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Positional Information and Whorl Morphogenesis
in Polysphondylium

Keqin Gregg,1 Inés Carrin,2 and Edward C. Cox
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Cellular slime molds of the genus Polysphondylium periodically release cell masses from the base of culminating fruiting
bodies. These masses quickly undergo a change in symmetry from spherical to radial as they differentiate into distinctive
arrays of secondary fruiting bodies arranged about a primary axis of stalk cells. Here we show that a major event in whorl
morphogenesis is the activation of a prestalk-specific promoter early and globally in newly forming whorls. With time,
transcript synthesis and amplification become restricted to the equator of the whorl and then to patches which define
where secondary tip morphogenesis will occur. The localization of early prestalk message synthesis depends on positional
information, in contrast to the establishment of early prestalk/prespore patterns in both Polysphondylium and Dictyostel-
ium. q 1996 Academic Press, Inc.

INTRODUCTION the sorogen to the appearance of radially symmetric small
visible tips on the whorl surface takes about 20 min. Sec-
ondary branch formation then proceeds, and the final resultPolysphondylium pallidum cells begin their life cycle as
is a symmetrical whorl of fruiting bodies. Quantification offree-living amoebae that feed on bacteria, grow, and divide.
the spatial distribution of tip-specific antigens and numeri-When the food is exhausted, cells signal to each other and
cal results suggest that whorl morphogenesis is regulatedform aggregation territories which further differentiate into
by a reaction–diffusion mechanism (Byrne and Cox, 1987).fruiting bodies containing stalk and spore cells. During the

Studies with monoclonal antibodies leave unansweredformation of fruiting bodies, Polysphondylium releases cell
major questions, preeminetely the extent to which whorlmasses from the base of the culminating sorogen, and these
prepatterns are explained either by the differentiation ofmasses soon form whorls of secondary (27) fruiting bodies
prestalk cells at random followed by cell sorting or by speci-arrayed symmetrically about the central or primary (17)
fication of cell identity by gradients of positional informa-stalk (Figs. 1 and 2).
tion. To answer this question genetic markers for cell typeAntigens characteristic of sorogen tips (Byrne and Cox,
are needed.1986) first appear over the nascent whorl surface, just before

In this study we have transformed Polysphondylium withit is released. With time, their distribution becomes re-
a Dictyostelium discoideum prestalk promoter PecmB fusedstricted to a band around the circumference of the whorl,
to lacZ (PecmB :lacZ). ecmB is a pre-stalk- and stalk-specificand this band breaks up into patches. Symmetrical patches
gene that codes for an extracellular matrix protein EcmB,become organizing centers for 27 tips, while asymmetrically
which is secreted into slime sheath and stalk tube (McRob-arranged patches die away. At this point, there is no visible
bie and Ceccarelli, 1988; McRobbie et al., 1988a,b). Usingchange in whorl shape. Visible sorogen tips then begin to
this promoter, we show that single and multiply integratedform, positioned by the radial prepattern. The entire pro-
copies of this construct respond to cues in Polysphondyliumcess, from the first appearance of a bulge at the base of
that correspond in a homologous fashion to temporal and
spatial cues in Dictyostelium. Analysis of the regulation of
PecmB :lacZ reveals that a major early event in whorl morpho-1 To whom correspondence should be addressed. Fax: (609) 258-
genesis is derepression of the prestalk pathway and that the1035. E-mail: keqin@watson.princeton.edu.
early spatial restriction of prestalk cells to the equator of2 Current address: Center for Molecular Biotechnology, School
the whorl occurs by restriction of prestalk transcription inof Life Science, Queensland University of Technology, G.P.O. Box

2434, Brisbane, Qld.4001, Australia. response to positional cues.
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Isolation of Genomic DNAMATERIALS AND METHODS
Cells for DNA isolation were grown on lawns of WBS99 and

harvested as described above. Genomic DNA was isolated by lysingGrowth and Development of Polysphondylium
cells directly in 4 M guanidine thiocynate buffer containing 0.5%
Sarkosyl and 100 mM Tris–HCl, pH 7.5 (Nelson and Krawetz,Amoebae were propagated on Escherichia coli K12 WBS99 (Sny-
1992). This mixture was extracted repeatedly with an equal volumeder and Silhavy, 1992). WBS99 carries a lac deletion and a Tn5
of phenol:chloroform:isoamyl alcohol (25:24:1) until a nominal in-insertion. The insertion confers resistance to G418 and disrupts
terface layer was present. The aqueous phase was collected, and 2the synthesis of capsular polysaccharide, which normally prevents
vol of ethanol were added to precipitate the DNA in the presenceslime molds from growing on E. coli K12 (Farnsworth and James,
of 0.25 M sodium acetate.1972). Cells were grown on lawns of WBS99 until the lawn cleared.

Starved cells were harvested and freed from bacteria by repeated
low-speed centrifugation in 11 PB buffer (Vocke and Cox, 1992).

Southern BlotsCells were then resuspended in 11 PB at a concentration of 5 1
108 cells ml01 and plated for development on dialysis membranes Restriction enzyme digests were separated on 1% agarose gels in
placed on 2% agar plates (Vocke and Cox, 1992). TAE buffer (TAE, 40 mM Tris, 1 mM Na2EDTA, 5 mM sodium

acetate, pH 8.2). Nucleic acids were transferred and fixed to mem-
branes by UV cross-linking, hybridized, and washed as described
in Cox et al. (1990).Transformation

P. pallidum PN500 (Francis, 1975) was grown axenically in stan-
Pulsed-Field Gel Electrophoresisdard HL5 culture medium (Knecht et al., 1986) and transformed

with a D. discoideum PecmB :lacZ fusion construct (Jermyn and Wil- The chromosomes of Polysphondylium were analyzed by pulsed-
liams, 1991) by a standard calcium phosphate procedure (Nellen et field gel electrophoresis as previously described (Cox et al., 1990)
al., 1984). Transformants were selected for G418 resistance on modified to account for the smaller average chromosome size of
lawns of E. coli B/r-1 (Hughes et al., 1992) spread on LP plates (Cox Polysphondylium. Briefly, cells at a concentration of 5 1 108 ml01

et al., 1988) containing 200 mg ml01 G418. They were cloned and in 11 PB were mixed with an equal volume of 2% ‘‘InCert’’ agarose
maintained on these same plates (Vocke and Cox, 1992). (FMC). Aliquots of 25 ml were then pipetted into rectangular molds

to generate plugs, which were treated with 1 mg ml01 proteinase
K (BRL)/50 mM EDTA/1% Sarkosyl, pH 9.5, at 507C for 48 hr. They
were then stored in 0.5 M EDTA, pH 9.5, at 47C. ElectrophoresisHistochemical Staining for b-Galactosidase
was in 0.9% agarose (BRL) using 0.51 TBE as running buffer. The
pulse times were 1250 sec for 96 hr at a voltage of 2.8 V cm01,The expression of b-gal at different developmental stages was
followed by 2000 sec for 72 hr at 2.7 V cm01. Separated chromo-visualized by staining fixed whole-mounts with 5-bromo-4-chloro-
somes were transferred to a nylon membrane, cross-linked, and3-indoyl-b-D-galactopyranoside (X-gal) (Dingermann et al., 1989).
probed (Cox et al., 1990).Whole-mounts on the dialysis membrane were fixed in 1% gluteral-

dehyde, 0.1% Triton X-100, and 10 mM EGTA in Z buffer (Vocke
and Cox, 1992). By fixing specimens on membranes, the entire life
cycle can easily be followed. In some experiments, fixed samples RESULTS
were treated with 100% ethanol for 1 min at room temperature.
This treatment removes b-gal from some cells, but allows the sub- Distribution of b-Gal in the Transformant 56.6
strate to penetrate the sorogen, so that centrally located stalk cells

In order to obtain a stalk-specific marker, we transformedcan be stained and visualized. Amoebae were stained for 12 hr;
aggregates and fruiting bodies for 30 to 60 min. P. pallidum with a Dictyostelium PecmB :lacZ construct. A

collection of transformants with distinctive staining pat-
terns was isolated. One of them, 56.6, expresses b-gal with
stalk cell specificity. b-gal expression is first detected in theWhole-Mount in Situ Hybridization
center of multicellular aggregates (Fig. 1B). Later, stained
cells are localized primarily at the tips of fingers (Fig. 1C).lacZ expression in whole-mounts was also revealed by in situ

hybridization (Escalante and Loomis, 1995), with some modifica- In the fruiting body, the strongly staining cells are at the
tions. Cells were allowed to culminate on dialysis membranes on tip of the 17 sorogen, at the tips of a nascent whorl, and in
2% agar. The dialysis membranes were moved into 24-well ‘‘Cell stalk cells (Figs. 1D, 1E, and 1F). When a cell mass starts
Wells’’ (Corning Glass Works) and fixed, first in cold methanol for to release from the 17 sorogen, clear b-gal staining is not
15 min and then in freshly made 4% paraformaldehyde in PBS for observed early during whorl release (Fig. 1E). Later, strong
5 hr at room temperature. Fixed samples were washed 3 1 5 min

b-gal activity is detected as evenly spaced patches around
in PBS and then treated with 500 mg ml01 proteinase K (BRL) in

the equator of the releasing whorl (Fig. 1F). The stainingPBS for 10 –20 min at room temperature. They were washed briefly
time required for b-gal detection in the aggregates is aboutin PBS and then fixed again in 4% paraformaldehyde at room tem-
10 times longer than that in sorogens, suggesting that theperature for 2 hr. Hybridization and antibody staining followed the
level of b-gal production at the culmination stage is muchprotocol in Escalante and Loomis (1995), using 150 ng ml01 of the

labeled probe. higher. b-Gal production at both 17 and 27 tips marks a
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513Whorl Morphogenesis in Polysphondylium

region similar to the prestalk zone of Dictyostelium, reveal- we first localized the transforming DNA to a single chromo-
some by probing Southern blots of pulsed-field gels withing the existence of a prestalk region in Polysphondylium.

The sorogen in Fig. 1D was treated with ethanol, allowing different fragments of the construct. All probes hybridized
to chromosome 2 (Fig. 3), showing that the construct, eitherX-gal to penetrate into its center. Although this treatment

causes loss of b-gal staining in the sorogen body, it reveals intact or in fragments, inserted into a single chromosome.
Southern blots were used to analyze plasmid integrationb-gal activity in stalk cells at the center of the sorogen.

The sorogens in both Figs. 1E and 1F were not treated with further. ClaI, which cuts the transforming plasmid once,
and BglII, which cuts it twice, were used in these experi-ethanol, and they show a few stained cells in the body of

the sorogen as well as in the tips. b-Gal activity is also ments (Fig. 4A). Both ClaI- and Bgl II-cut genomic DNA was
probed with different probes from the transforming plasmid.detected in about 30% of the spores in both 17 and 27 spore

heads (Figs. 1G and 1H). Plasmid cut with ClaI and BglII was used as a control. If
the insertion were a multicopy tandem repeat, then a com-
mon band equal in size to the Bgl II or ClaI fragment derived

lacZ mRNA Distribution from the transforming vector should be detected by all
probes. For multicopy insertions at different sites on chro-PecmB :lacZ expression was further analyzed by in situ hy-
mosome 2, multiple bands would be expected. In sum, thebridization. lacZ mRNA is first detected in the tips of 17
results show that 56.6 contains a single copy insertion sincesorogens (Fig. 2A) and then uniformly in a releasing whorl
all probes hybridize mainly to a single band, whose size(Fig. 2B). Later, synthesis is restricted to a band around the
varies from probe to probe, none of which has the same sizeequator of the nascent whorl (Fig. 2C). This equatorial band
as the transforming plasmid (Fig. 4B). Close attention to Fig.breaks up into patches where 27 tips will form (Fig. 2D).
4 will also convince the reader that the recombination siteTranscripts are also seen in newly formed 27 tips (Figs. 2E
is located between the actin-6 promoter and the amp geneand 2F) and in both 17 and 27 stalks (Figs. 2A, 2C, and 2D).
in a 0.46-kb fragment lying between the HaeII and BspHIThey are not detectable in controls probed with plasmid
restriction sites (and see the caption to Fig. 4).sequences alone (Fig. 2G). As the 27 tip prepattern evolves,

Since the ecmB promoter is intact and flanked by neo andthe intensity of the stain increases with time (Figs. 2B–2E).
lacZ, it is unlikely, but not proven, that b-gal expression inThe unambiguous stain in centrally located 17 stalk cells
this cell line is under the control of an endogenous pro-also demonstrates that our fixation procedure adequately
moter. A second transformant (56.17) containing a mul-permeablizes the entire fruiting body.
ticopy tandem insertion of the same construct yields anBecause the in situ hybridization protocol clears the spec-
identical lacZ expression pattern (data not shown). Becauseimen, we have been able for the first time to visualize how
a multiple insertion should buffer the effects of potential27 stalks form. Nascent 27 tips originate in patches of
cis-acting flanking sequences, lacZ expression in 56.17 isprestalk cells (Figs. 2F and 2H). Immediately after visible
most likely controlled by the Dictyostelium ecmB pro-tips form, a few cells differentiate into stalk cells and form
moter itself. Thus we conclude that the Dictyosteliuma tongue-shaped structure, the ‘‘stalk bud’’ (Fig. 2I, arrow).
ecmB promoter can be expressed and regulated in Poly-As cells are partitioned within the whorl, the stalk bud
sphondylium with similar tissue specificity in both organ-elongates and moves toward the center of the whorl and
isms.finally forms mature 27 stalks (Figs. 2J, 2K, and 2L). The

fact that the growth of the stalk bud is highly directed to-
ward the center suggests the existence of polar signals di-
rected from the center of the whorl to the surface and there- DISCUSSION
fore a third morphogenetic axis.

The results described here reveal that a prestalk promoter
isolated from Dictyostelium responds to developmentalInsertion of PecmB:lacZ in the Genome
cues in a prestalk-specific manner in Polysphondylium.
This has allowed us to define a prestalk zone and to showlacZ expression and b-gal production in 56.6 show stalk

cell specificity. Is lacZ expression in this cell line regulated that whorl patterning begins as the regulation of a stalk-
specific promoter on the entire nascent whorl. The transi-by the Dictyostelium ecmB promoter or by an endogenous

promoter trapped by the insertion? To answer this question, tion from a uniform distribution of transcripts proceeds by

FIG. 1. b-Galactosidase staining of 56.6 through its developmental cycle. Whole-mounts at different developing stages were stained with
X-gal. (A) Starved amoebae. (B) Aggregate. (C) Fingers. (D) 17 sorogen treated with 100% ethanol to reveal central stalk staining. (E) 17

sorogen about to release a whorl showing some stained cells in the sorogen body and there is no strong staining in the whorl. (F) (Top)
17 sorogen and a recently released whorl. (Bottom) A whorl with tips and a sorogen about to release a whorl. b-Gal staining is in both 17

and 27 tip cells and in the newly formed 27 tip prepattern of a releasing whorl. (G –H) b-Gal-negative and -positive spores, 17 sorogens.
Scale bar, A–F, 100 mm; G–H, 50 mm.
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515Whorl Morphogenesis in Polysphondylium

FIG. 2. Spatial distribution of lacZ mRNA detected by in situ hybridization. (A) A 17 sorogen. (B) A whorl forming at the base of a 17

sorogen. lacZ mRNA is uniformly distributed in the releasing whorl. (C) A whorl about to detach from a 17 sorogen. lacZ mRNA appears
as a band about the equator. (D) A newly released whorl (top) shows patches of lacZ mRNA. A later stage (bottom) shows that 27 stalk
cells contain lacZ mRNA. (E) Two developing whorls have strong lacZ expression in their newly formed tip cells. (F) lacZ expression in
the tip cells of a whorl with 27 tips. (G) A control probed with the transforming vector carrying a lacZ deletion. (H) Two whorls with
visible tips containing high concentrations of lacZ mRNA. (I) A whorl with 27 tips showing that a few cells differentiate into vacuolated
stalk cells and form a tongue-like structure, the ‘‘stalk bud.’’ (J) A whorl with 27 tips showing that the stalk bud starts to elongate toward
the 17 stalk. (K) A later stage showing that the stalk bud elongates and moves toward the center of the whorl. (L) A whorl with 27 fingers
showing that the 27 stalk finally reaches the center. Scale bar, A–G, 100 mm; H–L, 50 mm.
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FIG. 3. The PecmB :lacZ construct is inserted into chromosome
two. Chromosomes were separated by pulsed-field electrophoresis,
blotted to a membrane, and probed by different fragments of the
construct (Fig. 4A, fragments 3–7). All the probes hybridized to a
single chromosome. Here we show the lacZ probe. Note that the
probe hybridizes at the top of the chromosome 2, 3 doublet.

a series of restrictions, first to the equator of the whorl and
then to radially positioned patches that define where shape
changes will occur. The initial appearance of new tran-
scripts clearly responds to positional information in the 17
sorogen. The expression of the PecmB promoter appears to be
a relatively late event in whorl morphogenesis, since the
translation of message under control of this promoter first
occurs in radially symmetric patches where 27 tips will
form, in contrast to other, presumably early, antigens such
as Tp423.

When Polysphondylium cells first begin to aggregate,
prestalk cells appear randomly distributed in aggregating
streams and centers. They sort out later to the center at the
mound stage, the precursor of the 17 sorogen (Vocke and

FIG. 4. Genomic structure of 56.6. (A) The structure of the trans-Cox, 1992). This behavior is similar to early events in Dicty-
forming plasmid with the probes used for hybridization labeled on theostelium stalk-cell differentiation and morphogenesis,
inside: 1, a 0.96-kb BspHI–EcoRV fragment located between the actin-

where prestalk cells are also found scattered throughout 6 promoter and amp gene; 2, a 0.5-kb HaeII–EcoRV fragment which
early aggregates, sorting later to the mound center (reviewed is adjacent to the actin-6 promoter and is part of probe 1; 3, a 0.7-kb
in Williams and Morrison, 1994). actin-6 promoter fragment generated by PCR; 4, a 0.9-kb PstI fragment

One might have expected a similar mechanism to func- of the neo gene; 5, a 2.1-kb BglII fragment of the ecmB promoter; 6, a
tion during the establishment of 27 tips on the whorl, as 2.2-kb ClaI–XhoI fragment of lacZ; and 7, a 1-kb BspHI fragment of

amp. The transformation vector inserted into the genome as an intacthas been suggested by Fukushima and Maeda (1991). If cell
single copy with its insertion site in a 0.46-kb BspHI–HaeII fragmentsorting were the explanation, however, we would expect to
located between the actin-6 promoter and the amp gene. BglII digestionfind a few tens or perhaps hundreds of cells expressing lacZ
generates three fragments: a 7.2-kb fragment hybridizing to probes 1–transcripts at the base of the sorogen. These cells would
4; a 2.1-kb fragment hybridizing to probe 5; and a 5.5-kb fragmentthen sort out to the equator and eventually to radially sym-
hybridizing to probes 6, 7, and 1*. ClaI digestion generates two frag-

metric patches. Instead, we find very little lacZ message at ments: an 8.8-kb fragment hybridizing to probes 1–5 and a 6.4-kb
the base of the culminating sorogen, followed by a sudden fragment hybridizing to probes 6, 7, and 1. For a restriction map of the
turn-on of message synthesis in the whorl as it begins to vector see Jermyn and Williams (1991). (B) Southern blots documenting
break free from the 17 sorogen. This is particularly clear in the above. Genomic DNA of 56.6 was cut with ClaI or BglII and
Figs. 2B and 2C. For this reason, positional signals appear separated on 1% agarose (lanes 1–10). The blots were probed with the

seven probes described above.to dominate this phase of morphogenesis. This interpreta-
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