (m_2, x_2)] = [[m_1, x_2] + [x_1, m_2], [x_1, x_2]] \quad [8].
\]

3. The Lie algebra homology of h_n

For any Lie algebra g over a ring k and V any g-module, the Lie algebra homology of g with coefficients in the module V, written $H^*_\text{Lie}(g; V)$, is the homology of the Chevalley–Eilenberg complex $V \otimes \wedge^*(g)$, namely
\[
V \leftarrow d \rightarrow V \otimes g^1 \leftarrow d \rightarrow V \otimes g^2 \leftarrow d \rightarrow \cdots \leftarrow V \otimes g^{n-1} \leftarrow d \rightarrow V \otimes g^n \leftarrow \cdots
\]
where g^n is the nth exterior power of g over k, and where
\[
d(v \otimes g_1 \wedge \cdots \wedge g_n) = \sum_{1 \leq i \leq n} (-1)^i [v, g_i] \otimes g_1 \wedge \cdots \hat{g}_i \cdots \wedge g_n + \sum_{1 \leq i < j \leq n} (-1)^{i+j-1} v \otimes [g_i, g_j] \wedge g_1 \wedge \cdots \hat{g}_i \cdots \hat{g}_j \cdots \wedge g_n \quad [1]
\]
where \(\hat{g}_i \) means that the variable \(g_i \) is deleted. In particular if \(V = g \), we obtain the Lie algebra homology with coefficients in the adjoint representation, written \(H_{Lie}^n(g; g) \). Also taking \(V = k \) the trivial module, we identify \(1 \otimes g_1 \wedge \cdots \wedge g_n \) with \(g_1 \wedge \cdots \wedge g_n \) and have

\[
\begin{array}{cccccccc}
1 & 0 & g^1 \wedge & \cdots & \cdots & \cdots & \cdots & \cdots \\
& & d & \cdots & \cdots & \cdots & \cdots & \cdots \\
& & & d & \cdots & \cdots & \cdots & \cdots \\
& & & & d & \cdots & \cdots & \cdots \\
& & & & & d & \cdots & \cdots \\
& & & & & & \cdots & \cdots \\
\end{array}
\]

with

\[
d(g_1 \wedge \cdots \wedge g_n) = \sum_{1 \leq i < j \leq n} (-1)^{i+j-1} [g_i, g_j] \wedge g_1 \wedge \cdots \wedge \hat{g}_i \cdots \wedge \hat{g}_j \cdots \wedge g_n.
\]

For each \(n \), we have the canonical projection \(g \otimes g^{\wedge n} \rightarrow g^{\wedge n+1} \). This gives a map of chain complexes \(g \otimes \wedge^*(g) \rightarrow \wedge^{*+1}(g) \) and thus induces a \(k \)-linear map on homology

\[
H_{Lie}^n(g; g) \rightarrow H_{Lie}^{n+1}(g; k).
\]

For a \((\text{right}) \) \(g \)-module \(M \), the module of invariants \(M^g \) is defined as

\[M^g = \{ m \in M \mid g(m) = 0 \text{ for all } g \in g \} \]

The Lie algebra \(so(n) \) also acts on \(J_n \) and on \(h_n \) via the bracket of vector fields. This action is extended to \(J_n^\wedge k \) by

\[
[a_1 \wedge a_2 \wedge \cdots \wedge a_k, X] = \sum_{i=1}^k a_1 \wedge a_2 \wedge \cdots \wedge [a_i, X] \wedge \cdots \wedge a_k
\]

for \(a_i \in J_n \), \(X \in so(n) \), and the action of \(so(n) \) on \(h_n \otimes J_n^\wedge k \) is given by

\[
[h \otimes a_1 \wedge a_2 \wedge \cdots \wedge a_k, X] = [h, X] \otimes a_1 \wedge \cdots \wedge a_k + \sum_{i=1}^k h \otimes a_1 \wedge a_2 \wedge \cdots \wedge [a_i, X] \wedge \cdots \wedge a_k
\]

for \(h \in h_n \).

In this paper the calculations are done with \(k = R \). The following lemma is the main result of this section.

Lemma 3.1. There are natural vector space isomorphisms

\[
H_{Lie}^n(h_n; R) \cong H_{Lie}^n(so(n); R) \otimes [\wedge^*(J_n)]^{so(n)},
\]

\[
H_{Lie}^n(h_n, h_n) \cong H_{Lie}^n(so(n); R) \otimes H_{Lie}^n([h_n \otimes \wedge^*(J_n)]^{so(n)}; R).
\]

Proof. We use Lodder's procedure [11] which consists in applying the homological version of the Hochschild–Serre spectral sequence (for its cohomological version, see [4]). □

4. New invariants for the orthogonal Lie algebras

In this section, we prove some lemmas that determine the modules of invariants of \(\wedge^* J_n \) and \(h_n \otimes \wedge^* J_n \) under the action of \(so(n) \).

Lemma 4.1. There is a vector space isomorphism

\[
[\wedge^*(J_n)]^{so(n)} = R \oplus \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n} \right) \text{ for } n \geq 3
\]

Proof. It is enough to show that

\[
[\wedge_{\geq 0}^n J_n]^{so(n)} = R, \quad [\wedge^1_n J_n]^{so(n)} = \{0\}, \quad [\wedge_n^k J_n]^{so(n)} = \{0\} \text{ for } k \neq 0, 1, n \text{ and}
\]

\[
[\wedge_{\geq 1}^n J_n]^{so(n)} = \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n} \right).
\]

Indeed, that \([\wedge_{\geq 0}^n J_n]^{so(n)} = R \) is clear. Also a straightforward verification shows that

\[
[\wedge_{\geq 1}^n J_n]^{so(n)} = \left(\frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n} \right).
\]

To show that \([\wedge_{\geq 1}^n J_n]^{so(n)} = \{0\} \), let \(\omega_1 = \sum_{i=1}^n c_i \frac{\partial}{\partial x_i} \in J_n \) and assume without loss of generality that \(c_{i_0} \neq 0 \) for some \(i_0 \in \{1, 2, \ldots, n\} \). Then

\[
\left[\sum_{i=1}^n c_i \frac{\partial}{\partial x_i} - x_{i_0} \frac{\partial}{\partial x_n} + x_n \frac{\partial}{\partial x_{i_0}} \right] = -c_{i_0} \frac{\partial}{\partial x_n} + c_n \frac{\partial}{\partial x_{i_0}} \neq 0,
\]
Thus $\omega_1 \notin [\mathfrak{g}_n]^{so(n)}$. It follows that $[\mathfrak{g}_n]^{so(n)} = 0$. Next, we show by induction on n that $[\mathfrak{g}_n]^{so(n)} = 0$ for $k \neq 0$, 1, n. For $n = 3$, $\mathfrak{g}_3 = \left\{ \frac{1}{\sqrt{2}} x, \frac{1}{\sqrt{2}} y, \frac{1}{2} z \right\}$ and $so(3) = \langle X_{12}, X_{13}, X_{23} \rangle$. By direct calculation, $[\mathfrak{g}_3]^{\times 2, so(3)} = 0$. By the inductive hypothesis, suppose

$$[\mathfrak{g}_{n-1}]^{so(n-1)} = 0 \quad \text{for } k \neq 0, 1, n - 1$$

and let $z \in [\mathfrak{g}_n]^{so(n)}$ with $k \neq 0, 1, n$ fixed. Then $z = c_1 z_1 + c_2 z_2 \wedge \frac{\partial}{\partial x^1}$, where $z_1 \in \mathfrak{g}_n^{so(n-1)}$, $z_2 \in \mathfrak{g}_n^{so(n-1)}$, and $c_1, c_2 \in \mathbb{R} - \{0\}$. If $k = n - 1$, then $z_1 = \frac{d_n}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n}$ and $z_2 = \sum_{i=1}^{n-1} \frac{d_i}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^n}$ for some d_i’s constants. Choose first $\mathfrak{x} = -x_1 \frac{\partial}{\partial x^1} + x_n \frac{\partial}{\partial x^n}$ for $i = 2, \ldots, n - 1$ to find $d_i = 0$ for all i’s and thus $z = 0$. If $k \neq n - 1$, let $\mathfrak{x} \in so(n-1) \subseteq so(n)$ as a Lie subalgebra, we have

$$0 = [z, \mathfrak{x}] = \left[c_1 z_1 + c_2 z_2 \wedge \frac{\partial}{\partial x^1}, \mathfrak{x} \right] = c_1 [z_1, \mathfrak{x}] + c_2 \left[z_2 \wedge \frac{\partial}{\partial x^1}, \mathfrak{x} \right]$$

$$= c_1 [z_1, \mathfrak{x}] + c_2 [z_2, \mathfrak{x}] \wedge \frac{\partial}{\partial x^1} + c_2 z_2 \wedge \frac{\partial}{\partial x^1} (\mathfrak{x}),$$

thus as $\frac{\partial}{\partial x^1} (\mathfrak{x}) = 0$, we have $c_1 [z_1, \mathfrak{x}] + c_2 [z_2, \mathfrak{x}] \wedge \frac{\partial}{\partial x^1} = 0$. If non-zero, the terms $[z_1, \mathfrak{x}]$ and $[z_2, \mathfrak{x}] \wedge \frac{\partial}{\partial x^1}$ are linearly independent since none of the terms of $[z_1, \mathfrak{x}]$ contains the vector field $\frac{\partial}{\partial x^1}$ in its expression, a contradiction. Thus $[z_1, \mathfrak{x}] = 0 = [z_2, \mathfrak{x}]$. This implies $z_1 \in [\mathfrak{g}_n]^{so(n-1)} = 0$, $z_2 \in [\mathfrak{g}_{n-1}]^{so(n-1)} = 0$; hence $z = 0$. \hfill \Box

Lemma 4.2. Setting $\sigma_{ij} := (i, j, \ldots, i, j, \ldots, n)$ the permutation, we have

$$[so(n) \otimes \mathfrak{g}_n^{so(n)}]^{so(n)} = \begin{cases} \langle \rho_n \rangle, & \text{if } k = 2 \\ \langle \gamma_n \rangle, & \text{if } k = n - 2 \\ 0, & \text{else} \end{cases}$$

with

$$\rho_n = \sum_{1 \leq i < j \leq n} X_{ij} \otimes \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j}, \quad \gamma_n = \sum_{1 \leq i < j \leq n} sgn(\sigma_{ij}) X_{ij} \otimes \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial x^i} \cdots \wedge \frac{\partial}{\partial x^n}.$$

Proof. Recall that the representations \mathfrak{g}_n and $so(n)$ are respectively the standard n-dimensional representation and the adjoint representation of $so(n)$. Now $so(n)$ is isomorphic to $\mathfrak{g}_n^{so(n)}$ because $so(n)$ identifies with skew-symmetric n-by-n matrices, which identifies with the second exterior power of n-dimensional vectors. Note also that as a representation of $so(n)$, \mathfrak{g}_n is isomorphic to its dual because $so(n)$ preserves the dot product. So

$$[so(n) \otimes \mathfrak{g}_n^{so(n)}]^{so(n)} \cong [\mathfrak{g}_n^{so(n)}]^{so(n)} \cong [\mathfrak{g}_n^{\times 2}]^{\times 2} \otimes \mathfrak{g}_n^{so(n)} \cong [\text{Hom}_{\mathbb{R}}(\mathfrak{g}_n^{\times 2}, \mathfrak{g}_n^{so(n)})]^{so(n)} = \text{Hom}_{so(n)}(\mathfrak{g}_n^{\times 2}, \mathfrak{g}_n^{so(n)}) \quad [2, \text{p. 8}].$$

Now, it is known [3, Theorems 19.2 and 19.14] that the $\mathfrak{g}_n^{so(n)}$ are all irreducible representations of $so(n)$ (except for $k = \frac{n}{2}$ when n is even) and they are nonisomorphic, except that $\mathfrak{g}_n^{so(n)}$ is isomorphic to $\mathfrak{g}_n^{so(n)}$. Moreover, the two irreducible summands of $\mathfrak{g}_n^{so(n)}$, in the case n is even, are not isomorphic to any of the irreducible representations for other values of k, and are not isomorphic to each other. Consequently, we deduce that the space $\text{Hom}_{so(n)}(\mathfrak{g}_n^{\times 2}, \mathfrak{g}_n^{so(n)})$ is zero unless $k = 2$ or $k = n - 2$, in which case it is 1-dimensional, unless $n = 4$, in which case it is 2-dimensional.

The generators can be made explicit by induction on n. It is easy to check the result for $n = 3$ and $n = 4$, by direct calculation. Suppose the result true at the level $n - 1$. Since $so(n)$ is a simple Lie algebra, we have $[so(n)]^{so(n)} = 0$. Now let B_1 be the vector space basis of $so(n - 1)$, then it is clear that $B_1 \cup \{ X_{ii}, i = 1, \ldots, n - 1 \}$ is the vector space basis of $so(n)$. Let $S' = \{ x^1, x^2, \ldots, x^n \}$ and $S'' = \{ x^1, x^2, \ldots, x^{n-1} \}$. A vector space basis of $(so(n) \otimes \mathfrak{g}_n^{so(n)}) / (so(n - 1) \otimes \mathfrak{g}_n^{so(n - 1)})$ is given by the families of elements:

1. $e \otimes \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial x^{i-1}}, \ e \in B_1, \ z^i \in S''$
2. $X_{ii} \otimes \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial x^{i-1}}, \ z^i \in S''$

Given $\omega \in [so(n) \otimes \mathfrak{g}_n^{so(n)}]^{so(n)}$, let $\omega = u + v$ where

$$u \in (so(n - 1) \otimes \mathfrak{g}_n^{so(n - 1)}), \quad v \in (so(n) \otimes \mathfrak{g}_n^{so(n)}) / (so(n - 1) \otimes \mathfrak{g}_n^{so(n - 1)}).$$

Write $v = S_1 + S_2$ with

$$S_1 = \sum_{z^1, \ldots, z^{k-1} \in S''} c_{1, \ldots, k-1} e \otimes \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial x^{i-1}}.$$
and
\[S_2 = \sum_{z^1, \ldots, z^{k-1} \in S, \; 1 \leq j < n} c_{2, \ast} (X_{in}) \otimes \frac{\partial}{\partial z^1} \land \frac{\partial}{\partial z^2} \land \cdots \land \frac{\partial}{\partial z^k}. \]

For all \(\mathcal{X} \in \mathfrak{so}(n-1) \subseteq \mathfrak{so}(n) \), as a Lie subalgebra, we have
\[0 = [\mathcal{X}, \; \omega] = [\mathcal{X}, \; u] + [\mathcal{X}, \; v]. \]
Clearly \([\mathcal{X}, \; u]\) and \([\mathcal{X}, \; v]\) are zero; otherwise both are non-zero and not linearly independent; a contradiction because \([\mathcal{X}, \; v]\) contains the vector field \(\frac{\partial}{\partial x^j} \) in its expression whereas \([\mathcal{X}, \; u]\) does not. Thus \([\mathcal{X}, \; u] = 0\) and \(u \in [\mathfrak{so}(n-1) \otimes \mathfrak{g}_{n-1}]^{e_{\mathcal{X}} - \mathcal{X}} \).

If \(k = 2, \; u = c \rho_{n-1} \) for some constant \(c \in \mathbb{R} \). We have
\[S_1 = \sum_{z \in S'} c_{1, \ast} e \otimes \frac{\partial}{\partial x^\nu} \land \frac{\partial}{\partial z} \quad \text{and} \quad S_2 = \sum_{z^1, z^2 \in S, \; 1 \leq j < n} c_{2, \ast} X_{jn} \otimes \frac{\partial}{\partial z^1} \land \frac{\partial}{\partial z^2}, \]
and since \(0 = [\mathcal{X}, \; v] = [\mathcal{X}, \; S_1 + S_2] = [\mathcal{X}, \; S_1] + [\mathcal{X}, \; S_2] \), we must have \([\mathcal{X}, \; S_1] = [\mathcal{X}, \; S_2] = 0 \). Now
\[0 = [\mathcal{X}, \; S_1] = - \sum_{z \in S'} c_{1, \ast} \left[[\mathcal{X}, \; e] \otimes \frac{\partial}{\partial z} \right] \land \frac{\partial}{\partial x^\nu}, \]
thus
\[\sum_{z \in S'} c_{1, \ast} \left[[\mathcal{X}, \; e] \otimes \frac{\partial}{\partial z} \right] = 0. \]
And thus \(\sum_{z \in S'} c_{1, \ast} e \otimes \frac{\partial}{\partial x^\nu} \in [\mathfrak{so}(n-1) \otimes \mathfrak{g}_{n-1}]^{e_{\mathcal{X}} - \mathcal{X}} = \{ 0 \}, \) therefore \(S_1 = 0 \).

In particular for \(\mathcal{X} = X_{1n} := -x_1 \frac{\partial}{\partial x^1} + x_n \frac{\partial}{\partial x^n} \in \mathfrak{so}(n) \); we have
\[0 = [\mathcal{X}, \; \omega] = [\mathcal{X}, \; u] + [\mathcal{X}, \; S_2] = \sum_{2 \leq j \leq n-1} c X_{in} \otimes \frac{\partial}{\partial x^j} \land \frac{\partial}{\partial x^j} + \sum_{2 \leq j \leq n-1} c X_{ij} \otimes \frac{\partial}{\partial x^j} \land \frac{\partial}{\partial x^j} \]
\[+ \sum_{z^1, z^2 \in S, \; 1 \leq j \leq n-1} c_{2, \ast} X_{ijn} \otimes \frac{\partial}{\partial z^1} \land \frac{\partial}{\partial z^2} \quad \text{and} \quad \sum_{z^1, z^2 \in S, \; 1 \leq j \leq n-1} c_{2, \ast} X_{jn} \otimes \left[X_{in}, \frac{\partial}{\partial z^1} \land \frac{\partial}{\partial z^2} \right] \]
\[+ \sum_{z \in S', \; 1 \leq j \leq n-1} c_{3, \ast} X_{ijn} \otimes \frac{\partial}{\partial z} \land \frac{\partial}{\partial x^\nu} + \sum_{z \in S', \; 1 \leq j \leq n-1} c_{3, \ast} X_{jn} \otimes \left[X_{in}, \frac{\partial}{\partial z} \land \frac{\partial}{\partial x^\nu} \right] = 0. \]

Clearly, all the coefficients except \(c_{3, \ast}^{1, \ast} \) appear in this summation and the only basis vectors repeated are \(X_{jn} \otimes \frac{\partial}{\partial x^j} \land \frac{\partial}{\partial x^j} \) and \(X_{ij} \otimes \frac{\partial}{\partial x^j} \land \frac{\partial}{\partial x^j} \) for \(2 \leq j \leq n-1 \). It follows that all the \(c_{2, \ast} \) are zero and all the \(c_{3, \ast} \) are zero except \(c_{3, \ast}^l \) with \(j \neq 1 \) which satisfy \(c_{3, \ast}^l - c = 0 \). So
\[\omega = c \rho_{n-1} + c \sum_{z \in S', \; 2 \leq j \leq n-1} X_{jn} \otimes \frac{\partial}{\partial x^j} \land \frac{\partial}{\partial x^j} + c_{3, \ast}^{1, \ast} X_{1n} \otimes \frac{\partial}{\partial x^1} \land \frac{\partial}{\partial x^1}. \]
Applying finally \(\mathcal{X} = X_{2n} \) to the condition \([\mathcal{X}, \; \omega] = 0\) gives \(c_{3, \ast}^{1, \ast} = c \). Hence \(\omega = c \rho_{n} \).

If \(k = n - 2, \; u = 0 \) by inductive hypothesis. Since
\[0 = [\mathcal{X}, \; v] = [\mathcal{X}, \; S_1 + S_2] = [\mathcal{X}, \; S_1] + [\mathcal{X}, \; S_2], \]
we must have \([\mathcal{X}, \; S_1] = [\mathcal{X}, \; S_2] = 0 \), otherwise they are linear dependant; a contradiction.
\[0 = [\mathcal{X}, \; S_1] = \sum_{z^1, \ldots, z^{n-3} \in S'} c_{1, \ast} (-1)^{n-3} \left[[\mathcal{X}, \; e] \otimes \frac{\partial}{\partial z^1} \land \cdots \land \frac{\partial}{\partial z^{n-3}} \right] \land \frac{\partial}{\partial x^n}, \]
thus
\[\sum_{z^1, \ldots, z^{n-3} \in S'} c_{1, \ast} (-1)^{n-3} \left[[\mathcal{X}, \; e] \otimes \frac{\partial}{\partial z^1} \land \cdots \land \frac{\partial}{\partial z^{n-3}} \right] = 0 \]
and thus we have
\[\sum_{z^1, \ldots, z^n \in \mathbb{S}} c_{1,*} (-1)^{n-3} e \otimes \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^{n-3}} \in \left[\mathfrak{so}(n-1) \otimes \mathcal{J}_{n-1}^{\wedge^{n-3} \mathfrak{so}^{n-1}} \right] = \{ \gamma_{n-1} \}; \]

and thus \(S_1 = c \gamma_{n-1} \wedge \frac{\partial}{\partial x^m} \).

Now choose \(\mathcal{X} = \mathcal{X}_{in} \). Then

\[
0 = [\mathcal{X}, \nu] = \sum_{z^1, \ldots, z^n \in \mathbb{S}, \, 2 \leq i \leq n-1} c_{2,*} X_{ii} \otimes \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^{n-2}}
\]

\[
+ \sum_{z^1, \ldots, z^n \in \mathbb{S}, \, 2 \leq i \leq n-1} c_{2,*} X_{in} \otimes \left(- \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial x^n} \wedge \cdots \wedge \frac{\partial}{\partial z^{n-2}} \right)
\]

\[
+ \sum_{z^1, \ldots, z^n \in \mathbb{S}, \, 2 \leq i \leq n-1} c_{2,*} X_{in} \otimes \left(\frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial z^{n-2}} \right)
\]

\[
+ c \sum_{1 \leq i \leq n-1} (-1)^{j+i+1} [X_{ij}, X_{ij}] \otimes \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^i} \cdots \wedge \frac{\partial}{\partial x^j} \cdots \wedge \frac{\partial}{\partial x^{n-2}} \otimes \frac{\partial}{\partial x^i}. \]

All coefficients \(c_{2,*} \) are zero in this summation except the coefficients \(c_{2, in} \) of basis vectors \(X_{in} \otimes \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^i} \wedge \cdots \wedge \frac{\partial}{\partial x^j} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-2}} \) with \(i \neq j \).

Similarly we apply other choices of \(\mathcal{X} = \mathcal{X}_{in} \in \mathfrak{so}(n) \) to the conditions \([\mathcal{X}, \nu] = 0\) to find

\[
S_2 = c \sum_{1 \leq i \leq n-1} (-1)^{j+i+1} X_{ij} \otimes \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^i} \cdots \wedge \frac{\partial}{\partial x^j} \cdots \wedge \frac{\partial}{\partial x^{n-1}}. \]

Thus \(\omega = c \sum_{1 \leq i \leq n} (-1)^{j+i+1} X_{ij} \otimes \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^i} \cdots \wedge \frac{\partial}{\partial x^j} \cdots \wedge \frac{\partial}{\partial x^{n-1}} \wedge \frac{\partial}{\partial x^i} \wedge \frac{\partial}{\partial x^j} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \wedge \frac{\partial}{\partial x^n} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-1}}. \)

with \(\text{sgn}(\sigma_{ij}) = (-1)^{i+j+1} \).

Lemma 4.3.

\[[\mathcal{J}_n \otimes \mathcal{J}_n^{\wedge^k}]^{\mathfrak{so}(n)} = \{ 0 \} \quad \text{for } k \notin \{ 1, n - 1 \}. \]

Proof. For the same reasons as in the proof of **Lemma 4.2**, we have

\[\text{dim}[\mathcal{J}_n \otimes \mathcal{J}_n^{\wedge^k}]^{\mathfrak{so}(n)} = \text{dimHom}_{\mathfrak{so}(n)}(\mathcal{J}_n, \mathcal{J}_n^{\wedge^k}). \]

Now since the \(\mathcal{J}_n^{\wedge^k} \) are all nonisomorphic irreducible representations of \(\mathfrak{so}(n) \) except when \(k = \frac{n}{2} \) with \(n \) even. We deduce that the space \(\text{Hom}_{\mathfrak{so}(n)}(\mathcal{J}_n; \mathcal{J}_n^{\wedge^k}) \) is zero unless \(k = 1 \) or \(k = n - 1 \), in which case it is one-dimensional.

Lemma 4.4.

\[[\mathcal{J}_n \otimes \mathcal{J}_n]^{\mathfrak{so}(n)} = \left(\frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^2} \otimes \frac{\partial}{\partial x^2} + \cdots + \frac{\partial}{\partial x^n} \otimes \frac{\partial}{\partial x^n} \right) \quad \text{for } n \geq 3 \]

Proof. We proceed by induction on \(n \). By direct calculation, we easily check that

\[[\mathcal{J}_3 \otimes \mathcal{J}_3]^{\mathfrak{so}(3)} = \left(\frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^2} \otimes \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3} \otimes \frac{\partial}{\partial x^3} \right). \]

Now assume that

\[[\mathcal{J}_{n-1} \otimes \mathcal{J}_{n-1}]^{\mathfrak{so}(n-1)} = \left(\sum_{i=1}^{n-1} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^i} \right) \]

and let \(\omega \in [\mathcal{J}_n \otimes \mathcal{J}_n]^{\mathfrak{so}(n)} \), then \(\omega = u_1 + u_2 \) where

\[u_1 \in (\mathcal{J}_{n-1} \otimes \mathcal{J}_{n-1}), \quad u_2 \in (\mathcal{J}_n \otimes \mathcal{J}_n)/(\mathcal{J}_{n-1} \otimes \mathcal{J}_{n-1}). \]

A vector space basis of \((\mathcal{J}_n \otimes \mathcal{J}_n)/(\mathcal{J}_{n-1} \otimes \mathcal{J}_{n-1}) \) has \(2n - 1 \) elements and is given by the families of elements

1. \(\frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1}, z^1 \in \{ x^1, \ldots, x^n \} \)
2. \(\frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^n}, z^1 \in \{ x^1, x^2, \ldots, x^n \} \).
So
\[u_2 = \sum_{1 \leq i \leq n} c_{2,i} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial z^i} + \sum_{1 \leq j < n} c_{3,j} \frac{\partial}{\partial z^j} \otimes \frac{\partial}{\partial x^n}. \]

Now for \(\mathcal{X} \in \mathfrak{so}(n-1) \subseteq \mathfrak{so}(n) \) as a Lie subalgebra, we have
\[0 = [\omega, \mathcal{X}] = [u_1, \mathcal{X}] + [u_2, \mathcal{X}]. \]

So \([u_1, \mathcal{X}] \) and \([u_2, \mathcal{X}] \) are linearly dependant if they are non-zero; a contradiction. Thus \([u_1, \mathcal{X}] = 0 \) i.e. \(u_1 \in [\mathcal{J}_{n-1} \otimes \mathcal{J}_{n-1}]^{\mathfrak{so}(n-1)} \), hence \(u_1 = c_1 \sum_{i=1}^{n-1} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^i} \) for some constant \(c_1 \). Let \(\mathcal{X}_k = -x_k \frac{\partial}{\partial x^k} + x_n \frac{\partial}{\partial x^n} \) with \(k \neq n \).

\[0 = [u_2 + u_1, \mathcal{X}_k] = \sum_{1 \leq i \leq n} c_{2,i} \left[\frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial z^i}, -x_k \frac{\partial}{\partial x^k} + x_n \frac{\partial}{\partial x^n} \right] \]
\[+ \sum_{1 \leq j < n} c_{3,j} \left[\frac{\partial}{\partial z^j} \otimes \frac{\partial}{\partial z^j}, -x_k \frac{\partial}{\partial x^k} + x_n \frac{\partial}{\partial x^n} \right] + c_1 \sum_{i=1}^{n-1} \left[\frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^i}, -x_k \frac{\partial}{\partial x^k} + x_n \frac{\partial}{\partial x^n} \right] \]
\[= \sum_{1 \leq i \leq n, i \neq k} c_{2,i} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial z^i} + \sum_{1 \leq j < n, j \neq k} c_{3,j} \frac{\partial}{\partial z^j} \otimes \frac{\partial}{\partial z^j} + (c_{2,k} + c_{3,k}) \frac{\partial}{\partial x^k} \otimes \frac{\partial}{\partial z^k} - (c_{2,k} + c_{3,k}) \frac{\partial}{\partial x^k} \otimes \frac{\partial}{\partial x^k} - c_1 \frac{\partial}{\partial x^k} \otimes \frac{\partial}{\partial x^k} - c_1 \frac{\partial}{\partial x^k} \otimes \frac{\partial}{\partial x^k}. \]

So \(c_{2,i} = 0 \), for \(1 \leq i \leq n-1 \), \(i \neq k \); \(c_{3,j} = 0 \) for \(1 \leq j < n \), \(j \neq k \); \(c_{2,k} + c_{3,k} = 0 \) and \(c_1 - c_{2,n} = 0 \). So \(u_2 = c_1 \frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} \), therefore \(\omega = u_1 + u_2 = c_1 \sum_{i=1}^{n} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^i} \). \(\square \)

Lemma 4.5.
\[[\mathcal{J}_n \otimes \wedge^{n-1}(\mathcal{J}_n)]^{\mathfrak{so}(n)} = \left(\sum_{m=1}^{n} (-1)^{m-1} \frac{\partial}{\partial x^m} \otimes \frac{\partial}{\partial x^m} \wedge \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \wedge \cdots \wedge \frac{\partial}{\partial x^n} \right) \]
for \(n \geq 3 \)**

Proof. We apply induction on \(n \). It is easy to check by direct calculations that
\[[\mathcal{J}_3 \otimes \mathcal{J}_3]^{\mathfrak{so}(3)} = \left(\frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} - \frac{\partial}{\partial x^2} \otimes \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3} \otimes \frac{\partial}{\partial x^2} \wedge \frac{\partial}{\partial x^2} \right) \].

Now assume that
\[[\mathcal{J}_{n-1} \otimes \wedge^{n-2}(\mathcal{J}_{n-1})]^{\mathfrak{so}(n-1)} = \left(\sum_{m=1}^{n-1} (-1)^{m-1} \frac{\partial}{\partial x^m} \otimes \frac{\partial}{\partial x^m} \wedge \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^m} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-1}} \right) \]
and let \(\omega \in [\mathcal{J}_n \otimes \wedge^{n-1}(\mathcal{J}_n)]^{\mathfrak{so}(n)} \), then \(\omega = u_1 + u_2 \) where
\[u_1 \in [\mathcal{J}_{n-1} \otimes \wedge^{n-1}(\mathcal{J}_{n-1})], \quad u_2 \in ([\mathcal{J}_n \otimes \wedge^{n-1}(\mathcal{J}_n)] / ([\mathcal{J}_{n-1} \otimes \wedge^{n-1}(\mathcal{J}_{n-1}))]. \]

A vector space basis of \(([\mathcal{J}_n \otimes \wedge^{n-1}(\mathcal{J}_n)] / ([\mathcal{J}_{n-1} \otimes \wedge^{n-1}(\mathcal{J}_{n-1})) \) has exactly the \(n^2 - n + 1 \) elements given by the families:
\begin{enumerate}
 \item \(\frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-1}} \)
 \item \(\frac{\partial}{\partial x^2} \otimes \frac{\partial}{\partial x^2} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-1}} \)
 \item \(\frac{\partial}{\partial x^3} \otimes \frac{\partial}{\partial x^3} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-1}} \)
\end{enumerate}
where for each family, the \(z^i \)'s are elements of \(R = \{ x^1, x^2, \ldots, x^{n-1} \} \). So
\[u_2 = c_1 \frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} \wedge \cdots \wedge \frac{\partial}{\partial x^{n-1}} + S_2 + S_3 \]
where
\[S_2 = \sum_{z^1,\ldots,z^{n-2} \in R} c_{2,*} \frac{\partial}{\partial z^1} \otimes \frac{\partial}{\partial z^1} \wedge \cdots \wedge \frac{\partial}{\partial z^{n-2}} \]
and
\[S_3 = \sum_{z^1,\ldots,z^{n-1} \in R} c_{3,*} \frac{\partial}{\partial z^2} \otimes \frac{\partial}{\partial z^2} \wedge \cdots \wedge \frac{\partial}{\partial z^{n-1}}. \]
Now for \(\mathcal{X} \in \text{so}(n - 1) \subseteq \text{so}(n) \) as a Lie subalgebra, we have on one hand

\[
0 = [\omega, \mathcal{X}] = [u_1, \mathcal{X}] + [u_2, \mathcal{X}].
\]

So \([u_1, \mathcal{X}] = 0 = [u_2, \mathcal{X}]\); otherwise they will be linearly dependant; a contradiction. But as \(u_1 \in S_{n-1} \otimes S_{n-1}^{(n-1)}\), it follows that

\[
u_1 = \sum_{i=1}^{n-1} c_{0,i} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^1} \wedge \frac{\partial}{\partial x^2} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}}
\]

for some constants \(c_{0,i}\). So for \(\mathcal{X} = x_j \frac{\partial}{\partial x^{n-1}} - x_i \frac{\partial}{\partial x^1} \) with \(1 \leq j \leq n - 2\), we have

\[
0 = [u_1, \mathcal{X}] = \sum_{i=1}^{n-1} c_{0,i} \left(\left(- \frac{\partial}{\partial x^j} \otimes \frac{\partial}{\partial x^1} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} + \frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^j} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} \right) \right)
\]

Thus \(c_{0,j} = 0 = c_{0,n-1}\). Repeating for \(0 \leq j \leq n - 2\) yields \(c_{0,i} = 0\) for all \(i = 1, 2, \ldots, n - 1\); hence \(u_1 = 0\). On the other hand, for all \(\mathcal{X} \in \text{so}(n - 1) \subseteq \text{so}(n)\) as a Lie subalgebra, we also have

\[
0 = [u_2, \mathcal{X}] = [S_2, \mathcal{X}] + [S_3, \mathcal{X}]
\]

(note that a simple verification shows that \([c_1 \frac{\partial}{\partial x^1} \otimes \frac{\partial}{\partial x^1} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}}, \mathcal{X}] = 0\) and since \([S_2, \mathcal{X}] \) and \([S_3, \mathcal{X}] \) are linearly independent, they are both zero. Thus

\[
0 = [S_2, \mathcal{X}] = \sum_{j=1}^{n-2} c_{2,j} \frac{\partial}{\partial z^j} \wedge \ldots \wedge \frac{\partial}{\partial z^{n-2}} \otimes \frac{\partial}{\partial x^1} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}}, \mathcal{X},
\]

and thus

\[
\sum_{j=1}^{n-2} c_{2,j} \frac{\partial}{\partial z^j} \wedge \ldots \wedge \frac{\partial}{\partial z^{n-2}} \in [S_{n-1} \otimes S_{n-1}^{(n-1)}] = \{0\}.
\]

by Lemma 4.1. Therefore \(S_2 = 0\). Similarly we have

\[
0 = [S_3, \mathcal{X}] = \sum_{j=1}^{n-1} c_{3,j} \frac{\partial}{\partial z^j} \wedge \ldots \wedge \frac{\partial}{\partial z^{n-1}} \otimes \frac{\partial}{\partial x^1} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}}, \mathcal{X},
\]

thus

\[
\sum_{j=1}^{n-1} c_{3,j} \frac{\partial}{\partial z^j} \wedge \ldots \wedge \frac{\partial}{\partial z^{n-1}} \in [S_{n-1} \otimes S_{n-1}^{(n-2)}] = \{0\}.
\]

So

\[
S_3 = (-1)^n c \sum_{m=1}^{n-1} (-1)^m \frac{\partial}{\partial x^m} \wedge \frac{\partial}{\partial x^1} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} \otimes \frac{\partial}{\partial x^1} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} \wedge \frac{\partial}{\partial x^1}
\]

by inductive hypothesis. Now taking in particular \(\mathcal{X} = -x_1 \frac{\partial}{\partial x^1} + x_n \frac{\partial}{\partial x^1}\), we have

\[
0 = [\omega, \mathcal{X}] = [u_2, \mathcal{X}] = c_1 \left[\frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}}, \mathcal{X} \right] + (-1)^n \sum_{m=1}^{n-1} (-1)^m \frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} \otimes \frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}}, \mathcal{X}
\]

\[
= (c_1 + c) \frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} - (c_1 + c) \frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} .
\]

thus \(c_1 + c = 0\) i.e. \(c_1 = -c\). Hence

\[
\omega = u_2 = (-1)^n c \sum_{m=1}^{n-1} (-1)^m \frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} \wedge \frac{\partial}{\partial x^m} \wedge \ldots \wedge \frac{\partial}{\partial x^{n-1}} \wedge \frac{\partial}{\partial x^m} .
\]

\(\square\)
Lemma 4.6. Let \(\bar{\gamma}_n = \bar{\gamma}_n + \bar{\gamma}_n \) with
\[
\bar{\gamma}_n = \frac{1}{n!} \sum_{1 \leq i < j \leq n, \sigma \in S_{n-2}} \text{sgn}(\sigma) \partial X_{ij} \otimes \frac{\partial}{\partial x^{(i)}} \otimes \cdots \otimes \frac{\partial}{\partial x^{(j)}} \otimes \frac{\partial}{\partial x^{(n)}}
\]
and
\[
\bar{\gamma}'_n = \frac{(-1)^{n+1}}{n!} \sum_{1 \leq i < j \leq n, \sigma \in S_{n-2}} \text{sgn}(\sigma) \partial X_{ij} \otimes \frac{\partial}{\partial x^{(i)}} \otimes \cdots \otimes \frac{\partial}{\partial x^{(j)}} \otimes \frac{\partial}{\partial x^{(n)}} \otimes X_{ij}.
\]
Then
- \(\bar{\gamma}_n \) is an \(h_n \)-invariant
- \(\pi_3^\ast(\bar{\gamma}_n) = \pi_3^\ast(\bar{\gamma}_n) = [\gamma_n] \) in \(H^4_{n-2} \), where \(\pi_3 : b_{n-1} \rightarrow h_n \otimes h^{n-2} \) is the projection.

Proof. As \(\bar{\gamma}_n \) and \(\bar{\gamma}'_n \) are \(o(n) \)-invariant, so is \(\bar{\gamma}_n \). Also since \(\left[\frac{\partial}{\partial x^i}, \bar{\gamma}_n \right] = -\left[\frac{\partial}{\partial x^i}, \bar{\gamma}_n \right] \) for all \(i = 1 \ldots n \), it follows that \(\bar{\gamma}_n \) is an \(J_n \)-invariant. For the second assertion, it is clear that
\[
\pi_3(\bar{\gamma}_n) = \partial \left(\sum_{1 \leq i_1 < \cdots < i_n \leq n} \text{sgn}(\sigma) \frac{\partial}{\partial x^{(i_1)}} \otimes \frac{\partial}{\partial x^{(i_2)}} \wedge \cdots \wedge \frac{\partial}{\partial x^{(i_n)}} \wedge \cdots \wedge \frac{\partial}{\partial x^{(n)}} \otimes X_{i_1 i_2} \wedge \cdots \wedge X_{i_n i_1} \right)
\]
with the permutation \(\sigma_n = (i_1, i_2, \ldots, i_l, \ldots, i_n, i_r, i_l) \). \(\square \)

Remark 4.7. Since as an \(o(n) \)-module \(h_n \cong J_n \oplus o(n) \), it follows that
\[
[h_n \wedge^\ast (J_n)]_{\text{rel}} \cong [J_n \wedge^\ast (J_n)]_{\text{rel}} + [o(n) \wedge^\ast (J_n)]_{\text{rel}}.
\]
Therefore the four last lemmas combined completely give the homology groups \(H^4_{\text{Lie}}(h_n; \mathbb{R}) \) and \(H^4_{\text{Lie}}(h_n; \mathbb{R}) \). It is known for the cohomology of the orthogonal Lie group (viewed as a manifold), the Hopf algebras
\[
H^4_{\text{dr}}(\mathfrak{so}(2k); \mathbb{R}) \cong \wedge^\ast(u_3, u_7, \ldots, u_{4k-5}, u_{2k-1})
\]
and
\[
H^4_{\text{dr}}(\mathfrak{so}(2k-1); \mathbb{R}) \cong \wedge^\ast(u_3, u_7, \ldots, u_{4k-5}),
\]
where the \(u_i \)'s are primitive generators of odd degrees \(i \) and \(H^4_{\text{dr}}(\mathfrak{so}(n); \mathbb{R}) \) denotes the de Rham cohomology [5, p. 1742].

Also as vector spaces
\[
H^4_{\text{Lie}}(\mathfrak{so}(n); \mathbb{R}) \cong H^4_{\text{Lie}}(\mathfrak{so}(n); \mathbb{R}).
\]

5. The Leibniz homology of \(h_n \)

For any Leibniz algebra \(\mathfrak{g} \) (thus for Lie algebras in particular) over a ring \(k \), the Leibniz homology of \(\mathfrak{g} \) with coefficients in \(k \) denoted \(H_*^{\text{Lie}}(\mathfrak{g}; k) \), is the homology of the Leibniz complex \(T^\ast(\mathfrak{g}) \), namely
\[
k \xleftarrow{\mathfrak{g}} \xleftarrow{\mathfrak{g}^2} \xleftarrow{d} \cdots \xleftarrow{d} \mathfrak{g}^n \leftarrow \mathfrak{g}^n \xleftarrow{d} \cdots \xleftarrow{d} \mathfrak{g}^0 \xleftarrow{\mathfrak{g}^0} k
\]
where \(\mathfrak{g}^n \) is the \(n \)-th tensor power of \(\mathfrak{g} \) over \(k \), and where
\[
d(g_1 \otimes g_2 \otimes \cdots \otimes g_n) = \sum_{1 \leq i < j \leq n} (-1)^{i+j} g_1 \otimes g_2 \otimes \cdots \otimes \hat{g}_i \otimes \cdots \otimes \hat{g}_j \otimes \cdots \otimes g_n \ [7].
\]
The canonical projection \(\mathfrak{g}^n \xrightarrow{\pi_1} \mathfrak{g}^n \xrightarrow{\pi_2} \mathfrak{g}^{n+1} \), \(n \geq 0 \), is a map of chain complexes, \(T^\ast(\mathfrak{g}) \rightarrow \wedge^\ast(\mathfrak{g}) \), and induces the following \(k \)-linear map on homology \(H_*^{\text{Lie}}(\mathfrak{g}; k) \rightarrow H^\ast_{\text{Lie}}(\mathfrak{g}; k) \). Considering
\[
(ker \pi_1)_n = ker[g^{(n+2)} \rightarrow \mathfrak{g}^{(n+2)}], \quad n \geq 0.
\]
The relative theory \(H^\ast_{\text{rel}}(\mathfrak{g}) \) was defined by Pirashvili [13] as the homology of the complex
\[
C^\ast_n(\mathfrak{g}) = (ker \pi_1)_n.
\]
Also, the projection \(\mathfrak{g} \otimes \mathfrak{g}^n \xrightarrow{\pi_2} \mathfrak{g}^{n+1} \), \(n \geq 0 \), is a map of chain complexes,
\[
\pi_2 : \mathfrak{g} \otimes \wedge^\ast(\mathfrak{g}) \rightarrow \wedge^{\ast+1}(\mathfrak{g}).
\]
Let \(H_R(\mathfrak{g}) \) denote the homology of the complex
\[
C^\ast_n(\mathfrak{g}) = (ker \pi_2)_n = ker[\mathfrak{g} \otimes \mathfrak{g}^{(n+1)} \rightarrow \mathfrak{g}^{(n+2)}], \quad n \geq 0.
\]
Lemma 5.1. For the affine orthogonal Lie algebra h_n, there are natural isomorphisms

\[HR_{k-3}(so(n); \mathbb{R}) \cong H^k_{\text{Lie}}(so(n); \mathbb{R}) \quad \text{for all } k \geq 3, \]

\[HR_{k-3}(h_n; \mathbb{R}) \cong H^k_{\text{Lie}}(so(n); \mathbb{R}) \oplus \{ \gamma_n \} \]

where $\gamma_n = \sum_{1 \leq i < j \leq n} (-1)^{i+j+1} X_{ij} \otimes \frac{\delta}{\delta x^i} \wedge \cdots \wedge \frac{\delta}{\delta x^j} \wedge \cdots \wedge \frac{\delta}{\delta x^n}$.

Recall that a Zinbiel algebra is a vector space V equipped with a binary operation \circ which satisfies the relation

\[(a \circ b) \circ c = a \circ (b \circ c) + a \circ (c \circ b) \quad \text{for all } a, b, c \in V.\]

For a Leibniz algebra g, let $\gamma \in \text{Hom}(g^{\otimes p}, \mathbb{R})$ and $\beta \in \text{Hom}(g^{\otimes q}, \mathbb{R})$. The co-half shuffle $\gamma \bullet \beta \in \text{Hom}(g^{\otimes (p+q)}, \mathbb{R})$ is defined by

\[(\gamma \bullet \beta)(x_1 \otimes \cdots \otimes x_{p+q}) = \sum_{\sigma \in \text{Sh}_{p-1,q}} (\text{sgn } \sigma) \gamma(x_1, x_{\sigma(2)}, x_{\sigma(3)}, \ldots, x_{\sigma(p)}) \beta(x_{\sigma(p+1)}, \ldots, x_{\sigma(p+q)});
\]

where $\text{Sh}_{p-1,q}$ is the set of all $(p - 1, q)$-shuffles of $(2, \ldots, p, p + 1, \ldots, p + q)$. Loday showed (see [9]) that the co-half shuffles on cochains induce a Zinbiel algebra structure on $H_{\text{Lie}}^*(g; \mathbb{R})$.

Theorem 5.2. There is an isomorphism of vector spaces

\[H_{\text{Lie}}^n(h_n) \cong (\mathbb{R} \oplus \langle \tilde{a}_n \rangle) \otimes T^*(\tilde{\gamma}_n), \]

and an algebra isomorphism,

\[H^*_{\text{Lie}}(h_n) \cong (\mathbb{R} \oplus \langle \tilde{a}_n^d \rangle) \otimes T^*(\tilde{\gamma}_n^d), \]

where

\[\tilde{a}_n^d = \sum_{\sigma \in S_n} \text{sgn } \sigma d \sigma^{(1)} \otimes d \sigma^{(2)} \otimes \cdots \otimes d \sigma^{(n)}, \]

\[\tilde{\gamma}_n^d = \sum_{1 \leq i < j \leq n} (-1)^{i+j+1} X_{ij} \otimes d \sigma^{(1)} \otimes \cdots \otimes d \sigma^{(i-1)} \otimes d \sigma^{(i+1)} \otimes \cdots \otimes d \sigma^{(j-1)} \otimes d \sigma^{(j+1)} \otimes \cdots \otimes d \sigma^{(n)} \]

and H_{Lie}^* is afforded the Zinbiel algebra (dual Leibniz algebra).

Proof. Consider the Pirashvili filtration of the complex

\[C_n^\text{rel}(g) = \text{ker}(g^{\otimes (n+2)} \to g^{\wedge (n+2)}) \quad n \geq 0, \]

given by

\[F^k_{m+1}(g) = g^{\otimes k} \otimes \text{ker}(g^{\otimes (m+2)} \to g^{\wedge (m+2)}) \quad m \geq 0, \]

Then F^k_{m} is a subcomplex of F^k_{m+1}, and the resulting spectral sequence converges to $H_{\text{Lie}}^*(g)$ with

\[E_{m,k}^2 \cong H^k_{\text{Lie}}(g) \otimes HR_m(g), \quad m \geq 0, \quad k \geq 0. \]

(See [12] for the cohomological version.)

From the proof of Lemma 5.1, it is clear that for $k \leq n - 2$, $\partial : H^k_{\text{Lie}}(h_n; \mathbb{R}) \to HR_k(h_n; \mathbb{R})$ is an isomorphism, so from the long exact sequence relating Lie and Leibniz homologies, we have in particular

\[H^1_{\text{Lie}}(h_n; \mathbb{R}) = H^1_{\text{Lie}}(h_n; \mathbb{R}) = 0 \quad \forall n \geq 3; \quad H^2_{\text{Lie}}(h_n; \mathbb{R}) \cong \frac{H^0_{\text{rel}}(h_n)}{im \partial} \cong 0 \quad \forall n > 3. \]

In fact we prove inductively that $H^k_{\text{Lie}}(h_n; \mathbb{R}) \cong 0$ for $1 \leq k \leq n - 2$. Indeed, since $so(n)$ is a semi-simple Lie algebra, $H^k_{\text{Lie}}(so(n); \mathbb{R}) = 0$, $k \geq 1$. So from the long exact sequence

\[\cdots \to H^k_{\text{Lie}}(so(n)) \to H^k_{\text{Lie}}(h_n) \to H^k_{\text{rel}}(so(n)) \to H_{k-1}^k(so(n)) \to \cdots \]

induced by the definition of $H^k_{\text{Lie}}(so(n))$, we have that $\partial : H^k_{\text{Lie}}(so(n)) \to H^k_{\text{rel}}(so(n))$ is an isomorphism for $k \geq 3$. The inclusion $so(n) \hookrightarrow h_n$ induces a map between exact sequences

\[H^k_{\text{Lie}}(h_n; \mathbb{R}) \to H^k_{\text{Lie}}(so(n); \mathbb{R}) \to H^k_{\text{rel}}(h_n; \mathbb{R}) \to H^k_{\text{rel}}(so(n); \mathbb{R}) \to H^k_{\text{Lie}}(so(n); \mathbb{R}) \]

\[H^k_{\text{Lie}}(so(n); \mathbb{R}) \to H^k_{\text{Lie}}(so(n); \mathbb{R}) \to H^k_{\text{rel}}(so(n); \mathbb{R}) \to H^k_{\text{rel}}(so(n); \mathbb{R}) \to H^k_{\text{Lie}}(so(n); \mathbb{R}) \]
and the inclusion $F^r_m(\Delta(n)) \hookrightarrow F^r_m(h_n)$ induces a map of spectral sequences, thus a map

$$H_0^\rel(\Delta(n)) \otimes H_0^\rel(n) \longrightarrow H_0^\rel(h_n) \otimes H_0^\rel(n). \quad (4.2.0)$$

Since $H_0^\rel(\Delta(n)) \cong H_0^\rel(n)$, all classes in $H_0^\rel(h_n) \otimes H_0^\rel(n)$ are mapped by the boundary maps $d^2_{p,q}$, $d^3_{p,q}$, ... of the spectral sequence to the zero class. So by the map (4.2.0), all classes in $H_0^\rel(h_n) \otimes H_0^\rel(n)$ are absolute cycles (i.e. cycles for all boundary maps of the spectral sequence) in $H_0^\rel(h_n)$. So if by inductive hypothesis $H_0^\rel(h_n) \cong 0$ for $1 \leq r < k \leq n - 2$, we clearly have

$$H_0^\rel(h_n) \cong E^\infty_{r,0} \cong H_{r+3}^\lie(\so(n)); \quad \mathbf{R}.$$

Therefore we have from the long exact sequence induced by $H_0^\rel(h_n)$ that $H_0^\rel(h_n, \mathbf{R}) \cong 0$.

Again from Lemma 5.1, we have the isomorphism $H_{n-3}(h_n; \mathbf{R}) \cong \text{im } \partial \oplus \langle \gamma_n \rangle$ where $\partial : H_{n-3}^\lie(h_n; \mathbf{R}) \longrightarrow H_{n-3}^\rel(h_n; \mathbf{R})$. We have from an articulation of the boundary map ∂ in the long exact sequence induced by $H_0^\rel(h_n)$ that

$$H_{n-1}(h_n; \mathbf{R}) \cong \frac{H_{n-3}^\rel(h_n)}{\text{im } \partial} \cong \langle \gamma_n \rangle;$$

where γ_n is symmetrized and lifted to $\tilde{\gamma}_n \in T^*(h_n)$ by antisymmetrization.

All classes in $H_{n-1}(h_n) \otimes H_{n}^\rel(\so(n))$ are not absolute cycles: Indeed if $\partial = \gamma_n \otimes z$ where $z = x_1 \wedge \cdots \wedge x_k \in \wedge^k(\so(n))$ is a generator of $H_k^\rel(\so(n); \mathbf{R})$, we lift z to \tilde{z} in $T^*(\so(n))$ and γ_n to $\tilde{\gamma}_n$ to have as $d(\tilde{\gamma}_n) = 0$ and using invariance $[\tilde{\gamma}_n, x_i] = 0$ for $i = 1, 2, \ldots, k$;

$$d(\gamma_n) = d(\tilde{\gamma}_n) \otimes d(\tilde{z}) \quad (4.2.1)$$

which is a representative of a non-zero class in $H_{n-1}(h_n) \otimes H_{n}^\rel(\so(n))$. Hence again the terms $E^\infty_{r,0} \cong H_{r+3}^\lie(\so(n)); \mathbf{R}$. It follows from (4.2.1) that all classes in $H_{n-1}(h_n) \otimes H_{n}^\rel(\so(n))$ with representatives lifted to $\tilde{\gamma}_n \otimes d(\tilde{z})$, are not absolute cycles. Also, let $[\theta] \in H_{n}^\rel(\so(n))$ be represented by a sum

$$\theta = \sum_{j=1}^{n+1} \gamma_j \otimes x_{1,j} \wedge x_{2,j} \wedge x_{3,j} \wedge \cdots \wedge x_{k-2,j} \quad (4.2.2)$$

with $x_{i,j} \in \so(n)$. Let y_{k-2} be the antisymmetrization of $\sum_{j=1}^{n+1} x_{1,j} \wedge x_{2,j} \wedge x_{3,j} \wedge \cdots \wedge x_{k-2,j}$ on $T^*(\so(n))$. Then we use invariance and the fact that $[\tilde{\gamma}_n, \tilde{\gamma}_n] = 0$ to show that

$$d(\tilde{\gamma}_n) \otimes \theta = \tilde{\gamma}_n \otimes d(y_{k-2})$$

which corresponds to a non-zero class in $H_{2n-2}(h_n; \mathbf{R}) \otimes H_{k-3}(h_n)$. Similarly, since $\tilde{\gamma}_n \otimes 2 \notin \text{im } \partial$ with $\partial : H_{2n-4}(h_n; \mathbf{R}) \longrightarrow H_{2n-4}(h_n; \mathbf{R})$, it corresponds to a non-zero class in $H_{2n-2}(h_n)$ and all classes in $H_{2n-2}(h_n) \otimes H_{n}^\rel(h_n)$ except $\tilde{\gamma}_n \otimes 2$ are not absolute cycles in $H_{n}^\rel(h_n)$, and $\tilde{\gamma}_n \otimes 3 \notin \text{im } \partial$. By induction on k, $\tilde{\gamma}_n \otimes k$ corresponds to a non-zero class in $H_{k+1}(h_n)$ and all classes in $H_{k+1}(h_n) \otimes H_{n}^\rel(h_n)$ are not absolute cycles, except $\tilde{\gamma}_n \otimes k+1 \notin \text{im } \partial$. At this point, $H_{k}^\rel(h_n)$ is completely determined for $k < n$; to determine $H_{k}^\rel(h_n)$ for $k \geq n$, we first notice that

$$\alpha_n \in \ker \partial, \quad \partial : H_{n}^\lie(h_n; \mathbf{R}) \longrightarrow H_{n}^\lie(h_n; \mathbf{R}).$$

So, $\tilde{\alpha}_n$ generates a non-zero class in $H_{n}(h_n; \mathbf{R})$ mapping to the class $\alpha_n \in H_{n}^\lie(h_n; \mathbf{R})$. So we have in addition to the steps above in the determination of $H_{k+1}(h_n)$ to examine the boundary maps on $\alpha_n \otimes \theta$ for $\theta \in H_{n}^\rel(h_n)$. Indeed, assume on one hand that $[\theta] \in H_{n}^\rel(h_n)$ is represented by a sum

$$\theta = \sum_{j=1}^{n} x_{1,j} \otimes x_{2,j} \wedge x_{3,j} \wedge \cdots \wedge x_{k+1,j}$$

where $x_{i,j} \in \so(n)$ and $d(\theta) = 0$. Let $\tilde{\theta} \in T^*(\so(n))$ be the antisymmetrization of θ. By invariance, $[\tilde{\alpha}_n, x_{i,j}] = 0$ for each $x_{i,j}$. This yields the conclusion that $\tilde{\alpha}_n \otimes \tilde{\theta}$ represents an absolute cycle in $H^\rel(h_n)$. However, assuming on the other hand θ as in (4.2.2), using invariance and the fact that $[\tilde{\alpha}_n, \tilde{\gamma}_n] = 0$, we obtain $d(\tilde{\alpha}_n \otimes \tilde{\theta}) = \tilde{\alpha}_n \otimes \tilde{\gamma}_n \otimes d(y_{k-2})$ which is a representative of a non-zero class in $H_{2n-1}(h_n; \mathbf{R}) \otimes H_{k-3}(h_n)$. To compute

$$\partial : H_{n}^\lie(h_n; \mathbf{R}) \longrightarrow H_{n-1}^\lie(h_n; \mathbf{R}) \otimes H_{k-3}(h_n),$$

on classes of the form $\tilde{\alpha}_n \otimes H^\lie_*(\so(n))$, let $[\theta'] \in H^\lie_*(\so(n))$ with $\partial(\theta') = \theta$. By lifting $\alpha_n \otimes \theta'$ to $\tilde{\alpha}_n \otimes \theta'$ in $T^*(h_n)$ and using invariance, we have

$$\partial(\alpha_n \otimes \theta') = \tilde{\alpha}_n \otimes \theta'.$$

Hence $\tilde{\alpha}_n \otimes \tilde{\gamma}_n$ also corresponds to a non-zero class in $H_{2n-1}(h_n; \mathbf{R})$ since
\[\tilde{\alpha}_n \otimes \tilde{\gamma}_n \notin \text{im } \partial; \quad \partial : H_{n+4}^{\text{Lie}}(\mathfrak{h}_n; \mathbb{R}) \longrightarrow H_n^{\text{rel}}(\mathfrak{h}_n; \mathbb{R}). \]

By induction on \(k\), \(\tilde{\alpha}_n \otimes \tilde{\gamma}_n^{\otimes k}\) corresponds to a non-zero class in \(H_{n+k(n-1)}(\mathfrak{h}_n; \mathbb{R})\).

Summing up,
\[
H_{\ell}(\mathfrak{h}_n; \mathbb{R}) \cong \begin{cases} \{\tilde{\gamma}^{\otimes r}\}, & \text{for } r = k(n-1) \\ \{\tilde{\alpha} \otimes \tilde{\gamma}^{\otimes r}\}, & \text{for } r = n + k(n-1) \\ 0, & \text{else} \end{cases}
\]

Hence, the graded vector space isomorphism
\[H_{\ell}(\mathfrak{h}_n) \cong (\mathbb{R} \oplus \langle \tilde{\alpha}_n \rangle) \otimes T^*(\tilde{\gamma}_n). \]

For the cohomology, we use the vector space isomorphism
\[H^*_L(\mathfrak{h}_n; \mathbb{R}) \cong \text{Hom}(H_{\ell}(\mathfrak{h}_n; \mathbb{R}), \mathbb{R}), \]

to conclude that
\[H^*_L(\mathfrak{h}_n) \cong (\mathbb{R} \oplus \langle \tilde{\alpha}_n \rangle) \otimes T^*(\tilde{\gamma}_n), \]

where \(\tilde{\alpha}_n^d = \sum_{\sigma \in S_n} \text{sgn}(\sigma) dx^{\sigma(1)} \otimes dx^{\sigma(2)} \otimes \cdots \otimes dx^{\sigma(n)},\)
\[
\tilde{\gamma}_n = \sum_{1 \leq i < j \leq n, \sigma \in S_{n-2}} (-1)^{i+j+1} X_{ij} \otimes dx^{\sigma(1)} \otimes \cdots \otimes dx^{\sigma(j)} \otimes \cdots \otimes dx^{\sigma(n)}
\]
\[+ \sum_{1 \leq i < j \leq n, \sigma \in S_{n-2}} (-1)^{i+j+1} dx^{\sigma(1)} \otimes \cdots \otimes dx^{\sigma(i)} \otimes \cdots \otimes dx^{\sigma(j)} \otimes \cdots \otimes dx^{\sigma(n)} \otimes \tau_{ij}, \]

\(X^*_n := -x_i dx^j + x_j dx^i\) and \(dx_i\) is the dual of \(\frac{\partial}{\partial x_i}\) with respect to the basis of \(\mathfrak{h}_n\) given in Section 2. The Zinbiel algebra structure on \(H^*_L(\mathfrak{h}_n)\) is given by the Zinbiel products (see Lemma A.1):
\[
\tilde{\gamma}_n^d \ast \tilde{\gamma}_n^d = (n!) (n! + (-1)^{n+1}) \tilde{\gamma}_n^{\otimes 2}, \quad \tilde{\alpha}_n^d \ast \tilde{\alpha}_n^d = 0.
\]
\[
\tilde{\gamma}_n^d \ast \tilde{\alpha}_n^d = \frac{(n!)^2}{2} \tilde{\alpha}_n \otimes \tilde{\gamma}_n, \quad \text{and} \quad \tilde{\alpha}_n^d \ast \tilde{\gamma}_n = k_n \tilde{\alpha}_n \otimes \tilde{\gamma}_n
\]
for some non-zero real \(k_n\). One checks that \(k_3 = 36\) and \(k_4 = 144\). \(\Box\)

Corollary 5.3. As graded vector spaces,
\[H_{\ell}(\mathfrak{h}_n; \mathfrak{h}_n) \cong (\mathbb{R} \oplus \langle \tilde{\alpha}_n \rangle) \otimes T^{n+1}(\tilde{\gamma}_n). \]

Proof. We apply the isomorphism \(H_{\ell+b}(\mathfrak{h}_n; \mathfrak{h}_n) \cong H_{\ell+b+1}(\mathfrak{h}_n; \mathbb{R})\) [10]. \(\Box\)

Appendix

In this appendix, we sketch the calculus of the Zinbiel products of the proof of Theorem 5.2.

Lemma A.1.
\[
\tilde{\gamma}_n^* \ast \tilde{\gamma}_n^* = (n!) (n! + (-1)^{n+1}) \tilde{\gamma}_n^{\otimes 2}, \quad \tilde{\alpha}_n^* \ast \tilde{\alpha}_n^* = 0.
\]
\[
\tilde{\gamma}_n^* \ast \tilde{\alpha}_n^* = \frac{(n!)^2}{2} \tilde{\alpha}_n \otimes \tilde{\gamma}_n, \quad \text{and} \quad \tilde{\alpha}_n^* \ast \tilde{\gamma}_n = k_n \tilde{\alpha}_n \otimes \tilde{\gamma}_n
\]
for some non-zero real \(k_n\).

Proof. We show that \(\tilde{\alpha}_n^d \ast \tilde{\alpha}_n^d = 0\). Indeed, for \(n = 3\), none of the \(X_{ij}^*\)'s appears in the expression of \(\tilde{\alpha}_3^d \ast \tilde{\alpha}_3^d\), so \((\tilde{\alpha}_3^d \ast \tilde{\alpha}_3^d)(\tilde{\gamma}_3^{\otimes 3}) = 0\).

For \(n > 3\), there is no chain on degree \(2n\).

To prove that \(\tilde{\gamma}_n^d \ast \tilde{\alpha}_n^d = \frac{(n!)^2}{2} \tilde{\gamma}_n \otimes \tilde{\alpha}_n\), notice that the only \((n - 2, n)-\)shuffle that fixes 2 is the identity, so we have \((\tilde{\gamma}_n^d \ast \tilde{\alpha}_n^d)(\tilde{\gamma}_n \otimes \tilde{\alpha}_n) = (n - 2)! (n!)^2 n! = \frac{(n!)^2}{2}\).

We show that \(\tilde{\gamma}_n^d \ast \tilde{\gamma}_n^d = (n!) (n! + (-1)^{n+1}) \tilde{\gamma}_n^{\otimes 2}\). Indeed, only two \((n - 2, n - 1)-\)shuffles yield possible non-zero terms. These shuffles are the identity and
\[
\begin{pmatrix} 1 & 2 & \cdots & n-2 & n-1 & \cdots & 2n-3 \\ n & n+1 & \cdots & 2n-3 & 1 & \cdots & n-1 \end{pmatrix}
\]
both with positive signature. Note that the first is the only shuffle fixing \(n - 1 \) and the second is the only shuffle which takes \(2n - 3 \) to \(n - 1 \). We then have

\[
(\tilde{\gamma}_n^d \bullet \tilde{\gamma}_n^d)(\tilde{\gamma}_n^{\otimes 2}) = \left(2(2 + (-1)^{n+1}) \binom{n}{n-2}(n-2)! + 2 \left(\frac{n(n-1)(n-2)!}{2}\right)\right)
\]

which simplifies to \((\tilde{\gamma}_n^d \bullet \tilde{\gamma}_n^d)(\tilde{\gamma}_n^{\otimes 2}) = (n!)(n! + (-1)^{n+1})\).

To show that \(\tilde{\alpha}_n^d \bullet \tilde{\gamma}_n^d = k_n \tilde{\alpha}_n \otimes \tilde{\gamma}_n \) for some non-zero real \(k_n \). Notice that \(\tilde{\alpha}_n^d \bullet \tilde{\gamma}_n^d \) is the summation of \(\binom{2n-2}{n-1} \) cochains of the types

1. \((dx^1 \otimes \cdots \otimes dx^n) \bullet (X^n_0 \otimes dx^1 \cdots \hat{dx}^i \cdots dx^n)\)
2. \((dx^1 \otimes \cdots \otimes dx^n) \bullet (dx^1 \cdots \hat{dx}^i \cdots \otimes dx^n \otimes X^n_0)\)

The only non-zero terms are obtained by evaluating:

(a) cochains of the first type on the chains

\[
\frac{\partial}{\partial x^{ij}} \otimes \cdots \otimes \frac{\partial}{\partial x^{ij}} \otimes X^n_0 \otimes \frac{\partial}{\partial x^{ij}} \otimes \cdots \otimes \frac{\partial}{\partial x^{ij}}
\]

using the \((n - 1, n - 1)\)-shuffle identity, and on the chains

\[
\frac{\partial}{\partial x^{ij}} \otimes \cdots \otimes \frac{\partial}{\partial x^{ij}} \otimes \frac{\partial}{\partial x^{ij}} \otimes \cdots \otimes \frac{\partial}{\partial x^{ij}} \otimes X^n_0
\]

using the \((n - 1, n - 1)\)-shuffle satisfying \(\alpha(2n - 2) = n, \alpha(k) = k \) for \(k = 1, \ldots, n - 1 \).

(b) cochains of the second type on the chain \((c1)\) using the \((n - 1, n - 1)\)-shuffle satisfying \(\alpha(n) = 2n - 2, \alpha(k) = k \) for \(k = 1, \ldots, n - 1 \), and on the chains \((c2)\) using the \((n - 1, n - 1)\)-shuffle identity. Therefore \((\tilde{\alpha}_n^d \bullet \tilde{\gamma}_n^d)(\tilde{\alpha}_n \otimes \tilde{\gamma}_n) \neq 0. \Box

References