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In this paper, Backlund transformations for nonlinear partial differential equa-
tions are obtained without using any structure associated with the equations. We
classify all the nonlinear partial differential equations of the form wu,.. = F(u, u,,
u,) that have Bicklund transformations whose definition involves only u, u,, u,,,
and a function determined by u, u,, and u,, via an integrable system of two first-
order partial differential equations, and we obtain all such Backlund transforma-
tions. In particular, a new nonlinear partial differential equation with a Biacklund
transformation (i.e., u,, = —#% sin 2u u, — % u} + u,) is found, and the known
Backlund transformations for the KdV equation, the MKdV equation, the poten-
tial KdV equation, and the potential MKdV equation are recovered without using
any knowledge of these equations. Qur method is applicable to many other classes
of nonlinear partial differential equations. @ 1995 Academic Press. Inc.

Backlund transformation is a useful tool for generating solutions to
certain nonlinear partial differential equations (PDEs), especially, soliton
solutions to equations like the Korteweg—de Vries (KdV) equation. Using
a Bicklund transformation for a nonlinear PDE, one obtains a new solu-
tion to the equation from a known one.

For example, the system

.ou+u
Uy = u, — 2\ sin R
2
, 2 . ou-—u'
Uy = —Uu + X sin —2—,
151

0022-247X/95 $6.00

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



152 HONGYOU WU

where A # 0 is an arbitrary constant, defines a Bicklund transformation
u — u’' of the sine—Gordon equation

Uy = sin u.

In fact, if « is a solution to the sine-Gordon equation, then the system
above is integrable (i.e., compatible on some domain in the xtu’-space)
and yields a new solution ' to the sine-Gordon equation. In particular,
from the trivial solution ¥ = 0 we obtain the so-called 1-soliton solution

1
u'(x, t) = 4 arc tan exp (a — Ax — X t),

where « is also an arbitrary constant and repeated applications of this
procedure yield the so-called multiple-soliton solutions.

There is much literature on Bicklund transformations for nonlinear
PDEs. A Bicklund transformation for the KdV equation and a Backlund
transformation for the potential KdV equation were derived by Wahlquist
and Eastbrook in [12]. Among the numerous Béacklund transformations
found after the work [12] (see, for example, |6, 10] for detailed discus-
sions), a Backlund transformation for the modified KdV (MKdV) equa-
tion was found by Lamb in [5]. There have been many formulations of
Backlund transformations. For example, the jet bundle formulation was
given by Pirani, Robinson, and Shadwick in [9], Boiti and Tu gave the
gauge transformation interpretation of Backlund transformations in [1],
and Tian worked out several examples for this interpretation in [11].
Despite these advances, several interesting questions remain to be inves-
tigated:

1.  Which nonlinear PDEs have Bicklund transformations?
2. How many Bicklund transformations can a nonlinear PDE have?

3. What is a practical way to find Biacklund transformations for a
given nonlinear PDE?

In this paper, we show that the known Béicklund transformations for
the KdV equation, MKdV equation, potential KdV equation, sin—-Gordon
equation, and many others allow a unified formulation. Based on this
formulation, we give a definition of Bicklund transformation that is quite
general and very practical. Roughly speaking, a Backlund transformation
is a rule that tells one how to obtain a new solution from an old one in
terms of a finite number (called the ‘‘degree’’) of functions and all the
functions used are determined by the old solution through a finite number
(called the “‘order’’) of times of differentiation and integration. With this
definition, we want to address the questions listed above. We will restrict
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our attention to nonlinear PDEs of the form w,, = %(u, u,, u;) and
Bicklund transformations for these equations whose definition involves
only u, u,, u,, and a function determined by u«, u,, and u,,. We require
that the equations in question have enough solutions so that at each point
in the xz-space, u and all its derivatives except u,,, and the derivatives of
U, are independent from each other. Therefore, we assume that F is
analytic. It is proved that, up to a rescaling of the xtu-space and a shift in
u-direction, the KdV equation and the equations

—_ 3 2
Uy = (CI() 5 u ) Uy + U,
Ugy = P+ qott, + 3ul + u,,

—_ 1
Uge = Po + Golty = 33 + u,,

Uer = Po + Golte + 3u?—3ui +u,  withgy> —1,

+
U = Po+ oty + 3 ui+ dui+u,  with gy <1,
Uge = (qo — 3 sin 2u)ti, — 3 1} + u,
are the only nonlinear PDEs of the form u,,, = F(u, u,, u,) that have
Bicklund transformations whose definition involves only «, u,, u,., and a
function ¢ determined by u, «,, and u,, via an integrable system of the
form

b = U, u, 1y, Uy,
& = O, u, u., u,).

We also determine all such Bicklund transformations for these nonlinear
PDEs. In the case of the KdV equation, the MKdV equation, the potential
KdV equation, and the potential MKdV equation, the known Backlund
transformations are the only Biacklund transformations of the above form
(up to an equivalence).

Our method is very general and practical. It can be used to discuss
various types of Biacklund transformations for many other classes of non-
linear PDEs. It is also interesting to find out if one can obtain all the
Bicklund transformations for a fixed nonlinear PDE like the KdV equa-
tion or the MKdV equation using our method.

We review the known Béacklund transformations for the sine—Gordon
equation, the KdV equation, the MKdV equation, and the potential KdV
equation and their unified formulation in Section 1, and we give the defini-
tion of Bicklund transformation that will be used in this paper. In Section
2, we determine the nonlinear PDEs of the form w,,, = F(u, u,, u,) that
have Backlund transformations whose definition involves only u, u,, u,,,
and a function determined by u, «,, and «,,, and we find all such Backlund
transformations for these equations.



154 HONGYOU WU

We are greatly indebted to Josef Dorfmeister, Franz Pedit, and Rudolf
Schmid for their interest in this work. This work was done during the
author’s visit at Emory University in 1991-1993 and the hospitality of the
Department of Mathematics and Computer Science there is very appreci-
ated. We also thank the referees for their suggestions, which led to many
improvements in our presentation. The author was partially supported by
NSF Grant DMS-9205293.

{. EXAMPLES AND A DEFINITION OF BACKLUND TRANSFORMATIONS
A Bicklund transformation w — w’ for the potential KdV equation
w, = 3wl + we.,
defined by

wi=A—w,— 3w — w')?
(1.1

—wpt v = W = wi) = 25+ wowl + w),

il

’
W,

where A is an arbitrary constant, was found by Wahlquist and Estabrook
in [12]. From this Backlund transformation w > w’ for the potential KdV
equation they obtained a Bécklund transformation u — 1’ for the KdV
equation

U, = 6uu, + .,
defined by
Ur—>w= f udc—w' —u' = wj.

In[11], it is shown that the above Bicklund transformation for the KdV
equation can also be defined as follows. Let ¢ be a solution to the integra-
ble system

b, = —A + 2+ u,

(1.2
b, = A=\ + d) + 2N + dDu + 2u + 2du, + u,,, )

where A is an arbitrary constant; then

w' =2\ = 2¢ - u (1.3)
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Moreover, it is proved in [11] that the Backlund transformation for the
MKdV equation

v = 30y t+ U
found by Lamb in [5] can also be defined by

. 41\
Ur—)v—1+d‘2+v, (1.4)

where A\ is an arbitrary constant and  is a solution to the integrable
system

Y = AP+ 31+ A,
= M+ 3N+ PHu + M’ + (1 + YD’ (1.5)
+ 3N — YD, + 31+ YPuy,.
Note that the original Bicklund transformation found by Béicklund (see
[2]), i.e., the Backlund transformation for the sine—~Gordon equation men-

tioned in the introduction, can also be put into this form: ' = o with o
being a solution to the integrable system

(rx=u,,—2)\sinu;U,
(1.6)

_ 2 . u—o

a',——u,+xsm >

where X is an arbitrary constant. Motivated by these examples and many
others, the following definitions seem appropriate.
Let n > 0 and & = 0 be integers. Consider a system

D, = Ay, b2y ooy b, U, U, Uy, ..., 1H),

" (1.7)
b, = O, b2, oony bny W, Uy, Uy, ..., DT )
on the (row) vector ® of n functions ¢,, ¢, ..., ¢,, where  and © are
two vectors of non-zero smooth functions such that one of them involves
a kth order derivative of u.

DEFINITION 1.8. We call the system (1.7) an integrable system associ-
ated with a nonlinear partial differential equation F(u, u,, u,, ty...qq...)) =
0 if it is integrable on a non-empty open subset of the ®-space when and
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only when u is a solution to a fixed set of partial differential equations
implied by F(u, wu,, t;, uy....;....) = 0. The number n will be called the
degree of (1.7), while the number £ will be called the order of (1.7) if
one cannot reduce it using only the differential equation F(u, u,, u,,
Uy...qp.) = 01n question.

For example, the systems (1.1), (1.2), and (1.5) are integrable systems
of degree 1 and order 2 associated with the potential KdV equation, the
KdV equation, and the MKdV equation, respectively, and the system
(1.6) is an integrable system of degree | and order 1 associated with the
sine—Gordon equation. The functions defined by an integrable system
associated with a nonlinear partial differential equation were called
pseudopotentials of the equation by Wahlquist and Estabrook in [13] and
studied extensively by several authors (see, for example, [7, 8]). From
[t1], when n = 1 and Q and O are quadratic in the pseudopotential, this
type of integrable systems comes from sl(2, R)-linear systems associated
with the nonlinear PDEs, which can be regarded as degree-2 integrable
systems by our definition.

DEFINITION 1.9. Assume that (1.7) is an integrable system associated
with a nonlinear partial differential equation

Fu, iy, tty, ty...qq...;) = 0. (1.10)

Amapursu' = F(pr, dayoovy Gn, U, Uy, Uy, ..., dtu) is called a Backlund
transformation for (1.10) if ' is always a solution to (1.10) for any solu-
tion u« to (1.10) and any solution ® = (¢, ¢a, ..., $,) to the corresponding
system (1.7). We will say that this map is of degree n if (1.7) is of degree n
and that this map is of order k if either (1.7) is of order k or (1.7) is of order
<k but F involves a kth order derivative of u that cannot be replaced by
lower order derivatives of u using only the differential equation (1.10) in
question.

For example, the Backlund transformations for the KdV equation, the
MKdV equation, and the potential KdV equation listed above are of
degree 1 and order 2, while the one for the sine-Gordon equation is of
degree 1 and order 1.

fu—u' = F(b,u,uc,u, ..., 9%u) is a Backlund transformation defined
via an integrable system
b= U, u, ue, u,, ..., 0u),

b = O, u, uy, u, ..., 3w,

and f'is an invertible smooth function, then this Backlund transformation
can also be written as u —> u’ = F(f (), u, uy, u,, ..., 3*u) with ¢ defined
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by
_
)
1
S

W, Q(fW), u, uy, ..., %),

W, Of(W), u, ug, ..., a%u).

This freedom in choosing the integrable system defining ¢ sometimes
gives us a way to normalize Q@ or ®. For example, if we normalize the
system (1.5) into the system

It

¢, = Asind + u,

Il

. A L1
&b, )\2[)\smf,b+u]+Esmd>u-+—u3+)\cosdbuvau_U

2

via the substitution ¥y = tan(¢/2), then the Backlund transformation (1.4)
for the MKdV equation can be written as

v—>v =2\sin¢ + u.
We will frequently use this fact in the next section. More general substitu-
tions can also be used to normalize an integrable system and, hence, the

corresponding Backlund transformation. For example, using the relation

w+ w

2

¢ =~

we can rewrite the system (1.1) as
A 2 )
¢ = — 3 + @7 + 2w + wi,

A
= 2A (— 5t b+ 2w + wz) + (A + 2d% + 4w + 2w)w,

&
|

| S
w2+ W,

and the corresponding Bécklund transformation for the potential KdV
equation becomes

w' = =2¢ — w.
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Our method originated from [3] and relies on the requirement that the
nonlinear PDEs u,.. = %(u, u,, u,) in question have enough solutions so
that at each point in the xt-space, « and all its derivatives except u,,, and
the derivatives of u,,, are independent from each other; namely, we can
treat them as independent variables in the functions %, F, (}, and ® when
we want to determine %, F, (1, and ©. Moreover, by our definition of
associated integrable systems and Bicklund transformations, we can deal
with ¢, ¢, ..., b, In F, F, (1, and O in the same way. We also note that
the way we determine associated integrable systems is the direct ap-
proach for finding pseudopotentials {4].

2. BACKLUND TRANSFORMATIONS FOR U, = F(u, u,, u,)

In this section, we want to demonstrate how to find Bicklund transfor-
mations for nonlinear PDEs of the form w.., = F(u, u,, u,), where F is
analytic and (8/du,)F # 0. We start from simple ones and then look for
more general ones. In the latter case, the formats of associated integrable
systems, Bécklund transformations, and nonlinear PDEs are given first
(see Lemmas 2.11 and 2.23 and Corollary 2.22); the actual determination
of the Bicklund transformations is carried out second (see Theorem 2.43);
and finally some remarks follow.

THEOREM 2.1. There is no Bécklund transformation
u—v = F(, u 2.2)
Jor a nonlinear partial differential equation
Uer = Fu, u,) (2.3)
defined via an associated integrable system of the form

b = U, u),

(2.49)
¢ = O(, u, ux),

where (0/3p)F # 0 and (0/0u,,)® # 0.
Proof. From (2.3) and (2.4) we have

IOELY 0 90 _ 30

W= 0 40 2 .
b ad "o dd du EIT
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Therefore, the compatibility condition ¢,, = ¢,, of (2.4) implies that

90

) 30 _ 9% 90
du

du  du, duy,’

and

which imply that
Flu, u) = fluy + glu,, Od, u, uy) = 0(d) + k(d)uy

for some smooth functions f, g, 8, and x. Hence, without loss of general-
ity, (2.4) can be written as

d’x = Q(d)’ “)»
& = 0(d) + U

So, ¢, = ¢, if and only if

i

EV

— = =00 + f.
0, RS 0=0Q0 +f

Thus,
O, w) = Gu), 0(p) = a — bd,  flu) = bG(u)

for some constants «a, b, and some smooth function G satisfying G' = g.
Therefore, the nonlinear partial differential equation has the form

U = bG(u) + g(uu,, (2.5)
where g is not constant, and the associated integrable system has the form

¢ = Gu),

2.6
(b,:a—bd)*'uu. ( )

By (2.2) and (2.6),

Uaix = 9, u, u,, u,) + glu)

(]

F (¢, u)
— U
ou

oF (¢, u)
ou !

bG(v) + glv, = H(P, u, u,, u,) + gw)
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for some smooth functions % and ¥. Thus, v is always a solution to (2.5)
only if

oF (b, 1)
du =0

Hence, the Bicklund transformation must have the form
u—v = F(), 2.7
where F' # 0. Then, (2.6) and (2.7) yield

U = $(d, u, ) + Fid) gy,
bG(v) + gvv, = $(b, u, u) + F'(P) g0t

for some smooth functions $ and ¥, which shows that v cannot be a
solution to (2.5) in general. |

Next, consider a Bicklund transformation
u— v = F(b, u, u,, u) 2.8)
for a nonlinear partial differential equation
Uy = Flu, Uy, u,) 2.9
defined via an associated integrable system

b = U, u, u,, U,
b, = (P, u, Uy, ),

(2.10)

where (3/0¢) F # 0 and (9/du,,)© # 0. This setup is more general than that
of Theorem 2.1. However, Theorem 2.1 is included to illustrate the
method.

LEMMA 2.11. (2.10) is an integrable system associated with (2.9) if
and only if Q does not depend on u, and u.,,

Fu, ty, u) = p) + qu, + r@us + s@ui + Qu,, (2.12)

ot (67 ), 120,
O(P, u, ) = (P, u) + (@ o QO ) e = 5 5 s + O, iy,
(2.13)
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for some smooth functions p, q. r, s, Q, ©, and O satisfying

30 N
ou = 09,
EEe) .
our 250,
MO _ ) 86 0000 (
ad du dpou ou od
2 942 8@) ( P 6~()) QQ
(Oa¢ Qad; ) =0 ®a¢3 Qad)
= 9Q 90 -
dd) =0 5:#? + pO.

Proof. From (2.9) and (2.10) we have

920}

3¢ ou

+q®

(2.14)

(2.15)

+ r) 0, (2.16)

2.17)

(2.18)

¢ = (= 60' + u ,6_9_ + 9_2 + _69_,
xr 9d U ou Uy EY Uy EY
00 d0 30 00
= Fuy T+ Uy + F .
b = Q= b Ty TG F .
So, ¢, = ¢, implies that @ does not depend on «, and u,, and
(e, u) OF(u, uy, u) 00(d, u, u,, un)
du du, Ol

which implies that @ (¢, u, u,, u)

= O, u, u) + Op, u, u)u, and F(u,

U, i) = Plu, u) + Q(u, u,)u, for some functions 0.0, P, and Q with 0 #
0 and Q # 0. Thus, (2.10) is an integrable system associated with (2.9) if

and only if @ does not depend on u,,

90, 1) = Qu, 1)B(e, u),
ou

. a0 "O 2

555 = =0 —g au,’
aQ 00 aé)
0B e

(2.19)

(2.20)

(2.21)

From (2.19) we see that Q does not depend on «, and (2.14) holds. (2.20) is

equivalent to
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o~ L) a@) 160 ,
O(d), u, ) = (e, u) + <0 i QO 50 e T 30 u;
for some smooth function ©, and hence (2.13) holds. Then, (2.21) implies
that P(u, u,) = p(u) + g(du, + r(yu’ + s@)u? for some smooth func-
tions p, g, r, and s. Therefore, (2.12) holds, and (2.21) is equivalent to
(2.15)-2.18). 1

COROLLARY 2.22. If (2.10) is an integrable system associated with a
nonlinear partial differential equation . = p(u) + qQuyu, + r(u)us + u,,
then QUo, u, u) = wld) + aldp)u + v(P)u’ for some smooth functions w,
o, and t. Moreover, if (2.10) is an integrable system associated with
U = p(u) + q(uu, + uy, then either Q(, u, u,) = 1(dlwy + ogu + u?)
Jor some smooth function v and constants wy and oo witht # 0, or U, u,
u) = w(d) + o(b)u for some smooth functions w and o with o # 0.

Proof. The first statement is a direct consequence of (2.14) and (2.15)
since s = 0 and Q = | now.

To prove the second statement, we only need to show that if (¢, v) =
w(p) + o(p)u + u?, then w and o are constant, which is a direct conse-
quence of (2.16), since r = 0. 1|

LeEMMA 2.23. (2.8) is a Bdcklund transformation for the nonlinear
partial differential equation (2.9) defined via an associated integrable
system of the form (2.10) if and only if Q) does not depend on u, and u,,
and, up to a rescaling of the variable t,

F(¢, u, u,) = f(d) + au, (2.24)

Fu, uy, u) = p(u) + qglwyu, + r()u’ + sGu’ + u,, (2.25)
= Q) 3Q 924} ) 19200 , 00

®(¢’, U, u_r) - ®(¢a Ll) + (5‘(;5}7 - m Ux 3 auzux + Ju Uxx

(2.26)

for some constant o and smooth functions f, p, q. r. s, and © satisfying

30 Q)
'5‘;3— = LS ’a-u", (227)
a} 9°Q) 3} 0{)
g’éﬁ— 396-(;2)_674_2_2"5’ (2.28)
(00, #0)00
dd du dapdu/ o
o (31000 #0 ) 90 80
- (64)2814 Q dp2du ou T 950 (2.29)
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- 9 0 ETe)

®£:Q£+p'a—;, (2.30)
as(u) = a’s(), 2.31)
% £ L ) = atro) + 3aif s, (2.32)
ou~
by 92 o 07
30 o + 3fﬂa¢8u + aq(u)

I

aq(v) + 2af ' r()Q + 3a(f)is(v), (2.33)

aQ)2 rera 20
5 TV e

=p) + f'q)Q + (f')rv)Q?
+ (3B + 0. (2.34)

£+ 37 %% + 10 ( + ap

Proof. First, we want to show that Q is constant. Assume that Q is not
constant. Using Lemma 2.11, from (2.8)-(2.10) we obtain

aF (b, u, iy, U,

Vie = (b, u, uy, e, 4, y) + QQ0)

xxt s

oy,
F(v, v, v) = B, U, Uy, tee, U, 1) + OV) 9F(9, ;{u Uy ) xt
for some smooth functions & and 9. Thus,
oF (b, u, u,, uy) OF (b, u, u., u)

Q) === = QW) ,

(17

and hence F does not depend on «,,. Similarly, F does not depend on u,
and u. Thus, v = F(¢). Then, by (2.14) and direct calculations,

Ver = €0, u, 1) + F'(6)Q)O(d, t)tt,,,
F, v, v) = D, u, u) + QW F (D)O(b, Wity

for some smooth functions € and &. This shows that v cannot always be a
solution to (2.9). Therefore, Q is a non-zero constant, which will be set to
1 from now on; i.e., (2.25) holds.

Now, (2.14) is equivalent to O = (8/9u) Q. Thus, (2.13) can be rewritten
as (2.26), and (2.15)—(2.18) become (2.27)-(2.30), respectively.

Next, we want to show that F does not depend on u,,. From (2.8)-
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(2.10) and (2.25) we obtain

UXJ(X = Qé(d), u, ”A’a u.t’.l:’ ”1)

2F 9°F 2 aF
+ + +
[39 LY 7 3us AU AU 3 OUxOUy Oty
F oF
+ (2P + 3“{) '—T:l Uyt + T Uxxes
au ;,x d Uyx
oF oF
F,ve,v) =% (D, u, ty, U, u) + B, M + T, et

for some smooth functions € and 4. So, if (2.8) i1s a Backlund transforma-
tion, then

*F 9*F ?*F O F
_+_ L — —_———
30 PO, 3uy OUdit,, + Uy U, Bty QP+ 3u) i 0,
which is equivalent to
F(p, u, u,) = G, u, u,) + Buy, (2.35)

for some smooth function G and constant 8. In order to show 8 = 0, we
assume that 8 # 0. From (2.9), (2.10), (2.13), and (2.35) we have

Uper = (P, u, 1y, 1)

* <3Q a?;a(z;lx * %g + 3uy aizaGux 8 M)Zii, 3, %:4—0) “
+ gu(—;‘ Uy + By,

F,v,v)=P (G + By, §) %% + U, %% + Uy 37‘(—;: + B@)
+ $ (b, u, u,, )+ %IG(— u, + g—g y + Bl

for some smooth functions % and $. Taking the w,-derivative of v,,, =
F(v, v, v,) yields

’*G G aP(u, u,) G AP, v,)
+ + S = Bt
30 dpou, 3ux dudu, du, 3t au’ A v,

(2.36)
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Taking the u,-derivative of (2.36) gives

, 0P, v) _

av? 0,

B

which is equivalent to r = s = 0; t.e., P(v, v) = p(v) + g(v)v,. Then,
(2.36) becomes

2

5
Q

G + 3u 0°G
ddou * Qudu,

30 + Bg(u) + 3uy, = Bq(G + Bu,). (2.37)

du?
Taking the second-order u,-derivative of (2.37) yields
B*q"(G + Buy) = 0,

which implies that g(v) = ¢y + g v for some constants gy and q,. Thus,
(2.37) becomes

G 3G 3G

+ e ]
30 ad)allx o duou, * Bqlu 3“’“ (')M)Zr :Bql(G + ﬁux.x)s

which is equivalent to

PG
352 = Ban (2.38)
3G 3G
30 b au, + 3u Juon. Baqru = BqG. (2.39)

By (2.38), G(¢, u) = H($, u) + I($p, wu, + & B3qu; for some smooth
functions H and I. (2.39) now is equivalent to ¢, = 0 and / = y for some
constant y. Then, v, = F(v, v,. v,) implies that

a*H a*H
+ Bp'() + 3u, — = Bp'(H + yu, .
3o Bp (1) + 3u, Bp'(H + yu, + Buy),

30 du”

and hence p” = 0. This contradicts the fact that u,.. = F(u, u,, 1) is non-
linear.

Third, we want to show that F does not depend on «,. As in the last
section, we easily prove that F(¢, 1, u,) = f(o) + g(d)u + § Bbu* + Bu,
and P(v, v,) = p(v) + (a + bv)v, for some smooth functions f, g, and p and
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constants ¢ and b satisfying
3g'(0)U, u) + Bbu = Bb(f(d) + g(Pp)u + & B2bu’).

On the other hand, by Corollary 2.22, without loss of generality we can
assume that (¢, u) = wy + oeu + u? for some constants wy and oy, or
Qop, u) = w(¢) + u for some smooth function w. Thus, either 3g'($) = ¢
B3b? and 3ag'(¢p) + Bb = Bbg(d), which together imply that 84b* = 0, or
B°b? = 0. Assume that 8 # 0. Then we always have b = 0, i.e., P(u, u,) =
p(u) + au,, and hence p is not linear and g = y for some constant v; i.e.,

F(o, u, u) = f(d) + yu + Bu,.
If Q(¢, u) = w(d) + u, then
Ve = M, ) + N(d, u, + (f'(d) + Balus, + yu, + Buy,
(2.40)
F, v., v) = p(fld) + yu + Bu) + G, u) + PP, Wu,
+ (Ba + f'(PNuy + yie, + Buy (2.41)

for some smooth functions M, N, O, and P. From (2.40) and (2.41) we
deduce that

Bp"(fi$) + yu + Buy) = 0,

which contradicts the fact that p is not a linear function. Hence, we can
assume that Q(¢, u, u,) = wy + oou + u?. Then,
U = U, 4) + R(b, Wity + 2f (d)us
+ [f'(dNop + 2u) + Balu, + yu, + Buy,
F, v,, v) = p(f(P) + yu + Buy) + F(b, u) + T, Wu, ~ f (D

+ [Ba + f(d)ao + 2w)]uy + yu, + Buy
for some smooth functions 2, R, ¥, and 9. Thus, p” = 0;i.e., p(u) = pg +
piu + pau® for some constants po, P1, and p,. On the other hand, from
(2.29) one obtains O(¢, u) = () + alaou + u?) for some smooth function

#. Hence, (2.18) becomes 0 = (wg + oou + u?)0'(¢) + p(uloy + 2u),
which implies that 8(¢) = 8, + 6,¢ for some constants 8, and 8, and

01((1)() + ozl + llz)
oo + 2u

plu) = —
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So, p, = 0, which contradicts, again, the fact that p is not a linear func-
tion. Therefore, we must have g = 0.

Finally, consider u — v = F(¢, u). If it is a Backlund transformation,
then we can show as above that

F(o, u) = fip) + au (2.42)

for some constant @ and some smooth function f. Using (2.25), (2.26), and
(2.42), direct calculations give

afd a0
o= 302 ()
= sy s e (55) oy
QI A0 g L
(3fQ 5% au+2an¢8“-!-ozq(u) u

, 920 ) , 902
+ ( o ) u, + asui + f 3[7”.\',( + au,,

and

F(, vy, V)
=p) + g + (fPr)P + (fPs)Q + f'O

3080 30 )]
ap ou adau 1 ¥

+ [aq(v) + 2af ' r(V)Q) + 3a( f)s()O? + f (

2
+ (azr(v) + 3alf's()) — f’ l 0) 2

Q)
+ adsul + f T + ou,.

Therefore, u — v = F(¢, u) is a Biacklund transformation for (2.10) if and
only if (2.31)-(2.34) hold. |

Now, we are ready to prove our main result.

THEOREM 2.43. A nonlinear partial differential equation (2.9) has a
Biicklund transformation (2.8) defined via an associated integrable sys-
tem of the form (2.10) if and only if it is equivalent to the KdV equation
Uy = —6ult, + u, or one of the equations Uy, = (o * 3 udu, + u,, ey =
Po+ Gotty + 3ui + up, U = Po + Gotty T R Ui+ sy, e = po + ot + 3 ui
—bud+ u,with o> —1, e = po + Gottx + 3ul + Yud + u, with go < 1
and ug = (go — 3 sin 2u)u, — % ul + u, via a rescaling of the xtu-space and
a shift in the u-direction.
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Proof. By Lemma 2.23, ) does not depend on «, and u,, and, up to a
rescaling of the variable ¢, (2.24)—(2.34) hold. We first note that if &« = 0,
then (2.32) implies (8%/912)} = 0, since f* # 0, and hence (2.27) and (2.28)
yield r = 0 and s = 0, respectively, since (d/0u)€) # 0.

Second, we assume that s # 0. Then, a # 0, and (2.31) implies that
s'"(B(p) + au) f'(dp) = 0;1.e., s’ = 0. Therefore, we must have s(u) = s, for
some constant sy # 0. Rescaling u if necessary, we can assume s, = =3,
Thus, (2.31) is equivalent to a = *=1. By (2.27), without loss of generality,
we have

I

w(dp) + sin(u + 7(Ph)) if $
w(d) + sinh(u + 7(P)) if o

i
2,

W, u) = {

1
P

for some smooth functions w and 7. We are going to treat these two
subcases separately in the next two subsections.

Subcase 5y = —3. (2.32) now becomes
ar(u) = r(f(d) + au) — 3 f'(P)w(d).

Taking the w-derivative of it yields r'(u) = r'(f(¢) + aw), and hence
r'(f(¢) + au)f'(¢) = 0;ie.,

r(u) = ry + nu

for some constants ry and ry. Then, (2.28) implies that r; = 0 and w(d) =
wq for some constant wy. So, (2.28) and (2.32) are equivalent to

3wer'(P) + 2rg = 0, 2(a ~ 1)rg + 3w f'(d) = 0, (2.44)
respectively. Since ' # 0, from these two equations we see that ry # 0 if

and only if wg # 0 and « = —1. Assume that r, # 0. Rescaling x and 1 if
necessary, we can actually assume that ry = 4. Then, (2.44) becomes

wet'(@P) = —1 and wof'(d) = 2.

Thus, (2.33) is equivalent to g(u) — q(f(¢p) — u) = 0; i.e., glu) = q, for
some constant ¢q. (2.29) is equivalent to

0. 1w = 86) + (25— 1~ au) sintu + 7(4)

Wy

for some smooth function 6. (2.30) implies that 6(¢) = 8, and p(1) = p, for
some constants 6, and py, and hence it is equivalent to 8, = —wppy, and
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(2.34) is equivalent to | = (1 + gg)wj. Therefore, the equation is equiva-
lent to

U = Po + Gotte + 1z — S ui + u,
with go > —1, and the only Bicklund transformation obtained tis
u—fox2Vi+tgod —u

with ¢ defined by

*1 —
d),r = —— + Sin(u + To + ] + q() d)),

\/] +q0
b, = "{/%}f — (= VT F go + sin(u + 10 7 V1 + qo &)
0

+ bsin(u + 79 T V1 + gy p)ui + cosu + 70 T V1 + ¢g $litys

where f; and 7 are arbitrary constants. Assume that ry = 0. Then 0 = 0,
i.e., o, u) = sin(u + 7(¢)). (2.33) can be rewritten as

3 .
alg(f+ au) — qlu)) = % (%f - r') [+ Eﬁ sin 2(u + 7)
- ;— (%f’ - T')f' cos 2(u + 1),

which implies that

af (g’ (f(d) + au) = hip) — 2i(P) sin 2(u + 7(d))
+ 2k(d) cos 2(u + 7(¢))

for some smooth functions 4, &, and /; i.e.,

f (D) f(d) + au) = g(@) + h(plu + k() sin 2(u + 7(¢))
+ () cos 2(u + 7())
for some smooth function g. Since f’ # 0 and « = *1, we must have
g) = gy + gt + g- sin 2u + g3 cos 2u for some constants ¢y, ¢;. ¢-.

and ¢5. Replacing 1 by « — u, for some constant u if necessary, we can
assume that g; = 0: i.e.,

q(u) = qy + qiu + g2 sin 2u. (2.45)
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Thus, (2.33) is equivalent to

3
aq f = 3 (%f - r') S (2.46)
(@ — )g, =0, (2.47)
3, 3(a , .
gxcos 2f — a) = ff cos 21 + 3 (Ef -7 )f’ sin 27, (2.48)
. 3., . 3{a , ,
aq, sin 2 =§f’ sm2‘r—§<5f —r)f’ cos 2. (2.49)

By (2.45) and direct calculations, (2.29) is equivalent to
O(¢, u) = () + (r'($)* — qo) sin(u + 7(¢))
() = ) cosu +7(8) + L cosu — 7(4)) (2.50)
— qu sin(u + 7(¢)) + % cos(3u + 7(¢))

for some smooth function 6. From (2.30) we obtain

cos(u + 1) 3 (@7’ cos(u + 7) — sin(u + 7) 9—@-)

R10) o
- _ 00 .
= — {07 cos(u + 7) — sin(u + 7) 5(—5 7' sin(u + 1),
which together with (2.50) implies that
9 =0, (2.51)
07 =0, (2.52)
07" =0, (2.53)
2 " 4
(q,+§q200527+7)72=0, (2.54)
2 " "
<—q| + 3 42 €08 2r+ 1 ) " =0, (2.55)
’ " 1 " 2 " M
207" + 27 + gqi(7')? — 3 @7 sin 27 = 0, (2.56)

2 . 1
3 Gx7')? sin 27 — g 7" — 7T =0 (2.57)



BACKLUND TRANSFORMATIONS 171
If 1" # 0, then (2.51)—(2.57) are equivalent to § = 0, g, = 0, and 7" = —§ ¢»
cos 27, and hence g; # 0. (2.46) becomes ' = 2a7’, (2.49) is equivalent to
f = nm — 2r for some integer n, and (2.48) says that o = —1. Thus, (2.30)
yields p = 0 and (2.34) is satisfied. Therefore, up to' a rescaling of the
variables x and ¢ and a shift in the u-direction, the equation is equivalent
to

U = (go — 3 sin 2w)u, — $ul + u,,
and the Biacklund transformation has the form
uvr»nm — 27(p) — u

with ¢ defined by

I

sin(u + 7(d)),
(7'(d)? — qo) sin(u + 7(¢)) + cos 27(¢) cos(u + 7(¢)) — § cos(u — 7())
— YcosBBu + 7(¢)) + 7' (d)u, + 3 sin(u + 7(d))u’ + cos(u + ()t

-
&

I

where n is an integer and 7 is any function satisfying 7’ = cos 27, for
example,

VI

T .
T(d)) = Z — arc Ssin m

If+"=0and 7’ # 0, 1i.e., 7(¢p) = 79 + 7,¢ for some constants 7, and 7; with
71 # 0, then 6(¢p) = 6, for some constant 8, by (2.52) and ¢, = ¢, = 0 by
(2.54). (2.46) becomes [’ = 2a71’;1.e., f(¢p) = fu + 2a7,¢ for some constant
fo. (2.50) can be rewritten as

(¢, u) = 6o = (1 — qo) sin(u + 70 + 71),
and (2.30) is equivalent to p(u) = p, for some constant py and 8y = py/7.
Thus, (2.34) amounts to (1 + a)py = 0. Therefore, up to a rescaling of the
variables x and ¢, the equation is equivalent to
Uex = Po + Goltx — % ui + u,

and the Bicklund transformation has the form

u— fo+ 2am,¢ + au
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with ¢ defined by

¢1 = Sin(u + 79 + T)(;b),

2o

0
(b, T + (T| - (,]()) sm(u + 19 t+ Tl(b) + TiUy
i

1

+ 3 sin(u + 79 + Tid)ul + cos(u + 19 + TIP s,

where o = =1 ifpo=0and o = —1if py # 0, fy, 7¢, and 1, are arbitrary
constants satisfying 7, # 0. If 7' = 0, i.e., 7(¢) = 7y for some constant 7,
then g; # 0 by (2.46) since ' # 0, and « = 1 by (2.47). Rescaling the
variables x, ¢, and u if necessary, we can assume that g; = 3. Then, (2.46)
is equivalent to f(¢) = (fo + ¢)? for some constant fj, and (2.48) cannot be
satisfied. So, 7’ = 0 cannot occur.

Subcase sy, = 3. Ignoring the reality restriction of the previous sub-
case, we see that the equation must be equivalent to

Uxxx = Po + qolix + % “:3 + %Ui + Uu;
or

U = (go ~ 3 sinh 2w, + L ul + u,
or

Uee = Po + Qo + 1l + u,.
Imposing the reality condition to the complex Béacklund transformations
obtained there, we conclude that the only Biacklund transformation for
the first equation is

u—fox2Vg — 1 ¢ — u,

where gy > 1 and ¢ is defined by

b, = + sinh(u + 79  Vy 1 ¢),

*1
\/610

—+
o, = % = (= Vgo— lsinh(u + 79 F Vqy — 1 d))u,
do —

— dsinh(u + 7 F Vigo — | &)1 + cosh(u + 7 F Vigo — 1 ¢us..
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where fp and 74 are arbitrary constants, there is no Béacklund transforma-
tion for the second equation, and the only Backlund transformation for
the third equation s

u—fo +2ar¢ + au
with ¢ defined by

d).r = Sinh(u + 79 + T]d)),

b, = 57’—" + (+} — qo) sinh(u + 7o + Tid) + Tius
1

1 .
) sinh(u + 79 + 71d)u’ + cosh(u + 79 + 7d)uy,,

where o = *1ifpo = 0and a = —11if pg # 0, fy, 79. and 7, are arbitrary
constants satisfying 7; # 0.

Third, we assume that s = Oand r # 0:i.e., F(u, u,, u,) = p(u) + qu)u,
+ r()u’ + u,. Then, @ # 0. From (2.27) we obtain

Qlp, ) = a(@) + b(Pu + c(d)u’®

for some smooth functions a, b, and ¢ with 6 # 0 or ¢ # 0, and hence,
(2.26) becomes

O=0+[a'b—ab + 2d'c — aclu + (b'c — beHuu,

—cul+ (b + 2cduy.
Thus, (2.32) can be rewritten as
3c(d) f'(@P) + ar(u) = a’r(f($) + au).
As above, this implies that
r(u) =ro+ nu
for some constants rq and r; with rg# 0 or r; # 0. So, {2.28) is equivalent to
3a’c = 3ac’ — rob, 3b'c = 3bc" — 2rec — r1b, 0=rc.

They imply that r;, = 0 and ¢ # 0. Hence, we can assume that ¢ = 1.
Therefore, (2.28) is satisfied if and only if

a() = ap + a1 + ¢, b($p) = —a, — 2¢
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for some constants @, and a;; here without loss of generality we have
made the choice that ry = 3. Then, (2.32) is equivalent to

@) = fo + ala ~ Do

for some constant f;. Thus, a # 1. (2.33) implies that g(u) = g + g u +
g.u’ + qsu? for some constants gy, g, g, and g;. Thus, (2.33) also
implies that (1 — a?) g3 = 0; i.e., g3 = 0 since a # 1. Moreover, from (2.33)
we obtain (a + 1)(g, + 6) = 0and a’q; = 6(a + 1);ie.,a= —land g, =0
since o is real. Similarly, (2.33) also yields ¢; = 0. Then, direct calcula-
tions show that (2.29) is equivalent to

O, u) = 6(¢) + (qo + 4ap — adlla) + 2¢)u — u?]
for some smooth function 6, and (2.30) becomes
(a) + 2¢ — 2uwp(u) = o () + 7(d)u + p(d)u?, (2.58)

where o, 7, and w are smooth functions. Taking the third-order u-deriva-
tive and then the ¢-derivative of (2.58) yields p”(u) = 0; that is,

pu) = py + piu + pru® (2.59)
for some constants pg, p;, and p;. Substituting (2.59) into (2.58) we obtain
p, = 0. So, (2.30) is equivalent to p, = 0, 8(d) = —pg — (qo + 4ay — a)ao
+ a1 + ¢2). Then, (2.34) is always satisfied. Therefore, the equation is
equivalent to

Uxxx = Po + dollx + 3“.% + U,
and the only Backlund transformation obtained is
u—fo+2¢p —u
with ¢ defined by

b =ap+ arp + ¢ — (a) + 2)u + U,

&= —po — (go + 4a, — alag + a1 + ¢? ~ (a) + 2d)u + u?]
+ {2a0 — a? - 2a1¢ — 2¢* + 2a, + 2¢)u — 2u’lu,
—bui+ (—a; — 2¢ + 2u)uy,,

where fp, ap, and a, are arbitrary constants.
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Next, assume that s = r = 0, i.e., Fu, uy, u,) = plu) + quu, + u,.
Since f* # 0, (2.32) is equivalent to

o _
du?

Thus, without loss of generality, we can assume that
WU, ) = a(d) + u
for some smooth function a. So, (2.27) and (2.28) are trivially satisfied.
We want to show that o # 0. Assume that @ = 0. Then, (2.33) implies that
ff=20,1.e.,
o) =/fo+ fid
for some constants fj and f; with f; # 0. (2.34) is equivalent to

O, u) = 8(d) + x(d)u + a’"(p)u’.

where

0(¢) = ald)a’ () + a($)*a"(d) —fllp(fo + Hid) —ald)g(fo + fid),
k(@) = a'(¢)* + 2a(¢)a"(dp) — q(fo + fid).
Thus, (2.29) and (2.30) imply, respectively, that
qu) = qo + qu,  pw) = py + puu + pu* + pys’

for some constants pg, p,, P2, P3» 4o, and g,. Moreover, (2.29) and (2.30)
yield

q = —3a"(@), py= —a"l¢), p:=a'(@a@) - a"(dald) — «'($).
So,

al@) = ap + a1 + @?
for some constants g, a;, and a,,

q = —6a, py =0, P2 = —6ax(a, + fi + 2a;¢).
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Then, we must have a; =0, p, = 0, and g, = 0; that is, F(u, u,, ;) = pp +
piu + gouy + u,, which contradicts the fact that u,,, = Fu, u,, u,) is non-

linear. Therefore, o # 0. Since a # 0 and f” # 0, taking the second-order
u-derivative and then the ¢-derivative of (2.33) yields ¢” = 0; i.e.,

qu) = qo + qiu + qau?

for some constants gq, ¢;, and g,. So, (2.33) is equivalent to

q» = o’qa, (2.60)
3"(P) + ag, = a¥(q; + 2q./($)), (2.61)
3a(d)f"(P) = alqif(P) + q2f($)?). (2.62)

Then, (2.29) is equivalent to
O, 1) = 8() — (qo — a’($) + a(d)a"(d)u — 1 (g1 + a"(G)u? — h gaut®
for some smooth function 6, and hence, (2.30) implies that
pu) = po + pru + pau’ + pa’

for some constants pg, p,, p>, and p;. Thus, (2.30) is equivalent to

2q2a'(¢p) = 3a"(¢p) — 6ps, (2.63)

a'(dNq, + 3a"(¢)) = 3a(d)a”($) — 2p2, (2.64)
a'(p)qo — a'(¢)) = a(p)a(d)a”($) — 2a'(P)a"(d))

- 8'(d) — p1, (2.65)

a'(P)o(d) = a(d)8'(d) + py. (2.66)

Now, we want to show that g, # 0 or g; # 0. Assume that ¢, = g, = 0.
(2.61) implies that f” = 0; 1.¢., f(¢p) = fo + fi¢ for some constants f; and f; .
(2.63) yields

a(p) = ap + a1 + ard? + % ¢?

for some constants ay, a;, and a,. Thus, (2.64) becomes

pi=0, axps = 0, a; =0, da,a; = 3agp; — p2;
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that is, p; = a; = p; = 0 and, hence, F(u, u,, u,) = pg + piu + u,, which
contradicts the fact that u,,, = P(u, u,) + u, is nonlinear. Therefore, q, #
0 or g, # 0. Assume that g, = 0; then ¢, # 0 and, without loss of
generality, we can assume further that g, = —6 and g, = 0. (2.61) is
equivalent to

f@) = 2fo + 2fi¢d — a(a — 1)¢?

for some constants f, and f;. (2.62) implies that &« # 1 and, hence, is
equivalent to

1
a(d) = =< f(®).

Then, (2.63) is equivalent to p; = 0, (2.64) is equivalent to « = —1, and
p2 = 0, and (2.65) is equivalent to

0(d) = 6y — prop + (4fy + f=frd + f?)
for some constant 6. So, (2.66) is equivalent to p; = pp = 0, and (2.34) is
then always satisfied. Therefore, the equation is equivalent to the KdV
equation
Uy = —6uu, + u,
and the only Biacklund transformation obtained is

w2y + 2fid — 2¢7 — u,

with ¢ defined by

—fo— fip + &% + u,
@ + —fo — fid + &Y + 2f + f1 — 2fid + 20)u
+ 21l + (—fy + 2P)u, + uy,,

b«
&

where f;, and f are arbitrary constants. Finally, assume that ¢, # 0. By a
translation in the u-direction if necessary, we can assume that ¢, = 0.
Moreover, rescaling x and 7 if necessary, we can assume further that g =
+3. Now, (2.60)—(2.64) say that a2 = 1,

roles

f1 sinh ¢ + f> cosh if
fld) = {f’ o fz cosh ¢ 9 (2.67)

ysing + f5co8 ¢ if g

Il
|
(S5
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for some constants f; and f, a(¢) = (a/2)f(d), p3 = 0, and p, = 0,
respectively. (2.65) is equivalent to

) = 0y — pr1op — % [610 + %(—f% if%)]f(cb)

for some constant ,. (2.66) is satisfied if and only if p; = 6, = po = 0; i.e.,

[0

o(p) = 7 [QO + %("f? “—Lfg)]f(¢)~

Then (2.34) always holds. Therefore, the equation is equivalent to
U = (qo = 3 WDue +
and the only Béacklund transformation obtained is
u— f(d) + au,

where fis given by (2.67), « = =1 and ¢ is defined by

b = 5/@) + u,

b= ~|a+ 3n = |2 s + o) = L

1
3 w + %f’(d))ux + .

¥

This finishes the proof. |

To end this paper, we make some remarks. First, it is clear that the
known Bicklund transformations for the MKdV equation, the potential
KdV equation, and the potential MKdV equation are recovered in Theo-
rem 2.43, as mentioned in the introduction. Second, it seems natural that
if more than one pseudopotential are used, more Backlund transforma-
tions may be found. Actually, we do get a new Backlund transformation
for the KdV equation in this way (see [14]). Finally, some Backlund
transformations, although not all, can be found on a computer (see, for
example, [7]). We will address this equation in a further publication.
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