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Abstract 

Using the R language as a GIS applied on forest fire data in South of France, the goal of the research is to emphasize how spatial 
statistics may depend on the areal units chosen. First, we propose to map the forest fire data at different scale levels based on 
administrative boundaries. Second, we measure the MAUP by showing scale sensitivity in descriptive statistics and in regression
analyses. Finally, although many tools can be used for vector or raster data aggregation and mapping, we discuss why we choose 
R as a primary analysis tool and R added-value. 
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1. Introduction 

“[T]here are no rules for areal aggregation” [1]. Although this is no longer entirely true, many studies still use 
administrative areal units at only one scale [2], ignoring scale and aggregation problems. Known as the MAUP 
(Modifiable Areal Unit Problem), this issue is one of the main current challenges in spatial data analysis. This 
aggregation problem is considered to occur when the way that data are arranged into areal units has a significant 
impact on observation. Areal units’ data arrangement has two facets, corresponding to two effects of the MAUP: 
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scale and delineation [1]. The scale effect is defined as a change in a result obtained from the same data when they 
are aggregated at different scales and when areal unit sizes increase. The delineation or boundary effect is due to a 
change in a result from the same data when they are aggregated at a same scale with different areal unit boundaries 
and while the number of areal units is constant. In other words, the MAUP exists when spatial data are differently 
aggregated, therefore raising questions about certainty of spatial statistics [3]. 

Since its discovery attributed to Gehlke and Biehl [4] this problem has been observed in seminal works written 
by Robinson [5] and Openshaw and Taylor [6]. Even if it was described many times only a few practical solutions 
are implemented, and no general solution is agreed upon [3,7]. The simplest solution would be to use only 
disaggregated data. Unfortunately, these data are rarely available and are often impaired due to their low power of 
communication (e.g. it is better to draw maps with a well-known set of areal units). This leads to a certain 
temptation to ignore the spatial dimension when dealing with data points, or getting reliable rates for policy 
formulation and implementation [7,8]. Other solutions have been proposed with different approaches. A first 
solution consists in adapting statistics index formula, for instance a correlation weighting based on areal unit sizes 
[9]. Considering the MAUP as a “tool” rather than a problem can also be a way, since it is closely related to spatial 
structure of variance [7]. Then we should use it to find a relevant set of areal units based on a resulting optimization 
[1]. One way to do so is to use autocorrelation or geographical weighted regression (GWR) in order to generate a set 
of areal units that would show more information over space [10]. But this optimization approach seems to contradict 
basic objective scientific methodology. Another way is to use a set of grouping variables known at an individual 
level, and then adjust a variance-covariance matrix of aggregated data in order to select the set of areal units that 
shows the closer similarity with underlying individual level of variance [11,12,13]. Sensitivity analysis can 
comprehend the MAUP by comparing the results of areal unit sets to known individual level statistics [8]. This last 
solution has one major flaw: it needs individual level data. Based on Bayesian statistics, a solution to this problem 
could be to measure the sensitivity to the MAUP by using a Bayesian estimator of simulated random individual level 
data [14]. A similar approach is based on spatial resampling to eliminate the support effect [15]. These solutions are 
based on the assumption that the MAUP only affects nonrandom data [1]. 

Another sensitivity measure deals with the MAUP by comparing different sets of areal units altogether, in order 
to select only results which are similar at many scales or with different boundary sets. This kind of results should 
induce less uncertainty and have more meaning because their consistency makes them resistant to the way that data 
are aggregated [3]. This paper proposes to implement this last solution as an exploratory tool programmed in R 
language and to test it on forest fire data and their driving factors. 

2. Methods and data description 

Our objective is to build a method that can be used independently from the topic or the territory of the study. We 
choose to test it on forest fire causes in order to compare our methodology and our results with a previous study [2].  
South of France, as other Mediterranean regions in Europe, is regularly and strongly affected by forest fire [2]. 
Forest fire process is a complex matter, mainly because it is a “natural” disaster driven by human factors. 
Ganteaume and Jappiot’s study [2] showed interesting results about this fact and their data are available. Moreover, 
they choose to work at the French départements scale with data available at a more disaggregated level. Choosing 
the French départements scale is not that arbitrary since wildfire suppression policies are supposed to be conducted 
at this scale. However, using seemingly arbitrarily determined, therefore modifiable, areal units is an important 
methodological problem, independent from administrative unit related considerations. 

Based on French political territorial units, our primary areal unit set was a shape file of 3569 communes (LAU2), 
which was then aggregated into 475 cantons (LAU1), 245 EPCI (public organization of intercommunal 
cooperation), 43 arrondissements, 15 départements (NUTS3) and 4 régions (NUTS1). We only studied the scale 
effect since we had only hierarchical and non-overlapping areal unit sets, and no other types of areal units such as 
grid frameworks or Voronoï tessellations. These aggregation codes come from Géofla database 2014 (IGN), except 
the EPCI 2014 coming from collectivites-locales.gouv.fr. We have a total of 4 dependent variables: forest fire 
number of occurrences and surfaces during the 1997-2013 period from the Prométhée database. These data were 
“normalized” (we tried to align them to a Gaussian distribution) as occurrence densities (fire occurrences divided by 
area) and fire surface rates (total fire surfaces divided by total area). Number of fire occurrences and total of fire 
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surfaces were obtained prior to the R program using Excel to clean the raw dataset. The dependent variables were 
log-transformed in order to follow a parametric pattern [2]. We used 4 explanatory variables: population density 
(Géofla, IGN, 2014), road density based on IGN’s Routes 500 2012 dataset (roads length divided by area), forests 
land cover density and shrub and/or herbaceous vegetation associations land cover density (specific land cover 
divided by total area) from Corine Land Cover 2006 statistics. ArcGIS was used to get road density by intersecting 
road arc with communes’ polygons and then sum road arc length with a spatial join to the communes. 

Data processing was implemented using R programming and preferentially functions in order to be applied on 
different data sets. This processing includes: loading specific packages to handle spatial data (i.e. rgeos and rgdal), 
loading the data (shape file, variables) at the most disaggregated level, aggregating selected variables according to a 
list of grouping variables, processing normalized variables at each scale separately, creating a new shape file for 
each scale level, returning a list of spatial objects corresponding to scale levels. Then, based on this list of spatial 
objects, a script produces maps, descriptive statistics and plots. 

3. Results and discussion 

The primary result of this methodology is to automatically and quickly produce a total of 276 diagrams, 12 
summary tables, 48 maps, and six shape files, based on a single shape file, a dataset of eight variables, and political 
geographical units’ codes. Diagrams include usual histograms, box-plots and scatter-plots, but also diagrams 
representing how different statistical indices or results vary through scales (Fig. 1). Therefore, this provides a tool 
for exploratory analysis which enables to monitor possible effects of the MAUP on the results. 

Mapping systematically every variables at six scales shows how the MAUP affects the data by erasing local 
variance (we use quantile classification for its convenience when comparing maps). We also observed the scale 
effect on variance with a variation between minimum and maximum values which can be more than 90,000 times 
with our data. Excluding extremely big variations, the total mean of variance variation is still 14.8. We observed a 
difference between “normalized” and “non-normalized” variables: non-normalized variables seem to be more 
sensitive to the scale effect. The mean variation of the mean is 6.1 for normalized data and 892.3 for non-normalized 
data. We obtained similar results with r2 coefficient variation: mean of 3.8 for normalized data and 8 for non-
normalized data (we used only r2 with a p-value <= 0.05). This difference because of normalization is not very 
surprising since the scale effect is directly linked to the size effect. But so important variations, more or as much 
important of the mean vs. r2 coefficient, are surprising since the MAUP effect on average and variance is supposed 
to be less severe than for correlation coefficients [7]. Moreover the variance of non-normalized data increases with 
larger areal units unlike normalized data. Since it is recommended to use less aggregated data because they are 

Fig. 1. r, r2 and p-value variations at different scale levels
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supposed to be closer to a maximum of variance, these observations could be strong assumptions for recommending 
using only normalized variables in order to limit the MAUP. 

The secondary result could be the capacity of the process to produce more robust correlation analysis. By 
showing statistical variation through scales, we can detect tendencies, anomalies, and select information based on 
their consistency at different scales. Indeed, results showed that some relationships can be relatively stable, while 
others appear to be very sensitive to the scale effect [16]. Also, it is generally assumed that we observe increasing r
with increasing areal unit sizes [17]. We obtained the same results: a main tendency to an increasing r2 with 
increasing areal unit sizes, some relations were stable, some consistent in increasing process (Fig. 1) and others very 
erratic. For instance, correlation between fire occurrence density and road density seems to be sound (Fig. 1) since it 
is relatively consistent at every scale level. The variation between maximum and minimum r2 with a p-value <= 0.05 
is 2. On the contrary, the relation between fire surface densities and shrub vegetation densities is problematic, since 
the maximum significant r2 is equal to 14 times the minimum significant r2. These results are similar to the results 
from Ganteaume and Jappiot’s study [2]. 

This approach to manage the MAUP using R as a GIS shows promising methodological results which could be 
deepened by further works. Although many tools can be used for vector or raster data aggregation and mapping (e.g. 
ArcGIS, Qgis, Grass, GeoDMA, eCognition), R is a powerful tool which has numerous advantages, especially if 
considering the nature of the problem we posed in this paper. R is a free and versatile software/programming 
language, becoming the lingua franca for data analysis. It can be used for integration of GIS, statistics, plots, and 
automatic mapping into a single workflow, and sharing scripts along with analyses [18]. Considering the MAUP, R 
includes robust packages to handle spatial data and may be even superior to GIS software in aggregation and 
plotting sequentially, including maps (for instance, let us note the package RgoogleMaps). Unfortunately R is not so 
good for interactive use and therefore limited for exploratory analyses. As a next step, the approach adopted in this 
research could be completed by the study of the boundary effects and by implementing proposed solutions such as 
guided choices of an optimized areal unit sets (e.g. based on variance-covariance matrix and on Bayesian statistics). 
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