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SUMMARY

Canonical Wnt signaling critically regulates cell fate
and proliferation in development and disease. Nu-
clear localization of b-catenin is indispensable for
canonical Wnt signaling; however, the mechanisms
governing b-catenin nuclear localization are not well
understood. Here we demonstrate that nuclear accu-
mulation of b-catenin in response to Wnt requires
Rac1 activation. The role of Rac1 depends on phos-
phorylation of b-catenin at Ser191 and Ser605, which
is mediated by JNK2 kinase. Mutations of these
residues significantly affect Wnt-induced b-catenin
nuclear accumulation. Genetic ablation of Rac1 in
the mouse embryonic limb bud ectoderm disrupts
canonical Wnt signaling and phenocopies deletion
of b-catenin in causing severe truncations of the
limb. Finally, Rac1 interacts genetically with b-cate-
nin and Dkk1 in controlling limb outgrowth. Together
these results uncover Rac1 activation and subse-
quent b-catenin phosphorylation as a hitherto un-
characterized mechanism controlling canonical Wnt
signaling and may provide additional targets for
therapeutic intervention of this important pathway.

INTRODUCTION

Wnt signaling is critical for normal development of multicellular

organisms via regulation of cell fate, proliferation, and behavior.

In the canonical Wnt pathway, Wnt binding to Frizzled receptors

and the low-density lipoprotein receptor-related protein 5 or 6

(LRP5/6) activates the cytoplasmic signaling protein Dishevelled

(Dvl) to stabilize cytosolic b-catenin; b-catenin, upon entering the

nucleus, in turn activates transcription of downstream target

genes via lymphoid enhancer-binding factor 1 (Lef1) and T cell

factors (Tcf1, 3, 4) (Huelsken and Birchmeier, 2001). The ampli-

tude of signaling is fine-tuned in part via negative feedback

mechanisms that include the secreted molecule Dickkopf 1
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(Dkk1) (Glinka et al., 1998), which antagonizes the pathway by in-

terfering with LRP5/6-Wnt interactions (Bafico et al., 2001; Mao

et al., 2001; Semenov et al., 2001).

Although nuclear localization of b-catenin in response to Wnt

is essential for canonical signaling, mechanisms controlling this

process are not well understood. Previous reports suggested

that BCL9 (Townsley et al., 2004) may actively import b-catenin

to the nucleus whereas APC (Henderson, 2000; Neufeld et al.,

2000) and Axin (Cong and Varmus, 2004) may export it to the cy-

toplasm; however, a recent study indicated that these molecules

function mainly by retaining b-catenin in either the nucleus or the

cytoplasm (Krieghoff et al., 2006).

The Rho family of small GTPases regulates cytoskeleton and

transcription by virtue of cycling between inactive GDP-bound

and active GTP-bound forms (Hall, 1998). Members of the family,

including RhoA, Rac1, and Cdc42, have been shown to partici-

pate in noncanonical Wnt signaling pathways that control planar

cell polarity (PCP) in Drosophila (Eaton et al., 1996; Fanto et al.,

2000; Strutt et al., 1997) or convergent extension (CE) in Xenopus

(Choi and Han, 2002; Habas et al., 2001, 2003; Penzo-Mendez

et al., 2003). Moreover, Rac1 may function in part by activating

c-Jun NH2-terminal kinase (JNK) (Habas et al., 2003), itself

important for both Drosophila PCP (Boutros et al., 1998) and

Xenopus CE (Yamanaka et al., 2002).

Here we report that Rac1 activation is a critical component of

canonical Wnt signaling. Specifically, we show that Rac1 acti-

vates JNK2 that in turn phosphorylates b-catenin on critical

residues and controls its nuclear translocation. Moreover, we

present evidence that Rac1 interacts genetically with b-catenin

and Dkk1 in controlling limb outgrowth in mouse embryos.

RESULTS

Rac1 Activation by Wnt3a via Gaq/11bg and PI3K
Is Required for b-catenin Signaling
We have studied the potential role of Rho small GTPases in Wnt

signaling during osteoblast differentiation. The murine bone

marrow-derived stromal cell line ST2 undergoes robust osteo-

blastogenesis in response to Wnt (Tu et al., 2007). We used an

established binding assay to determine whether the GTP-bound
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Figure 1. Rac1 Activation Is Required for Canonical Wnt Signaling

(A–C) Western analyses to detect activation of Rac1, Cdc42, and RhoA in ST2 cells cultured in Wnt3a versus L conditioned medium (C.M.). The relative amount of

the GTP-bound form normalized to the total amount, in L medium, is designated 1.0.

(D) Rac1 activation by purified recombinant Wnt3a protein (rWnt3a) at 50 ng/ml.

(E) Expression of Lef1-luciferase in cells infected with a control virus (IE, expressing GFP) or viruses expressing dnRac1 or dnCdc42.

(F) Western analyses of Rac1 in cells at �96 hr after transfection with control (Ctrl) or Rac1 siRNA.

(G) Expression of Lef1-luciferase following siRNA transfections.

(H and I) AP activity assay following viral infection (H) or siRNA transfection (I).

(J and K) Western analyses of b-catenin in cytosolic (J) or nuclear (K) fractions of cells cultured in L or Wnt3a medium for 1 hr following viral infections. Cytosolic

and nuclear signals were normalized to GAPDH and CREB-1, respectively. Error bars: SD, *p < 0.05, n = 3.
(active) forms of Rho GTPases were increased upon Wnt signal-

ing (see Experimental Procedures). Wnt3a consistently activated

Rac1 by 2- to 3-fold over the control at 30 and 60 min after stim-

ulation (average fold change at 60 min: 2.8 ± 0.7, n = 7) (Fig-

ure 1A). Wnt3a activated Cdc42 to a similar extend but did not

significantly affect RhoA (Figures 1B and 1C). We confirmed

the activation of Rac1 with purified recombinant Wnt3a protein

(Figure 1D). To examine whether Rac1 or Cdc42 participate in

canonical Wnt signaling, ST2 cells were infected with retrovi-

ruses expressing a dominant-negative form of each molecule

(N17Rac1 or N17Cdc42) and assayed for their responses to

Wnt3a in upregulating expression of a Lef1-luciferase reporter.
The Rac1 mutant (dnRac1) completely abolished the induction

by Wnt3a, whereas dnCdc42 did not have a significant effect

(Figure 1E). The specificity of dnRac1 was confirmed by Rac1

siRNA, which reduced Rac1 protein to an undetectable level

and significantly diminished Lef1-luciferase induction by Wnt3a,

whereas the scrambled control RNA did not have any effect

(Figures 1F and 1G). To confirm the biological relevance of

Rac1 activity in Wnt signaling, ST2 cells either transfected with

Rac1 siRNA or expressing dnRac1 were examined for their ability

to undergo osteoblast differentiation in response to Wnt3a. Dis-

ruption of Rac1 activity by either means reduced approximately

70% of Wnt3a-induced expression of alkaline phosphatase
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Figure 2. Mechanisms Controlling Rac1 Activation and Canonical Wnt Signaling

(A and B) Rac1 activation assays in cells cultured in L or Wnt3a medium for 1 hr following infection of indicated viruses.

(C and D) Western analyses of cytosolic (C) versus nuclear b-catenin (D) in cells cultured in L or Wnt3a medium for 1 hr following infection of indicated viruses.

Cytosolic and nuclear signals were normalized to GAPDH and CREB-1, respectively.

(E) Lef1-luciferase expression by cells infected with viruses and cultured in L versus Wnt3a medium.

(F) Western analyses of Dvl2 in ST2 cells transfected with Dvl2-specific or control siRNA.

(G) Rac1 activation assays following Dvl2 knockdown.

(H) Lef1-luciferase expression by cells transfected with siRNA and cultured in L versus Wnt3a medium.

(I and J) Rac1 activation assays in cells infected with viruses and cultured in L versus Wnt3a medium.

(K) Effect of wortmannin on Rac1 activation at 1 hr following Wnt3a stimulation in ST2 cells.

(L) Effect of wortmannin (20 nM) on Lef1-luciferase expression in ST2 cells.

(M) Western analyses of PIK3CA in cells transfected with siRNA. Error bars: SD, *p < 0.05, n = 3.
(AP), a common osteoblast marker (Figures 1H and 1I). The re-

maining AP expression was likely due to differentiation induced

by noncanonical Wnt signaling also activated by Wnt3a in these

cells (Tu et al., 2007). Thus, Wnt3a activates Rac1, and Rac1

activity is required for canonical Wnt signaling in ST2 cells.

To explore the mechanism underlying the role of Rac1 in

canonical Wnt signaling, western analyses were performed for

b-catenin in cytosolic versus nuclear fractions of ST2 cells

expressing dnRac1, with or without Wnt stimulation. Expression

of dnRac1 did not affect b-catenin stabilization in the cytosol but

completely abolished b-catenin accumulation in the nucleus in

response to Wnt3a; the nuclear effect was not observed with

dnCdc42 (Figures 1J and 1K). It should be noted that although

dnRac1 markedly decreased b-catenin levels in the nucleus, it

did not cause an obvious increase in the cytoplasm. This can

be explained by the fact that the relative amount of nuclear ver-

sus cytoplasmic b-catenin is small in these cells, approximately
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2% with or without Wnt3a stimulation, as per our estimation by

western analyses. Finally, immunofluorescence confocal mi-

croscopy confirmed that dnRac1 indeed prevented nuclear

accumulation of endogenous b-catenin in response to Wnt3a

(Figure 5, compare B0 and C0). Thus, Rac1 activity is required

for b-catenin nuclear localization in response to Wnt signaling.

We next investigated the molecular mechanism underlying

Rac1 activation by Wnt3a. To assess the potential involvement

of Dishevelled (Dvl) proteins, we first tested ST2 cells expressing

Dvl2 variants individually missing each of the three conserved

regions (DDIX, DDEP, and DPDZ) for their ability to activate

Rac1 in response to Wnt3a. All three variants were previously

shown to inhibit both b-catenin stabilization and PKCd activation

by Wnt3a (Tu et al., 2007) and were expressed at similar levels in

these experiments (data not shown). Whereas DDEP had little ef-

fect, DDIX and DPDZ either abolished or significantly diminished

Rac1 activation (Figure 2A). Interestingly, overexpression of the



full-length Dvl2 also inhibited Rac1 activation by Wnt3a (Fig-

ure 2B). This result is unexpected because previous studies

have shown that overexpression of Dvl proteins activate canon-

ical signaling in the absence of exogenous Wnt ligands. We sus-

pected that Dvl2 overexpression might have a different effect on

b-catenin signaling when Wnt ligands were present. To test this

possibility, we examined b-catenin signaling in ST2 cells overex-

pressing Dvl2 with or without Wnt3a stimulation. Consistent with

previous reports, at basal conditions Dvl2 overexpression in-

creased both cytoplasmic and nuclear b-catenin levels and acti-

vated Lef1-luciferase expression, but the activation level as

judged by all three parameters was significantly lower than that

induced by Wnt3a (Figures 2C–2E). Importantly, in the presence

of Wnt3a, both nuclear b-catenin levels and Lef1-luciferase ex-

pression were reduced by 50% in the Dvl2-overexpressing cells

when compared to the control cells expressing IE virus (Figures

2D and 2E), although the level of b-catenin in the cytoplasm was

not decreased (Figure 2C). The mechanism through which Dvl2

overexpression activates b-catenin signaling under basal condi-

tions may be different from that employed by Wnt ligands, as

Dvl2 overexpression did not activate Rac1 (Figure 2B). Taken to-

gether, the data so far indicate that Dvl2 overexpression inhibits

both b-catenin signaling and Rac1 activation in response to Wnt,

and that the DEP domain appears to mediate the inhibition. To

test the role of endogenous Dvl2, we knocked down Dvl2 using

siRNA. Reduction of Dvl2 protein level by 60%–70% (Figure 2F)

correlated with a significant decrease in both Rac1 activation

and Lef1-luciferase expression in response to Wnt3a (Figures

2G and 2H). The remaining activity is likely due to the residual

Dvl2 and/or Dvl1 and Dvl3 that are also expressed in these cells

(Tu et al., 2007). Overall, the data indicate that Dvl proteins play

an important role in mediating Wnt-induced Rac1 activation.

Additional molecules were evaluated for their role in Wnt-

induced Rac1 activation. To assess the potential involvement

of LRP5/6 signaling, cells overexpressing Dkk1 were assayed;

Rac1 activation by Wnt3a was completely abolished by Dkk1

(Figure 2A). Because overexpression of GqI, a dominant-nega-

tive reagent for Gaq/11bg signaling, impaired PKCd activation

but not b-catenin stabilization in response to Wnt (Tu et al.,

2007), we examined whether it would affect Wnt-induced Rac1

activation. GqI not only negated Rac1 activation by Wnt3a but

also reduced the basal level of Rac1-GTP (Figures 2I and 2J). Be-

cause Dkk1 also similarly inhibited the basal level of Rac1-GTP

(Figure 2J), it appears that the basal level Rac1 activation is in

part due to endogenous Wnt signaling. GqI also significantly

reduced Lef1-luciferase expression in response to Wnt3a (Fig-

ure 2E), consistent with a decrease in nuclear b-catenin levels

even though the cytoplasmic amount was not significantly

affected (Figures 2C and 2D). Since PI3K is known to mediate

Rac1 activation by heterotrimeric G protein signaling, we next

examined whether it is required for Rac1 activation by Wnt.

Wortmannin, a potent inhibitor for PI3K, dose-dependently

inhibited Rac1 activation by Wnt3a (Figure 2K) and markedly re-

duced Wnt-induced Lef1-luciferase expression (Figure 2L). On

the other hand, wortmannin under these conditions had no sig-

nificant effect on cell survival or general gene expression (Fig-

ure S3 available online). Finally, siRNA knockdown of the PI3K

p110 catalytic subunit alpha (PIK3CA) (Figure 2M) markedly
reduced Lef1-luciferase expression in response to Wnt3a

(Figure 2H). Taken together, these data indicate that Wnt3a acti-

vates Rac1 through a signaling cascade involving LRP5/6, Dvl,

Gaq/11bg, and PI3K.

Constitutively Active Rac1 Enables Canonical Signaling
by an Otherwise Inactive Wnt
To further substantiate the role of Rac1 in the canonical Wnt

pathway, we studied Wnt7b signaling in ST2 cells, wherein it

did not activate Lef1-luciferase expression (Tu et al., 2007). Inter-

estingly, cells overexpressing Wnt7b accumulated >5-fold (ver-

sus �4-fold induced by Wnt3a, see Figure 1I) more b-catenin

over the control in the cytoplasm (Figure 3A) but showed little in-

crease in the nucleus (Figure 3B). Similarly, immunofluorescence

confocal microscopy confirmed that no significant levels of

endogenous b-catenin were detected in the nucleus following

Wnt7b expression (Figure 3F, compare with Figure 3E). Impor-

tantly, Wnt7b did not activate Rac1 in these cells (Figure 3C).

Thus, the inability for Wnt7b to activate canonical signaling in

ST2 cells is not due to deficiency in stabilizing b-catenin but in-

stead correlates with the lack of Rac1 activation and b-catenin

nuclear localization.

To test whether Rac1 activation is sufficient to enable Wnt7b in

activating the canonical pathway, we overexpressed a constitu-

tively active form of Rac1 (V12Rac1, termed caRac1 hereafter)

that lacks GTPase activity. Cells expressing caRac1 activated

Lef1-luciferase expression in response to Wnt7b, whereas

caRac1 alone did not have any effect (Figure 3D). Consistent

with this result, caRac1 increased the nuclear amount of b-cate-

nin by more than 2-fold (Figure 3B), even though it had little effect

on Wnt7b-induced b-catenin accumulation in the cytoplasm

(Figure 3A). When examined by immunofluorescence confocal

microscopy, cells expressing caRac1 alone exhibited the typical

‘‘fried egg’’ morphology due to exaggerated lamellipodia, as

previously described (Welch et al., 2002), but did not show an

increase in nuclear b-catenin (data not shown). However, when

Wnt7b and caRac1 were coexpressed in the culture, the cells ex-

hibited both the ‘‘fried egg’’ morphology and prominent nuclear

accumulation of b-catenin (Figure 3G). Thus, constitutively active

Rac1 is sufficient to localize Wnt7b-stabilized cytoplasmic b-cat-

enin to the nucleus and enable canonical signaling in ST2 cells.

Rac1-Mediated JNK2 Activation by Wnt3a
Controls b-catenin Signaling
To explore downstream events mediating the role of Rac1 in

b-catenin nuclear localization, we investigated the potential rele-

vance of JNK. Western analyses using an antibody specific for

dual phosphorylation of JNK1 or JNK2 at Thr183 and Tyr185,

a prerequisite for JNK activation, revealed that JNK2 was specif-

ically activated by approximately 4-fold at 30 or 60 min after

Wnt3a stimulation (Figure 4A) and that the activation was essen-

tially abolished by expression of dnRac1 (Figure 4B). Inhibition of

JNK activity by SP600125 dose-dependently diminished activa-

tion of Lef1-luciferase expression by Wnt3a (Figure 4C). Like-

wise, SP600125 decreased Wnt3a-activated AP expression by

as much as 70% (Figure 4D), a reduction equivalent to that

caused by disruption of Rac1 activity (Figures 1G and 1H).

Also similar to Rac1 disruption, SP600125 dose-dependently
Cell 133, 340–353, April 18, 2008 ª2008 Elsevier Inc. 343



Figure 3. Rac1 Activation Enables Wnt7b to Activate Canonical Wnt Signaling in ST2 Cells

(A and B) Western analyses of b-catenin in cytosolic (A) or nuclear (B) fractions of ST2 cells following coinfection of viruses.

(C) Rac1 activation assay in cells infected with control IE or Wnt7b virus.

(D) Expression of Lef1-luciferase following coinfection.

(E–G) Immunofluorescence confocal microscopy of cells following viral infections. Nuclei were labeled green due to expression of nuclear GFP via IRES by all

viruses. b-catenin signal is in red. Error bars: SD, *p < 0.05, n = 3.
inhibited nuclear accumulation of b-catenin (Figure 4F), without

significantly affecting its stabilization in the cytoplasm (Fig-

ure 4E). We confirmed the importance of JNK2 by siRNA exper-

iments, which showed that JNK2 siRNA reduced the protein level

by 60% and diminished Wnt3a-induced Lef1-luciferase induc-

tion by �50%, whereas the nontargeting control siRNA did not

have any effect (Figure 4G). Knockdown of JNK1 by 80% mod-

estly reduced Wnt3a-induced Lef1-luciferase expression by

�25%, whereas double knockdown of JNK1 and JNK2 had an

effect similar to the JNK2 single knockdown (Figure 4G). Further

supporting the predominant role of JNK2, immunofluorescence

confocal microscopy showed that JNK2 siRNA significantly

reduced the nucleus b-catenin level in the presence of Wnt3a,

whereas JNK1 siRNA had only a modest effect (Figure 4H). Sim-

ilarly, SP600125 abolished Wnt-induced nuclear localization of

b-catenin but appeared to enrich b-catenin in certain areas asso-

ciated with the cell membrane (Figure 5, compare E0 with B0).

Thus, Wnt3a activates JNK2 via Rac1, and JNK activity appears

to be required for nuclear localization of b-catenin.

To assess potential physical interactions among endogenous

b-catenin, Rac1, and JNK, coimmunoprecipitation experiments

were performed using cytosolic versus nuclear fractions from

ST2 cells incubated with either L or Wnt3a conditioned medium.
344 Cell 133, 340–353, April 18, 2008 ª2008 Elsevier Inc.
In the cytosolic fraction, with or without Wnt3a treatment, protein

complexes precipitated with a b-catenin antibody contained to-

tal Rac1 and total JNK1 and JNK2 in addition to b-catenin as ex-

pected (Figure 4I). Importantly, phospho-JNK2, but not JNK1,

was detected in the b-catenin complex only under Wnt3a stimu-

lation. In addition, although the amount of b-catenin detected in

the precipitate was markedly increased in response to Wnt3a,

the amount of Rac1 was not significantly changed, indicating

that Rac1 may be the rate-limiting partner in the complex, and

that b-catenin stabilization does not significantly enhance the in-

teraction between the two proteins. Consistent with this notion,

the converse experiment using a Rac1 antibody for immunopre-

cipitation showed that a similar level of b-catenin was detected in

the precipitates with or without Wnt3a (Figure 4I). The Rac1 im-

munoprecipitates also contained total JNK1 and JNK2 regard-

less of Wnt3a but contained a significantly higher level of phos-

pho-JNK2 in the presence of Wnt3a. On the other hand, the

same procedures did not detect any coprecipitation among

b-catenin, JNK, and Rac1 in the nuclear fractions, regardless

of Wnt3a (Figure 4J), even though TCF-4, a member of the

LEF/TCF family known to interact with b-catenin, coprecipitated

with nuclear b-catenin as expected (data not shown). In all cases,

the control experiments using purified IgG1 did not precipitate



Figure 4. JNK2 Activation Is Required for Canonical Wnt Signaling

(A) Western analyses of phospho-JNK and total JNK in ST2 cells cultured in L versus Wnt3a medium. Phospho-JNK2 level was normalized to total JNK2.

(B) Western analyses of phospho-JNK and total JNK in ST2 cells cultured in L versus Wnt3a medium for 1 hr following viral infections.

(C) Effect of SP600125 on expression of Lef1-luciferase in ST2 cells.

(D) Effect of SP600125 on AP activity in ST2 cells.

(E and F) Western analyses of b-catenin in cytolosic (E) or nuclear (F) fractions of ST2 cells cultured in L versus Wnt3a medium for 1 hr with varying concentrations

of SP600125.

(G) Effects of JNK1/2 knockdown on Lef1-luciferase expression. Western analyses of JNK performed at �96 hr after siRNA transfection.

(H) Effects of JNK1/2 knockdown on nuclear localization of endogenous b-catenin.

(I and K) Coimmunoprecipitation of endogenous b-catenin, JNK1/2, and Rac1 in cytosolic versus nuclear fractions of cells cultured in L versus Wnt3a medium for

1 hr (I and J) or infected with control (IE) or Wnt7b-expressing virus (K). IgG1: control antibody for immunoprecipitation. Error bars: SD, *p < 0.05, n = 3.
any of the proteins. Thus, the endogenous b-catenin, Rac1,

JNK1, and JNK2 constitutively interact with each other in the

cytoplasm of the ST2 cell, and Wnt3a signaling specifically

activates JNK2 in this context.

To determine whether JNK2 activation within the Rac1-JNK1/

2-b-catenin complexes is specific to canonical Wnt signaling,

we examined the effect of Wnt7b, which does not activate

canonical Wnt signaling in ST2 cells. These experiments de-

tected no phospho-JNK2 in the cytosolic b-catenin immuno-

precipitates with or without Wnt7b stimulation (Figure 4K). This

result is consistent with the lack of Rac1 activation by Wnt7b

and indicates that Rac1-mediated JNK2 activation within
Rac1-JNK1/2-b-catenin complexes is likely specific to canonical

Wnt signaling.

To test further the functional relationship between JNK and

Rac1, we examined the effect of SP600125 on caRac1-enhanced

b-catenin nuclear localization in response to Wnt3a (Figure 5).

Overexpression of caRac1 accentuated b-catenin in the nucleus

in response to Wnt3a (Figure 5D0). However, SP600125 markedly

reduced nuclear b-catenin in caRac1-expressing cells stimulated

with Wnt3a and instead caused prominent accumulation of

b-catenin in the perinuclear region (Figure 5F0). Interestingly, the

cells maintained the characteristic ‘‘fried egg’’ morphology

caused by caRac1 but now also exhibited b-catenin enrichment
Cell 133, 340–353, April 18, 2008 ª2008 Elsevier Inc. 345



Figure 5. Rac1 and JNK Activity Are Required for b-catenin Nuclear Localization in Response to Wnt

ST2 cells were virally infected and cultured in L or Wnt3a medium for 1 hr, with or without SP600125 (10 mM), before being subjected to immunofluorescence

confocal microscopy. (A–F) Nuclei as revealed by NLS-EGFP expressed by each virus via IRES. (A0–F0) Staining of endogenous b-catenin. Yellow arrow in

(D0), enrichment of b-catenin at a cell-cell junction. White arrows in (E0) and (F0), enrichment of b-catenin at cell periphery. (A00–F00) Merged pictures.
in certain areas of the plasma membrane, a feature common to

cells treated with SP600125 (Figures 5E0and 5F0, white arrows).

Overall, JNK appears to function downstream of Rac1 in regulat-

ing nuclear localization of b-catenin during canonical Wnt

signaling.

To investigate the specificity of JNK in mediating canonical

Wnt signaling, we examined the other members of the mito-

gen-activated protein kinase (MAPK) family. Although Wnt3a

failed to activate p38 (Figure S1A), it activated extracellular

signal-related kinase 2 (ERK2) by 2- to 3-fold at 30 or 60 min

post-stimulation (Figure S1B). However, inhibition of ERK activa-

tion by PD98059 or U0126 did not affect Wnt3a-induced Lef1-

luciferase expression (Figure S1D), even though the drugs

potently inhibited ERK2 activation (Figure S1C). Thus, within

the MAPK family, JNK appears to be specifically required for

canonical Wnt signaling in ST2 cells.

To determine whether the PI3K-Rac1-JNK mechanism is

unique to ST2 cells, we examined several other cell lines. In

HEK293 cells, Wnt3a treatment for 1 hr activated Rac1 by

approximately 2-fold, and the induction was abolished by wort-

maninn (Figure S2A). Importantly, wortmannin or SP600125

completely inhibited Wnt3a-induced Lef1-luciferase expression

(Figures S2B and S2C). Similarly, in NIH 3T3 cells, Wnt3a in-

duced Rac1 activation by �4-fold and Lef1-luciferase expres-

sion by �3-fold; wortmannin again significantly inhibited both

responses, although to a lesser degree than in the ST2 and

HEK293 cells (Figures S2D and S2E). SP600125 also abolished

the induction of Lef1-luciferase expression by Wnt3a in NIH
346 Cell 133, 340–353, April 18, 2008 ª2008 Elsevier Inc.
3T3 cells (Figure S2F). Thus, the role of PI3K/Rac1/JNK is likely

a common feature of canonical Wnt signaling.

Ser191 and Ser605 Are Critical for b-catenin
Nuclear Localization
Both the role of JNK2 in b-catenin nuclear localization and the

physical association between the two proteins prompted us to

examine whether JNK directly phosphorylates b-catenin. A

search of the b-catenin protein sequence revealed three poten-

tial JNK phosphorylation sites, i.e., Ser191, Ser246, and Ser605,

with the first two conserved among Drosophila, Xenopus,

mouse, and human and the third one common between mouse

and Xenopus. To assess their potential importance, we ex-

pressed b-catenin variants that harbor mutations at the consen-

sus serine residues (Ser to Ala) individually (S191A, S246A,

S605A) or in combination (triple) and evaluated their capacity

to mediate Lef1-luciferase expression in ST2 cells in response

to Wnt3a. Overexpression of wild-type b-catenin increased the

expression level by approximately 6-fold over the control cells

in response to Wnt3a. Whereas the S246A variant behaved

essentially the same as wild-type b-catenin, the S191A and

S605A variants each caused only a 2-fold increase over the con-

trol, and importantly, the triple mutant resulted in no significant

increase (Figure 6A, left top). The differential effects of the vari-

ants did not reflect differences in their expression levels, as

S605A and the triple mutant were expressed at comparable

levels as the wild-type, and S191A and S246A were at 85%

and 47% of the wild-type, respectively (Figure 6A, left bottom).



Figure 6. Phosphorylation of Ser191 and Ser605 Is Critical for Wnt-Induced Nuclear Localization of b-catenin

(A) Expression of Lef1-luciferase following transient transfection of b-catenin variants and western analyses of Myc-tagged b-catenin variants and endogenous

b-catenin in the same lysates used for luciferase assays.

(B) In vitro phosphorylation of Myc-tagged b-catenin variants by JNK2a2. Autoradiography signals were normalized to levels of Myc-b-catenin variants (same is

true in C and D).

(C) In vivo phosphorylation of Myc-b-catenin variants in intact cells.

(D) In vivo phosphorylation of Myc-b-catenin (wild-type) in intact cells transfected with siRNA.

(E–L, E0–L0, and E00–L00) Confocal images for nuclear GFP (E–L), exogenous Myc-b-catenin variants (E0–L0), and the merge (E00–L00) in cells cultured with or

without recombinant Wnt3a at 50 ng/ml for 1 hr, following infection with IE virus (expressing nuclear GFP) and transient transfection with plasmids expressing

Myc-b-catenin variants. Error bars: SD, *p < 0.05, n = 3.
Moreover, endogenous b-catenin levels were similar among the

cells expressing the different b-catenin variants. To evaluate the

potential importance of phosphorylation at Ser191 and Ser605,

we mutated the serine residues to the phosphomimetic aspar-

tate (D). Although either S191D or S605D only minimally affected

Lef1-luciferase expression under basal conditions (�10% in-

crease over the wild-type construct), S191D showed significant

synergy with Wnt3a in further upregulating Lef1-luciferase ex-

pression, whereas S605D had a similar but more modest effect

(Figure 6A, right top). Western blotting showed that S191D and
the wild-type b-catenin construct were expressed at the same

level but S605D was �80% higher, and that the endogenous

b-catenin levels were similar among the cells expressing differ-

ent constructs (Figure 6A, right bottom). Thus Ser191, and to

a lesser degree Ser605, play an important role in canonical

Wnt signaling.

We next determined whether Ser191, Ser246, or Ser605 could

indeed be phosphorylated by JNK. Here, overexpressed Myc-

tagged b-catenin variants were immunoprecipitated from ST2

cells with a Myc antibody and subsequently subjected to
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phosphorylation assays in vitro using purified active JNK2a2, fol-

lowed by SDS-PAGE and autoradiography. The wild-type b-cat-

enin incorporated robust levels of 32P, and S246A showed a 20%

reduction, but S191A virtually eliminated phosphorylation and

S605A reduced it by 75% (Figure 6B, top). As expected, the triple

mutant b-catenin incorporated no 32P. Subsequent western blot-

ting using the Myc antibody confirmed that the 32P-labeled

bands corresponded to the b-catenin variants, and that similar

levels of Myc-tagged b-catenin variants were present among

the various immunoprecipitates (Figure 6B, bottom). Thus, con-

sistent with their importance for canonical Wnt signaling, S191

and, to a lesser extent, S605 appear to be the predominant

phosphorylation sites for JNK2 in vitro.

To confirm that S191 and S605 are phosphorylated in intact

cells responding to Wnt, we performed in vivo phosphorylation

assays. Cells expressing the Myc-tagged b-catenin variants

were incubated with 32P orthophosphate with or without Wnt3a

stimulation, and their lysates were immunoprecipitated with the

Myc antibody before being resolved on SDS-PAGE and sub-

jected to autoradiography. Under basal conditions, no significant

phosphorylation was detected for any of the b-catenin variants.

However, upon Wnt3a stimulation, the wild-type b-catenin be-

came highly phosphorylated (Figure 6C, top). Whereas S246A

had little effect (7% reduction), S605A and S191A reduced phos-

phorylation by 32% and 82%, respectively; the triple mutation

completely abolished phosphorylation in response to Wnt3a.

Western blotting using the Myc antibody revealed similar low

levels of Myc-b-catenin variants among the immunoprecipitates

under the basal conditions and similar high levels upon Wnt3a

stimulation (Figure 6C, bottom), indicating that the different var-

iants were expressed at similar levels and that the mutations had

no obvious effect on the stabilization of Myc-b-catenin by Wnt3a.

Normalization of the 32P signal to the Myc-b-catenin protein level

revealed that Wnt3a induced a�3-fold increase in phosphoryla-

tion on per molecule basis. Thus, b-catenin is phosphorylated in

intact cells upon Wnt signaling, and Ser191 and Ser605 are the

predominant phosphorylation sites.

To examine directly the role of JNK1/2 in Myc-b-catenin phos-

phorylation in intact cells in response to Wnt3a, we performed

in vivo phosphorylation assays in ST2 cells transfected with

JNK1/2 siRNA. JNK2 knockdown notably reduced 32P levels of

Myc-b-catenin, whereas JNK1 knockdown had a smaller effect,

and the double knockdown exhibited an additive effect (Figure

6D). Thus, JNK2 appears to be mainly responsible for Wnt3a-

induced b-catenin phosphorylation in ST2 cells.

To confirm the effect of specific phosphorylation on nuclear lo-

calization of b-catenin, we examined the subcellular localization

of the Myc-tagged b-catenin variants in response to Wnt3a by

immunofluorescence confocal microscopy. Detection of the

Myc tag revealed that the exogenous wild-type b-catenin was

present in the cytoplasm at a relatively low level, and with clear

exclusion from the nucleus under basal conditions (Figures 6E–

6E00), but was detected at high levels in both compartments in re-

sponse to Wnt3a (Figures 6F–6F00). Note that the overexpressed

myc-b-catenin did not exhibit the same prominent nuclear local-

ization as the endogenous b-catenin in response to Wnt3a (see

Figures 4H and 5B0). Importantly, the variants harboring either

S191A (Figures 6G–6G00), S605A (Figures 6I–6I00), or the triple
348 Cell 133, 340–353, April 18, 2008 ª2008 Elsevier Inc.
mutation (Figures 6J–6J00) failed to accumulate in the nucleus

when the cells were stimulated with Wnt3a, whereas the S246A

form, like the wild-type form, was detected in the nucleus in

response to Wnt3a (Figures 6H–6H,00 compare with Figures 6F–

6F00). Conversely, the S191D form exhibited more prominent nu-

clear localization than the wild-type construct (Figures 6K–6K,00

compare with Figures 6F–6F00), whereas S605D also slightly in-

creased the nuclear signal (Figures 6L–6L00). These results there-

fore support the notion that both Ser191 and Ser605 participate in

the nuclear localization of b-catenin in response to Wnt signaling.

Genetic Removal of Rac1 in the Mouse Limb Bud
Ectoderm Phenocopies b-catenin Deletion
To determine the physiological relevance of Rac1 incanonical Wnt

signaling, we genetically ablated Rac1 from the apical ectodermal

ridge (AER) of the mouse embryonic limb bud, where Wnt signal-

ing through b-catenin is critical for limb outgrowth (Barrow et al.,

2003). Specifically, we generated embryos of Msx2-Cre;Rac1n/c

(Rac1-CKO) by crossing males of Rac1c/c with females of Msx2-

Cre;Rac1c/+, taking advantage of the fact that Msx2-Cre is ex-

pressed both in the female germline and in the limb bud ectoderm

that gave rise to the AER (Sun et al., 2000). Rac1-CKO embryos at

E16.5 lacked all hindlimb structures and exhibited truncations at

various levels in the forelimb (Figures 7A–7D and 7A0–7D0). These

defects are identical to those previously characterized by others in

embryos of Msx2-Cre;b-cateninn/c (Barrow et al., 2003). The dis-

crepancy between the fore- and hindlimb, as well as the pheno-

typic variation among forelimbs, were also noted in the b-catenin

mutants and most likely reflect the earlier onset of Msx2-Cre in the

hindlimb and the potential temporal variation in Cre expression

among the forelimbs. Overall, genetic removal of either Rac1 or

b-catenin from the limb bud ectoderm results in identical limb

truncation phenotypes in the mouse.

To directly monitor the effect of Rac1 removal on canonical Wnt

signaling in the limb bud ectoderm, we took advantage of the

TOPGAL reporter mouse strain engineered to reflect b-catenin

signaling in vivo (DasGupta and Fuchs, 1999). Specifically, we

generated E10 embryos with the genotype of Msx2-Cre;Rac1n/c;

TOPGAL (Rac1-CKO-TOPGAL) and control littermates also

carrying TOPGAL. The control TOPGAL embryos (e.g., Rac1c/c;

TOPGAL) exhibited robust activities in multiple tissues including

the limb buds (Figure 7E). Within the forelimb bud, both the distal

ectoderm (DE) and the proximal mesenchyme (DM and VM)

showed strong signals (Figures 7E0–7E00). In contrast, the forelimb

of the Rac1-CKO-TOPGAL embryo had little if any LacZ activity,

even though the activities in other parts of the embryo appeared

normal (Figures 7F–7F00). Moreover, consistent with the limb trun-

cation phenotype, the sizes of both fore- and hindlimb buds were

significantly smaller in the Rac1-CKO-TOPGAL embryo (Fig-

ure 7E0 versus Figure 7F0 and data not shown). Importantly, the

limb bud of Rac1-CKO embryos maintained an intact epithelium

and a morphologically identifiable AER at E10.5 (Figures 7G1 and

7G2, red arrows). Immunostaining of E-cadherin revealed normal

adherens junctions among epithelial cells and confirmed a thinner

AER in the mutant embryo (Figures 7H1 and 7H2). These results

argue against a nonspecific effect of Rac1 removal on limb bud

ectoderm but instead support a specific role for Rac1 in regulat-

ing canonical Wnt signaling.



Figure 7. Rac1 Interacts Genetically with b-catenin and Dkk1 in the Limb Bud Ectoderm of Mouse Embryos

(A–D) E16.5 skeletons. Black arrows denote absence of hindlimbs in all Rac1-CKO embryos. The control genotype is Msx2-Cre;Rac1c/+. (A0–D0) Forelimbs from

embryos above at a higher magnification. S: scapula; H: humerus; R: radius; U: ulna; P: phalanges.

(E–F) LacZ staining of E10 littermate embryos. Note that the control embryo (E) was partially squashed during staining so that the dorsal neural tube (red arrow) is

now facing the reader instead of to the right. BA: 1st branchial arch; FL: forelimb; HL: hindlimb. (E0–F00) Forelimb buds from the embryos above at a higher

magnification with either the dorsal (E0 and F0) or the distal view (E00and F00). A: anterior; P: posterior; DE: distal ectoderm; DM: dorsal mesenchyme; VM: ventral

mesenchyme.

(G1–G2) H&E staining of forelimb sections through the AER region at E10.5. Boxed areas shown at a higher magnification. Red dotted line separates mesenchyme

from ectoderm. Red arrow: AER.

(H1–H2) Immunostaining of E-cadherin in the AER region of the forelimb at E10.5.

(I1–I2) TUNEL staining of forelimb sections at E10.5. Dotted white line demarcates ectoderm and AER. White arrow: TUNEL signal in the mutant AER.

(J1–L2) Whole-mount in situ hybridization of the forelimb at E10.5. Ventral view for all limb buds, anterior to the left and posterior to the right.

(M1–M3) Representative forelimbs (M1–M2) and hindlimb (M3, black arrow) of Msx1-Cre;Rac1c/+;b-cateninc/+ embryos at E16.

(N1–N3) Representative forelimbs (N1–N2) and hindlimb (N3, black arrow) of Msx1-Cre;R26-Dkk1/R26-Dkk1 mice at birth.

(O1–O3) Representative forelimbs (O1–O2) and hindlimb (O3, black arrow) of Msx1-Cre;Rac1c/+;R26-Dkk1 embryos at E16.5.

(P) An integrated model for canonical Wnt signaling.
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The striking morphological similarity between the Rac1 and the

b-catenin conditional knockout embryos prompted us to explore

their potential resemblance at the molecular level. Barrow et al.

demonstrated that the forelimbs of Msx2-Cre;b-cateninn/c em-

bryos failed to maintain FGF8 expression in the AER and failed

to express BMP4 in the distal ventral ectoderm at 34-somite

stage (Barrow et al., 2003). Similarly, with the Rac1-CKO embryos

we detected only residual FGF8 in the forelimb AER and no BMP4

expression in the ventral ectoderm at E10.5 (34–35 somites)

(Figures 7J1 and 7J2 and Figures 7K1 and 7K2, respectively).

Moreover, AER expression of FGF4 was markedly reduced in

Rac1-CKO embryos (Figures 7L1 and 7L2). Also similar to the

b-catenin mutant embryos, none of the molecules were detected

in the hindlimb of the Rac1 mutant at E10.5 (data not shown).

Finally, removal of b-catenin caused apoptosis in both mesen-

chyme and the ectoderm (Barrow et al., 2003); we observed an

increase in TUNEL staining in both compartments in the forelimb

of Rac1-CKO embryos at E10.5 (Figures 7I1 and 7I2). Thus, both

morphologically and molecularly, the Rac1 conditional mutant

embryos resemble the b-catenin conditional mutants.

Rac1 Interacts Genetically with b-catenin
and Dkk1 in the AER
To address further the specificity of the role of Rac1 in b-catenin

signaling, we examined whether the two molecules genetically

interact in the AER. Specifically, we generated mouse embryos

lacking one copy each of Rac1 and b-catenin in the limb bud

ectoderm (Msx2-Cre;Rac1c/+;b-cateninc/+) by crossing Msx2-

Cre;Rac1c/+ males with b-cateninc/c females. Remarkably, all

double-heterozygous embryos (5/5) developed no hindlimb, and

nearly all forelimbs (9/10 from 5 embryos) lacked structures distal

to the scapula (Figures 7M1–7M3), resembling the limb pheno-

types of the Msx2-Cre;Rac1n/c or the Msx2-Cre;b-cateninn/c

embryos. The one exception forelimb lacked digits 4 and 5 and

the deltoid tuberosity of the humerus (data not shown). The single

heterozygous mice for either Rac1 or b-catenin showed no

phenotype (data not shown). Thus, Rac1 in AER controls limb

outgrowth likely through regulation of b-catenin.

To further substantiate that the limb phenotype caused by the

removal of Rac1 or b-catenin is indeed due to disruption of ca-

nonical Wnt signaling, we genetically manipulated the expres-

sion levels of Dkk1. Specifically, we generated a mouse strain

(R26-Dkk1) with the full-length Dkk1 cDNA knocked into the

Rosa26 locus; the cDNA is proceeded by a transcriptional stop

signal flanked by a pair of loxP sites and therefore can only be

transcribed when the loxP sites are recombined by Cre (Soriano,

1999; Srinivas et al., 2001). We then crossed the R26-Dkk1 and

the Msx2-Cre mice to produce embryos carrying both alleles

and hence expressing exogenous Dkk1 in the AER. Embryos

with Msx2-Cre and one copy of the R26-Dkk1 allele (Msx2-

Cre;R26-Dkk1) did not have any obvious phenotype (data not

shown). However, all embryos carrying Msx2-Cre and two

copies of R26-Dkk1 (Msx2-Cre;R26-Dkk1/R26-Dkk1) formed no

hindlimb and exhibited varying degrees of truncations in the fore-

limb (Figures 7N1–7N3). Thus, overexpression of Dkk1 in the

AER results in the same phenotype as removing either b-catenin

or Rac1 in the same compartment. Moreover, the dosage effect

of Dkk1 underscores both the robustness of the canonical Wnt
350 Cell 133, 340–353, April 18, 2008 ª2008 Elsevier Inc.
signaling system and the sensitivity of the AER to a threshold

level of Wnt signaling.

The findings above prompted us to hypothesize that a partial

reduction of Rac1 on top of moderate Dkk1 overexpression

may be sufficient to diminish Wnt signaling to below the critical

threshold level in the AER. To test this notion, we generated

embryos carrying Msx2-Cre and one copy each of Rac1c and

R26-Dkk1 (Msx2-Cre;Rac1c/+;R26-Dkk1). Remarkably, these

embryos developed no hindlimbs and had severe truncations

in the forelimbs (Figures 7O1–7O3). Thus, Rac1 interacts genet-

ically with Dkk1 and b-catenin in the control of limb outgrowth.

Overall, the genetic evidence, together with the in vitro data,

argues for a critical role of Rac1 in canonical Wnt signaling.

DISCUSSION

By using both biochemical and genetic approaches, we have un-

covered a signaling cascade that operates in conjunction with

b-catenin stabilization to activate canonical Wnt signaling. Stud-

ies in ST2 cells support a model in which Wnt signals through

LRP5/6, Dvl, and most likely Frizzled receptors to activate a

signaling module composed of Gaq/11bg-PI3K-Rac1-JNK2 (Fig-

ure 7P). As a result, stabilized b-catenin is phosphorylated at

Ser191 and Ser605 and thereby localized to the nucleus. Our

results are not only consistent with previous findings that abnor-

mally high levels of Rac1 activity promote b-catenin nuclear

localization and TCF/LEF-mediated transcription in cancer cell

lines (Esufali and Bapat, 2004), but they also identify Rac1 acti-

vation as an integral component of canonical Wnt signaling in

a normal cellular context.

Both this and a previous study of ours have identified Gaq/11bg

as an important component of Wnt signaling. In the previous

study, we provided evidence that Gaq/11bg mediates a nonca-

nonical Wnt pathway involving PLCb-PKCd (Tu et al., 2007).

Here we show that Gaq/11bg activates a PI3K-Rac1 cascade

that participates in canonical Wnt signaling. Our data from

both studies indicate that Wnt3a activates at least three distinct

signaling cascades in ST2 cells: (1) stabilization of b-catenin,

which does not require Gaq/11bg but is inhibited by Dkk1; (2)

activation of PLCb-PKCd, which requires Gaq/11bg signaling

but is not inhibited by Dkk1; (3) activation of PI3K-Rac1-JNK2,

which both requires Gaq/11bg signaling and is inhibited by

Dkk1. It is not known whether Wnt3a induces formation of three

distinct signaling complexes or a single complex with all three

signaling properties. The specificity of signaling may be deter-

mined by the diverse Wnt receptors at the cell surface.

Rac1 has also been implicated in nuclear transport of other

proteins. It was shown to regulate nuclear accumulation of an

armadillo protein SmgGDS through a mechanism dependent

upon both the C-terminal polybasic region (PBR) and the activa-

tion of Rac1 (Lanning et al., 2003). More recently, Rac1 was

reported to control nuclear translocation of STAT transcription

factors through interactions with a GTPase-activating protein

MgcRacGAP and tyrosine-phosphorylated STAT3 or STAT5A

(Kawashima et al., 2006). The present study has identified

a mechanism in which Rac1 activation controls nuclear localiza-

tion through JNK-dependent phosphorylation, but the molecular

details for this mechanism remain to be elucidated.



In addition to the serine/threonine phosphorylation within the

N terminus that is critical for b-catenin stability (Liu et al.,

2002), several other phosphorylation events have been impli-

cated in the turnover and/or subcellular localization of b-catenin.

Ryo et al. reported that phosphorylation of Ser246 and the sub-

sequent conformational changes of the p-Ser-Pro bond by the

prolyl isomerase Pin1 increased both total and nuclear levels

of b-catenin by inhibiting its interaction with APC (Ryo et al.,

2001). However, in our studies mutation of Ser246 did not have

any obvious effect on either stability or activity of b-catenin in re-

sponse to Wnt. Moreover, Wnt stimulation did not cause signifi-

cant phosphorylation at Ser246. The discrepancy could reflect

differences in the experimental systems. More recently, phos-

phorylation of Ser552 by Akt has been implicated in b-catenin

signaling in intestinal cells (He et al., 2007). Thus, multiple signal

cascades may converge on b-catenin via phosphorylation to

control canonical Wnt signaling.

Functional cooperation between JNK and b-catenin has been

recently reported in the intestine (Nateri et al., 2005). There, JNK-

mediated phosphorylation of c-Jun induced formation of a ter-

nary complex among c-Jun, TCF4, and b-catenin, which in turn

activated the c-Jun promoter. This result and our current finding,

however, appear to be at odds with a recent report that

sustained, high levels of nuclear JNK activity in early Xenopus em-

bryos prevented nuclear accumulation of b-catenin (Liao et al.,

2006). The discrepancy could indicate that the role of JNK in ca-

nonical Wnt signaling depends on the duration, degree, and/or

subcellular location of its activation. In this regard, it is worth not-

ing that in our study, the complexes among Rac1, b-catenin, and

JNK1/2 were only detected in the cytoplasm but not in the nu-

cleus, and that Wnt3a specifically activated JNK2 in this context.

On the other hand, Wnt7b, which did not activate canonical Wnt

signaling in ST2 cells, also failed to activate JNK2 in the b-catenin

complexes. One may speculate that such an activation event of

JNK2 could be ‘‘pathway specific’’ and may not be achieved by

other mechanisms.

Future genetic studies are necessary to determine whether

Rac1 participates in canonical Wnt signaling in other physiolog-

ical settings besides the embryonic limb AER. Of note, Rac1�/�

mouse embryos (Sugihara et al., 1998) share similar gastulation

defects with b-catenin�/� (Huelsken et al., 2000), Wnt3�/� (Liu

et al., 1999), and LRP5�/�/LRP6�/� mutants (Kelly et al., 2004).

It is therefore of interest to determine whether Rac1 genetically

interacts with these other components of canonical Wnt signal-

ing during gastulation of mouse embryos.

Genetic evidence for Rac in canonical Wnt signaling in Dro-

sophila has not been reported to date. This could be due to func-

tional redundancy among the three Rac homologs (Rac1, 2, and

Mtl) in the Drosophila genome (Hakeda-Suzuki et al., 2002). It is

worth noting that triple mutant Drosophila embryos containing

Rac1 null alleles were embryonic lethal although the phenotype

has not been reported (Hakeda-Suzuki et al., 2002). Moreover,

loss-of-function mutations of RacGap50C, a Rac GTPase-acti-

vating protein (GAP, negative regulator of Rac activity), ectopi-

cally activate Wg signaling in Drosophila embryos (Jones and

Bejsovec, 2005).

The role of JNK in canonical Wnt signaling in vivo remains to be

further elucidated. Although the present work in ST2 cells indi-
cates that JNK2 plays a principle role in mediating Wnt3a-in-

duced phosphorylation of b-catenin, mouse embryos lacking

both JNK1 and JNK2 do not exhibit the gastulation defect asso-

ciated with loss of canonical Wnt signaling, even though they die

around E11.5–E12.5 (Kuan et al., 1999). It is possible that other

members of the MAPK family regulate b-catenin phosphorylation

in other cell types. Of note, ERK2�/�mouse embryos are embry-

onic lethal at E6.5 with no mesoderm formation (Yao et al., 2003);

this phenotype resembles that caused by loss of canonical Wnt

signaling. Future studies are warranted to determine whether

ERK2 participates in canonical Wnt signaling during gastulation

of mouse embryos. In Drosophila, JNK and Wingless/Armadillo

signaling cascades have been shown to genetically interact in

promoting ventral patterning (McEwen et al., 2000). More

recently, Rac, and a RacGAP of the chimaerin family, known

as RhoGAP5A, were shown to interact genetically with ERK in

regulating the distribution of Armadillo and cell number in the

Drosophila eye (Bruinsma et al., 2007).

The finding that PI3K and Rac1 participate in canonical Wnt

signaling has important implications in cancer. Activating muta-

tions of PI3K have been frequently identified in ovarian, breast,

hepatocellular, and colorectal carcinomas (Lee et al., 2005;

Levine et al., 2005; Samuels et al., 2004). More recently, PI3K/

Pten signaling was shown to cooperate with b-catenin in causing

ovarian endometrioid adenocarcinoma in women and in mice

(Wu et al., 2007). Similarly, high levels of Rac1 activation have

been found in colon cancer cells containing elevated b-catenin

levels and contribute to aberrant activation of canonical Wnt

signaling (Esufali and Bapat, 2004). Overall, the Wnt-PI3K-

Rac1 pathway may provide additional therapeutic targets for

suppressing canonical Wnt signaling in cancer cells.

EXPERIMENTAL PROCEDURES

Mouse Strains and Embryo Analyses

Msx2-Cre (Sun et al., 2000), Rac1c/c (Gu et al., 2003), and TOPGAL (DasGupta

and Fuchs, 1999) mouse strains were as reported. The R26-Dkk1 mouse strain

was generated as described in the Supplemental Data. LacZ staining and

whole-mount skeletal preparations were based on methods as previously

described (Long et al., 2001). Whole-mount in situ hybridization was based

on a procedure as previously described (Wilkinson and Nieto, 1993). Immunos-

taining for E-cadherin and TUNEL assays (ApopTag Fluorescein In Situ Apopto-

sis Detection Kit, Chemicon International) were performed on paraffin sections.

Cell Cultures, Transfections, Infections, Viruses,

Plasmids, and Oligonucleotides

ST-2 cells, Wnt3a-expressing and control L cells, transfection and infection

procedures, retroviruses expressing GqI, Dkk1, Dvl-2 derivatives, or Wnt7b

were all as previously described (Tu et al., 2007). Additional viruses were pro-

duced in the same way to express N17Rac1, N17Cdc42 (cDNA Resource Cen-

ter, University of Missouri, Rolla, MO), or V12Rac1. V12Rac1 was generated by

site-directed mutagenesis (Stratagene). Full-length cDNA for b-catenin was

cloned by PCR from a mouse 15 day embryo cDNA pool Marathon-Ready

(BD Biosciences Clontech), and mutations were introduced by site-directed

mutagenesis; all variants of b-catenin were cloned in Myc-tagged pCS2+MT

vector. Gene-specific siRNA oligonucleotides (ON-TARGETplus SMARTpool)

(see Supplemental Data) and the control siRNA (ON-TARGETplus siCONTROL

Nontargeting siRNA #1) were from Dharmacon. MTT assay kit was form ATCC.

Antibodies, Proteins, and Chemicals

Antibodies for JNK, ERK, p38, phospho-JNK, phospho-ERK, and phospho-

p38 were from Cell Signaling; antibody for CREB1 was from Upstate. GAPDH
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antibody was from Chemicon; b-catenin and E-cadherin antibodies were from

BD Biosciences Pharmigen. TCF4 antibody, Myc antibody, and HRP-conju-

gated secondary antibodies were from Santa Cruz Biotechnology. Alexa555-

and Alexa488-conjugated secondary antibodies were from Molecular Probes.

Recombinant human active JNK2a2 and mouse Wnt3a were from Invitrogen

and R&D Systems, respectively. Wortmannin, SP600125, U0126, and

PD98059 were from Calbiochem.

Assays for Rac1, CDC42, RhoA Activation, and AP Activity

Activation of Rho family small GTPases was detected using an EZ-Detect

Rac1, Cdc42, and RhoA Activation Kit (Pierce Biotechnology). AP activity

was assayed by incubating cell lysates with p-nitrophenylphosphate as previ-

ously described (Tu et al., 2007).

Immunoprecipitation, Western Analyses, Immunohistochemistry,

and Phosphorylation Assays

The cytosolic and nuclear fractions of cells were prepared as described in the

Supplemental Data. Immunoprecipitation and western analyses were per-

formed using standard protocols. The intensity of protein bands was quantified

using NIH ImageJ. Immunocytochemistry was performed in cells cultured on

chamber slides (Nalge Nunc International). In vitro and in vivo phosphorylation

assays were performed as described in the Supplemental Data.

SUPPLEMENTAL DATA

Supplemental Data include Experimental Procedures and three figures and

can be found with this article online at http://www.cell.com/cgi/content/full/

133/2/340/DC1/.
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