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The propagation of mild singularities for the semilinear model of three-dimen- 
sional thermoelasticity is studied. It is shown that the propagation picture of such 
singularities of the solution to the semilinear model coincides with one of the 
solutions to the corresponding linear model. As a simple consequence of our 
method, a similar result for the full semilinear Cauchy problem of one-dimensional 
thermoelasticity is also presented. o 1999 Academic Press 

1. INTRODUCTION 

The system of thermoelasticity is a hyperbolic-parabolic coupled system 
describing the elastic and the thermal behaviour of elastic, heat conducted 
media. This system has been studied with respect to different (but typical) 
questions from the theory of systems of partial differential equations, e.g., 
the existence of global smooth solutions for small data [2, 4, 6, 8, 9, 14, 161 
and the development of singularities in finite time for quasi-linear prob- 
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lems with large data (see [2] and references in [7]). Comparing the results 
with those for hyperbolic and parabolic problems one understands which 
part of the system has a dominating influence on the properties of 
solutions. 

In [5] it was proved that the solutions to the linear problem do not show 
a smoothing effect; i.e., in general, the Hs-regularity of the initial data will 
not be improved in opposition to the situation for the solutions of 
parabolic Cauchy problems. This hints to a dominating influence of the 
hyperbolic part. Consequently, there arises the hope to understand the 
propagation of singularities, of regularity, respectively. Indeed the paper 
[lo] was devoted to the study of the Cauchy problem in one-dimensional 
semilinear thermoelasticity, 

where f and g are smooth function satisfying f ( 0 ,O)  = g(0 )  = 0. Under 
the assumptions 

u,, 8, E Hs(R)  n H"' (R\  [ a , b ] ) ,  

u19 K ~ O , , ,  - P l , ,  E H"'(R) n H s ( R \  [ a , b ] ) ,  
(1.2) 

s > 9/2, 

the precise propagation of Hs+ '-regularity, H'-singularities, respectively, 
(it depends on the private point of view) of the data given. A picture 
similar to that of wave equations ([l, 12, 131) has been obtained. The 
characteristic lines are those from the wave operator d: - rd,". We are 
interested in the propagation of H'-singularities, too. These singularities 
are called mild singularities because the difference to the Hs+ '-regularity 
is only one Sobolev order. The results from [lo] motivate the following two 
questions: 

0 Can we study the full semilinear Cauchy problem in one-dimen- 
sional thermoelasticity; i.e., g = g(u, 8) instead of g = g(u) in (l . l)? 

0 Is there a possibility to generalize the results to the higher dimen- 
sional case? 

In the present paper we give a positive answer to both questions. Our main 
idea is inspired by [ 111, a paper about semilinear wave equations. There it 
was proved that the propagation of mild singularities for the semilinear 
wave equation coincides with one for the corresponding linear problem. 
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It seems to be interesting that recently in [3] such a result is proved for 
semilinear weakly hyperbolic equations. In this paper we prove that the 
propagation picture of mild singularities of the solution (U, 8) to the full 
semilinear Cauchy problem of three-dimensional thermoelasticity 

U,, + p V  x V x U - rVdivU + yV8 = f ( U ,  O), 

8 , - ~ A 8 +  y d i v U , = g ( U , O ) ,  (1.3) 

U ( t  = 0) = u,, U,( t  = 0) = u,, 8 ( t  = 0) = 8 0 ,  

coincides with one of the solution (fi, e") to the linear Cauchy problem 

U,, + p V  x V x U - rVdivU + yV8 = 0, 

8, - K A O  + ydivU, = 0, 

Q ( t  = 0) = u,, 
(1.4) 

U ( t  = 0) = u,, 8 ( t  = 0) = 8,, 

where U = (U, ,  U,,  U,), f ( U ,  8 )  = ( f l ( U ,  81, f 2 ( U ,  81, f 3 ( U ,  8>>, 
p > 0, r > 0, and y # 0 are constants. For simplicity, we suppose that 

f k , g  E c"(R4) with f k ( 0 , O )  = g(0,O) = 0, k = 1,2,3,  throughout this pa- 
per. The main result of this paper shows that the nonlinearities in (1.3) 
have no influence on the propagation picture of mild singularities (cf. 
Corollary 2.3, Proposition 3.1, and Theorem 4.1). 

At the end we formulate Theorem 4.2 which shows that our approach 
allows us to generalize the main result from [lo] to the full semilinear 
Cauchy problem of one-dimensional thermoelasticity under the weaker 
assumption s 2 3. If we study the semilinear model (1.3), then throughout 
this paper we suppose s 2 3, which is the minimal order of mild singulari- 
ties, can be treated by our approach. This order will be determined by 
Proposition 3.7. 

Notations. We use standard notations for the Sobolev space H S ( R n )  
and the Banach spaces H k ,  Ck([O, TI, H S ( R n ) )  with k E No and s E R. 
For any 0 c R, X R", let 0, = 0 n { t  = r } .  W e  define 
H k ,  Ck([O, TI, H ' ( 0 , ) )  as the spaces of function belonging to 
H k ,  Ck([T, ,  T,], H'(D))  for any rectangle [T,, T,] X D c n (0 I t I T } ,  
and we omit the index t for simplicity. Moreover, to simplify the ex- 
position, we denote by C ( T )  the constant depending on T > 0, and 
I I u l l ~ ; ( ~ s )  ( I l u l l ~ ; ( ~ s ) ,  I l u l l ~ s  resp.) the norm of u in Ck([O, TI, H S ( R n ) )  
( H ~ ( [ o ,  TI, H'(R")), H'(R") resp.). 
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2. PROPAGATION O F  MILD SINGULARITIES IN 
THE LINEAR CASE 

In this section we study the propagation picture of mild singularities of 
the solution (fi, e") to the linear problem (1.4). The decomposition of the 
displacement vector U into its curl-free part UP" and its divergence-free 
part Us" decouples (1.4) into the wave equation for the components of the 
solenoidal part Us",  

U,? - pAUso = 0, U s o ( t  = 0 )  = U F ,  Q S o ( t  = 0 )  = Uf", (2.1) 

and a simpler coupled system than (1.4) for the potential part UP" and the 
temperature difference 8, 

&,Po - rAUP" + yV8 = 0 ,  8, - K A O  + ydiv&P" = 0 ,  
(2.2) UP"(t = 0) = UR", b y ( t  = 0 )  = upo, 8 ( t  = 0 )  = 8,. 

First let us suppose for the data 

u,, 8, E H $ ( [ w ~ )  n H $ + ~ ( [ W ~  \ {0}), 
(2.3) 

U,,KAO, - ydivU,P" EH$-'([W~) nH'(([W3\{O}), 

Using the theory of wave equations we immediately obtain the following 
result for the solution of (2.1) (compare with Lemma 3.3). 

LEMMA 2.1. Under the assumptions (2.31, the solution f i s o  = 

(OF, O?, OF) of (2.1) satisfies 

s 2 1. 

f i s o  E c0([o, T I ,  H $ ( [ w ~ ) )  n c~([o,  T ] ,  H $ - ~ ( [ w ~ ) )  

n C 2 ( [ ~ , ~ ] , ~ S - 2 ( [ W 3 ) ) ,  
- 

IIUSoIIc~(HS)nc~(HS-l)n c + ( H S - z )  5 c(T)(lluoll~s + Ilu~llH~-l) 
Moreover, we have (this is enough for the following considerations) 

f i s o  E c ~ ( [ o , T ] , H ~ + ~ ( I , ) )  n C ' ( [ O , T ] , H ~ ( I , ) ) ,  

where I ,  denotes the interior and the exterior of the forward light cone, that is, 

I ,  = { ( X J )  E (R3 x [ o ? q ) \ { I x I  = a t } } .  

To study the problem (2.2) we know that after differentiation the 
components of UP" and 8 satisfy the following fourth-order partial differ- 
ential equation: 

u,,, - ( r  + y') Au, - K A u , ,  + rKA'u = 0. (2.4) 
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For the Cauchy data u(t = 0) = u o ,  u,(t = 0) = u l ,  and u,,(t = 0) = u,  we 
have due to (2.3) the regularity assumptions 

u0 E H $ ( ( [ w ~ )  n H $ + ~ ( [ W ~  \ {0}), 

u1 E H $ - ~ ( [ W ~ )  n w(([W3 \ {0}), 

u ,  E HsP3([W3) n H"'([W3\ {O})  

U , E H ~ - ~ ( [ W ~ )  nHSp1([W3\{O}) i f u : = U , P " , k =  1 ,2 ,3 .  

(2.5) 
if u := 8,  

The application of the partial Fourier transform 
spatial variables transforms (2.4) to 

with respect to the 

u,,, + K 1 [ 1 2 u t t  + (7 + y2)1[12ut  + 7K1[I4u = 0, (2.6) 

where u = F ( u ) .  For the representation of the solution of the Cauchy 
problem for (2.4) we need to know the behaviour of the roots Pk = &(I [ I) 
(k  = 1,2,3) of the algebraic equation 

P 3  - K 1 [ 1 B 2  + ( 7 +  Y2)1[1'P - 7K1[I4 = 0 

This characteristic equation coincides with the equation (2.3) from [lo] if 
we replace there [ by I [ 1. This replacement characterizes the transition 
from the one-dimensional case to the higher dimensional one. It is not 
necessary to repeat all the calculations from [lo]. We only formulate the 
results and sketch differences in the proof if they appear. 

Under the assumptions (2.3) there exists a uniquely deter- 
mined solution @'", e") to (2.2) satisfiing 

LEMMA 2.2. 

U p o ,  e" E c0([o, T I ,  H $ ( ( [ w ~ ) )  n cl([o, T ] ,  H $ - ~ ( [ w ~ ) )  

n C 2 ( [ ~ , ~ ] , ~ S - 3 ( [ W 3 ) ) ,  

11 (0'0 9 e")  Ilcp(Hs) n c ; ( H S -  1) n c ; ( H s - 3 )  

5 C ( ~ ) ( ~ ~ ( ~ o , 8 0 ) ~ ~ H s  + I I ( U l , K A O 0  - YdivUp")llHs-l), 

O p o  E c ~ ( [ o , T ] , H ~ + ~ ( I , ) )  n c ~ ( [ o , T ] , H $ ( I , ) ) ,  

e" E L ~ ( [ O , T ] , H ~ + ~ ( I , ) )  n H ~ ( [ O , T ] , H ~ ( I , ) ) ,  

and 

where I ,  denotes the interior and the exterior of the forward light cone, 

I ,  = { ( X J )  E (R3 x [O,..))\{IXI = A}}. 
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Sketch of the Proof. Most of the formal calculations coincide with those 
from [lo] for the one-dimensional case. Differences appear if we study the 
propagation behaviour of Fourier multipliers connected with the wave 
operator factor. Let us explain this difference in detail. In the one-dimen- 
sional case this step reduces to the understanding of the propagation 
behaviour of 

= u , ( x  - A). 
If u,  E H'(R) n H"'(R \ {O}), then the mild H'-singularity propagates 
only along one characteristic line. This brings additional regularity along 
the other characteristic line (cf. with the results from [lo] and with 
Theorem 4.2). 

In the three-dimensional case we have to study 

q ' ( e x p (  - ivGI t I t )F(u , ) )  = ( 2 ~ )  - 3 1 2  / - 3 e i ( x . c -  JFI5lt)G- J ( U O ) (  5)  d5 .  

If we assume u, E H'(R3) n H"'(R3 \ {O}), then we only know (0, 5) E 

WFs+ ,(u,) for all 5 E R3 \ {O}. But this gives that for any fixed t > 0, 

Consequently, we obtain H'+ '-regularity only in the interior and exterior 
of the forward light cone. Q.E.D. 

Summarizing the statements of Lemmas 2.1 and 2.2 leads to the follow- 
ing result: 

COROLLARY 2.3. Under the assumptions 

u,, 8, E H ' ( R ~ )  n H ' + ' ( R ~  \ {0}), 

U , , K A O ,  - ydivU,P" E H ' - ' ( R ~ )  nH'(R3\{O}),  s 2 1, 

there exists a uniquely determined solution (fi, e") to the linear Cauchy problem 
of three-dimensional thermoelasticity 

U,, + p V  x V x U - rVdivU + y V 8 =  0, 

8, - K A O  + ydivU, = 0, 

U ( t  = 0 )  = u,, U,(t = 0 )  = U',  8 ( t  = 0 )  = 8,, 
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s a tisfiing 

5, e " ~  C ~ ( [ O , T ] , W ( R ~ ) )  n c ~ ( [ o , T ] , H " ' ( R ~ ) ) ,  

f i s o  E c ~ ( [ o , T ] , H ~ + ~ ( I , ) )  n c ' ( [ o , T I , H ' ( ~ , ) ) ,  

Do E c ~ ( [ o , T ] , H ~ + ~ ( I , ) )  n c ' ( [ o , T I , H ' ( I , ) ) ,  

e" E L,([o,  T ] ,  H " ' ( I , ) )  n H ' ( [ o ,  T I ,  H ' ( I , ) ) ,  

and 

where I,, 1 = 1,2, denote the interior and the exterior of the forward light 
cones, 

I ,  = ( ( X J )  E ('w3 x [O,..,)\{IxI = f i t ) } ?  

3. REGULARITY RESULTS FOR CAUCHY PROBLEMS 
FROM THREE-DIMENSIONAL THERMOELASTICITY 

To study the propagation of mild singularities in the linear case we had 
to reduce the system (2.2) to a decoupled system of fourth-order differen- 
tial equations. The solution of this system possesses regularity properties 
Co([O, TI, H ' (R3))  n C'([O, TI, H" '(R3)). For the moment we only use 
this regularity with respect to the spatial variables on the right-hand side 
of the following Cauchy problem, 

U,, + p V  x V x U - rVdivU + yV8 = f ( x , t ) ,  

8, - KAO + ydivU, = g ( x , t ) ,  

U ( t  = 0 )  = U , ( t  = 0) = 8 ( t  = 0) = 0 .  

f~ L ~ ( [ o , T ] , H ~ ( R ~ ) )  n H ~ ( [ o , T ] , H " ' ( R ~ ) ) ,  

(3.1) 

PROPOSITION 3.1. Let us suppose that 

g E L 2 ( [ 0 ,  T I ,  H"R3))?  

with fixed s 2 - 1. Then there exists a uniquely determined solution of (3.1) 
satisfiing 

U E C  O (1 o , T ] , H ~ + + ( R ~ ) )  n c ' ( [ o , T ] , H ' ( ( [ W ~ ) ) ,  

8 E c ~ ( [ o , T ] , H ~ + ~ ( R ~ ) )  n H ~ ( [ o , T ] , w ( R ~ ) ) .  
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To prove this proposition we need the following three lemmas for n = 3. 

LEMMA 3.2. Consider the Cauchy problem for the heat equation on 
The first two lemmas can be found in textbooks, e.g., [15]. 

R" x R+, 

8, - K A 8 = g ( x , t ) ,  8 ( t  = o )  = 8 , ( X ) ,  

under the assumptions 8, E H S + ' ( R n )  and g E nf=, HJ([O, T I ,  H" 2J (Rn) )  
with fixed k E N and s 2 2k - 1. Then there exists a uniquely determined 
solution 

k+  1 

8 E H J ( [ 0 , T ] , H " 2 p 2 J ( R n ) )  
j =  0 

s a tisfiing 

k+  1 c l l e l l H ; ( H S + 2 - 2 '  ) -  < c 0 
j = O  

. (3.2) 

LEMMA 3.3. Consider the Cauchy problem for the wave equation 

u,, - r A u  = f ( x , t ) ,  u ( t  = 0 )  = u o ( x ) ,  u,(t  = 0 )  = u l ( x ) ,  

under the assumptions u o  E H S + ' ( R n ) ,  u1 E H S ( R n ) ,  and f E 
Of==, HJ([O, T I ,  HspJ(Rn))  with fixed k E N=, and s E R. Then there exists a 
uniquely determined solution 

k+  1 

u E n C J ( [ O , T ] , H " l p J ( R " ) )  
j = O  

s a tisfiing 

LEMMA 3.4. Consider the Cauchy problem 

. (3.3) 

u,,, - ( r  + 7') A u ,  - K A u , ,  + rKA2U = f ( x , t ) ,  

U(t = 0 )  = U,(t = 0 )  = 0 ,  U,,(t = 0 )  = u 2 ( x ) .  
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If u,  E H" 3(Rn) and f E L2([0, TI, HSP3(Rn))  with s 2 - 1, then there 
exists a uniquely determined solution 

u E c ~ ( [ o , T ] , H ~ ( R ~ ) )  n H ~ ( [ O , T ] , H ~ - ~ ( R ~ ) )  
s a tisfiing 

IIuIIc$(Hs)n H i ( H s - 1 )  5 C ( T ) (  I I ~ I I L $ ( H s - ~ )  + l l ~ z I I ~ s - 3 ) .  (3.4) 

The statement of this lemma follows by a formal carrying over 
of the ideas from [lo,  Lemmas 2.10 to 2.121 for the one-dimensional case 
to the higher dimensional one. Q.E.D. 

Let (U, 0 )  be the solution to the linear Cauchy 
problem (3.1). Then Us' satisfies 

Pro05 

Proof ofProposition 3.1. 

&so - pAUso = f " ( X , t ) ,  U s o ( t  = 0 )  = Q S o ( t  = 0 )  = 0. 

Using Lemma 3.3 we obtain 

uSo E c ~ ( [ o , T ] , H ~ + + ( R ~ ) )  n C ' ( [ O , T ] , H ~ ( R ~ ) ) ,  

IIUSoIIc$(HS+l)n C ; ( H S )  5 c(T)llf I I L $ ( H ~ ) .  
and 

(3.5) 

The vector (UP0, 0 )  satisfies 

U , Y - r A U P " +  yVO=fPo, 0 , - ~ A 0 +  ydivU,P"=g,  

UP"(t = 0) = U , P " ( t  = 0 )  = 0 ( t  = 0 )  = 0. (3.6) 
Decompose (UP0, 0 )  into (UP0, 0 )  = (U,, 0, )  + (U , , 0 , ) , where (U,, 0 , )  and 
(U,, 0,) satisfy the Cauchy problems 

U,,,, - rAU, + yV0, = f P o ,  O,,, - K A ~ ,  + ydivU, , ,  = 0 ,  

U,(t = 0 )  = U,, , ( t  = 0 )  = 0,(t  = 0 )  = 0 ,  

U,(t = 0 )  = U,,,(t = 0 )  = 0,(t = 0 )  = 0, 

(3.7) 

(3.8) 

U,,,, - rAU, + yV0, = 0, 0, , ,  - K A ~ ,  + ydivU,, ,  = g ,  

respectively. 

and (3.81, 
Differentiating equation for (U,, 0, )  and (U,, 0,) it follows from (3.7) 

O,,,,, - ( r +  y 2 ) A 0 , , ,  - K A ~ , , , ,  + r K A 2 O 1  = -ydivftP0, 

0,(t  = 0 )  = 0, , , ( t  = 0 )  = 0 ,  0,,, ,(t = 0 )  = -ydivfP"(t  = 0) ,  

(3.9) 

U,,,,, - ( r  + y2)AU2, ,  - KAU,,,, + rkA2Uz = -yVg,  

U,(t = 0) = U,,,(t = 0 )  = U,,,,(t = 0 )  = 0. (3.10) 
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The assumption for f = f ( x ,  t )  allows us to apply Lemma 3.4 to the Cauchy 
problem (3.9). Due to (3.4) we immediately get the inequality 

IlO,Ilc$(Hs+l)n H ~ ( H s )  I C(T)(IIdivf,P"IIL$(H"2) + IIdivfPo(t = 0 ) l I H s - 2 )  

I C( T ) l l f l l H ; ( H s - l ) .  (3.11) 

On the other hand, from (3.7), the vector-function U, satisfies 

U,,,, - T A U ,  = f P o  - yV8,,  Ul( t  = 0) = U,,,( t  = 0) = 0 ,  

which gives the estimate 

I IU i l l c~(H~+l )nc~(H~)  I C(T)llfllL$(Hs)n ~ i ( ~ s - 1 ) ~  (3.12) 

by using (3.3) and (3.11). 

the Cauchy problem (3. lo). Consequently, 
The assumption for g = g(x, t )  allows a repeated application of (3.4) to 

IIUzllc;(Hs+2)n H ~ ( H s + ~ )  I C( T)IIglIL$(HS). (3.13) 

The higher regularity of U, can be used to estimate 8,. By (3.8) the 
component 8, satisfies the following Cauchy problem for the heat equa- 
tion: 

O,,, - KAO,  = g  - ydivU,, , ,  8,( t  = 0) = 0. 

Applying (3.2) from Lemma 3.2 for k = 0, n = 3 in the above problem and 
using (3.13), 

I I ~ ~ I I L $ ( H S + 2 ) n  H ; ( H S )  I C(T)llg - y divU,,,IIL$(Hs) I C(T)llgllL$(w), 

(3.14) 

which implies I18e l l c ; (Hs+1)  I C(T)llgllL$(Hs), too, by using [15]. Combining 
(3.11) and (3.14) leads to the regularity result 

8 E c ~ ( [ o , T ] , H ~ + + ( R ~ ) )  n H ~ ( [ o , T ] , H ~ ( R ~ ) ) .  

Using the Cauchy problem from (3.8) for U, and the regularity of 8, from 
(3.14) gives together with Lemma 3.3 for k = 0 and n = 3 that U, E 
C1([O, TI, Hs+ ' (R3) ) .  Hence, by using (3.12) we conclude the regularity 
result 

U E C o ( [ 0 , T ] , H s + + ( R 3 ) )  n C 1 ( [ 0 , T ] , H s ( R 3 ) ) .  Q.E.D. 

The next proposition is devoted to the existence of solutions to the 
semilinear Cauchy problem (1.3). 
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PROPOSITION 3.5. 

(Uo,O,) E H ~ ( R ~ ) , ( U , , K A ~ ,  - ydivU,P") E H $ - ' ( R ~ ) ,  

If the initial data satis& 

s 2 3 ,  

then there is a constant Tl > 0 such that the semilinear Cauchy problem (1.3) 
has a unique solution (U, 0 )  belonging to 

C o ( [ O , T l ] ,  H S ( R 3 ) )  n C 1 ( [ 0 , T l ] , H " 1 ( R 3 ) )  n C 2 ( [ 0 , T l ] , H " 3 ( R 3 ) ) .  

To prove this proposition we need the next two auxiliary results. The lemma 
can be shown by generalizing the Proposition 2.7, 2.9, and 2.14 j?om [lo] to 
the higher dimensional case. 

LEMMA 3.6. Consider the Cauchy problem 

u,,, - ( r  + 7') Au,  - K A u , ,  + rKA2u = f ( x , t ) ,  

U ( t  = 0 )  = U , ( t  = 0 )  = 0 ,  U , , ( t  = 0 )  = u 2 ( x ) .  

If u 2  E H" 3(R3) andf E L2([0, TI,  H" 3(R3)) n H1([O, TI ,  H" 4(R3)) with 
s 2 1, then there exists a uniquely determined solution 

u E Co([O, T I ,  H ' ( R 3 ) )  n C1([O, T I ,  H " ' ( R 3 ) )  

n C 2 ( [ 0 , T ] , H S - 3 ( R 3 ) )  

s a tis&ing 

IIUIIc;(Hs)n c+(HS-1)nc+(HS-3) 5 C ( T ) ( I I ~ I I L Z , ( H S - ~ ) ~  H$(Hs-4) + I I ~ 2 I I H s - 3 ) ~  

(3.15) 

PROPOSITION 3.7. Let us suppose that 

f E L 2 ( [ 0 , T ] , H S - 1 ( R 3 ) )  n H 1 ( [ 0 , T ] , H " 2 ( R 3 ) )  

n H ~ ( [ o , T ] , H ~ - ~ ( R ~ ) ) ,  

and 

g E L 2 ( [ 0 , T ] , H S ( R 3 ) )  n H 1 ( [ 0 , T ] , H " 2 ( R 3 ) )  

n H 2 ( [ 0 , T ] , H S - 4 ( R 3 ) ) ,  

with s 2 3. Then there exists a uniquely determined solution of (3.11, 

( U ,  0 )  E C o ( [ 0 , T ] , H ' ( R 3 ) )  n C 1 ( [ 0 , T ] , H " 1 ( R 3 ) )  

n C 2 ( [ 0 , T ] , H S - 3 ( R 3 ) )  
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Pro05 
satisfies 

As in the proof of Proposition 3.1, the solenoidal part of U 

&so - p A U s o  = f " ( X , t ) ,  U s o ( t  = 0 )  = &'"(t = 0 )  = 0. 

The assumption for f and Lemma 3.3 imply 

I IUSollc~(H~)n C + ( H S - ) ~ C + ( H S - ~ )  I c(T)llf llL$(HS-l)n ~ i ( ~ s - 2 ) .  (3.18) 

Differentiating (3.6) we obtain that UP" satisfies the Cauchy problem 

QF: - ( r  + y 2 ) A Q P o  - K A Q ~  + rKA2Upo = ftp" - K A f P o  - y v g ,  

UP"(t = 0 )  = QP"(t = 0 )  = 0, Q y ( t  = 0 )  = fP"( t  = 0 ) .  

By employing (3.15) from Lemma 3.6 with f P"(t = 0 )  E H" '(R3) and 

f? - KAfP" - y v g  E L2([0 ,  TI,  Hsp3([W3)) n H1([O, TI,  Hsp4([W3)), 

we get (3.16) by using (3.18). To estimate 8 let us remember the decompo- 
sition for U and 8 from (3.7) and (3.8). To solve the Cauchy problem (3.9) 
for 8, we can apply Lemma 3.6. Consequently, we get the estimate 

Il~,llc;(HS)n c;(HS-l)nc;(Hs-3) I c(T)llf l l H i ( H s - 2 ) n  ~ j ( ~ s - 3 )  

The Lemma 3.2 for k = 2 and n = 3 can be applied to estimate 8, as the 
solution to the Cauchy problem from (3.8). We get 

3 2 

c I 1 8 2 1 1 ~ ; ( ~ s + 2 - 2 j )  I C ( T )  c llg - divU,,tllH;(Hs-2j) 
j = O  j = O  

j =  1 I 
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But the necessary norms for U, can be estimated after the application of 
Lemma 3.4 to the Cauchy problem (3.10) for U,, and to the Cauchy 
problems for U2,,  and U,,,, which are obtained after differentiation. It 
follows 

3 2 c I I u , I I H ; ( H s + 3 - 2 ’ )  I C ( T )  c l l g l l H ; ( H s - 2 ’ ) .  

j =  1 j = O  

All this together brings for 8, the desired estimate 

3 2 

c Il8,11H;(HS+2-2’) I C ( T )  c llgllH;(H”2’). 
I - 0  J = o  

Finally, we conclude with [15]: 

2 2 

c Il8,11C;(HS+’-2’) I C ( T )  c IlgllH;(H”2’). 
J = o  J = o  

The derived estimates for O1 and 8, lead to (3.17). The proposition is 
completely proved. Q.E.D. 

For (U, 8) we choose the ansatz (U, 8) = 

(fi, e”) + (V, p ) ,  where (fi, e”) solves (1.4). Then (V, p )  solves 
Proof of Proposition 3.5. 

V,, + p V  X V X V -  TVdivV+ yVp  = f ( C +  I/, e ” +  p ) ,  

p , - ~ A p +  y d i v I / ; = g ( f i + V , e ” + p ) ,  

V ( t  = 0) = V,(t  = 0 )  = P ( t  = 0 )  = 0. 

Using the Corollary 2.3 we have 

(fi, e”) E co([o, T I ,  H $ ( R ~ ) )  n cl([o, T I ,  H $ - ’ ( [ W ~ ) )  

n c,([o, T I ,  H $ - ~ ( [ W ~ ) ) ,  

and 

To solve the above semilinear Cauchy problem for (V, p )  we construct a 
sequence of solutions {(Vv, p y ) } v ,  , with (Vo,  p = (0, 01, by the iteration 



MILD SINGULARITIES 411 

scheme 

1. Step. We show that there is a constant To > 0 such that the 
sequence {(V”, p”)}” ,  is bounded in C([O, To] ,  Hs (R3) )  n C’([O, To] ,  
H“ ‘(R3)) n C2([0, To] ,  H“ 3(R3)). Taking account of the estimates (3.16) 
and (3.17) from Proposition 3.7 it holds 

l l ( ~ ~ + ’ ,  pU+’) IIc~(HS)nc~(HS-l)nc~(HS-3) 

and in general, 

M ” + ’ ( T )  I a ( f , g , M ” . ( T ) ) / T M ” - ( t )  d t ,  
0 

where a = a(f ,  g ,  . ) is a smooth, positive, and increasing function. With a 
sufficiently small T = To we get the boundedness of {(V”, p”)}” , in 
C([O,To], Hs (R3) )  n C’([O, To] ,  H“’(R3)) n C2([0, To] ,  H“ 3(R3)). 

2.  Step. There is a sufficiently small Tl I To such that the sequence 
{(V”, py)}v ,  is convergent in Co([O, T1], Hs(R3) )  n C’([O, T1], H“’(R3)) 
n C2([0, T , ] ,  H“ 3(R3)). 
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We know that each element of the sequence {(W”, a ”)Iv o ,  where W” := 

I/”+’ - V” and a” := pv+ I  - p ” ,  solves 

W , y + p V x V x  W ” - r V d i v W ” +  y V a ” = f ” ,  

a,”- K A ~ ” +  y d i v K ” = g ” ,  

W”(t = 0) = W,v(t = 0 )  = a ” ( t  = 0 )  = 0 ,  

withf” := f ( f i +  V”, e ” +  p ” )  - f ( U +  I/”-’, e ” +  pVp1)  andg”  : = g ( U +  V”, 

Similar arguments as in the first step together with the boundedness of 
e” + p ” )  - g ( U  + v - 1 ,  e” + pv-1). 

{(V”,  p”)Sv20 in C([O, T o ] ,  H ‘ ( R 3 ) )  n C1([O, T o ] ,  H “ ’ ( R 3 ) >  n 
C2([0, To],  H“ 3(R3)) and Hadamard’s formula yield 

for any v 2 1 and T I To. Hence, a small T, I To guarantees the property 
of {(V”, py)}v ,  to be a Cauchy sequence in the desired function space. 
The uniquely determined limit element (V, p )  gives together with (fi, e”) 
the uniquely determined solution (U, 0 )  of (1.3) which belongs to 
Co([O, T,] ,  Hs(R3)) n C1([O, T,] ,  H“ ‘(R3)) n C2([0, T,] ,  H“ 3(R3)). The 
proof is complete. Q.E.D. 

4. PROPAGATION OF MILD SINGULARITIES 

THEOREM 4.1. Let us consider the semilinear Cauchy problem of three-di- 
mensional thennoelasticity 

&, + p V  x V x U - rVdivU + yVO = f ( U ,  O), 

O , - K A O +  y d i v & = g ( U , O ) ,  

U ( t  = 0 )  = V,, q t  = 0 )  = V,, O(t = 0 )  = 8, 

Let Q c R3 be a given closed domain. Then under the assumptions 

v,,o, E H $ ( R ~ )  ~ H ~ + ~ ( R ~ \ Q ) ,  

V , , K A O ,  - y d i v V y  E H ~ - ’ ( R ~ )  n H s ( R 3 \ Q ) ,  s 2 3 ,  
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there exist a positive constant T and a unique solution 

(u, 8)  E C ~ ( [ O , T ] , H ~ ( ( [ W ~ ) )  n C ~ ( [ O , T ] , H " ~ ( ( [ W ~ ) )  

n c ~ ( [ o , T ] , H ~ - ~ ( [ W ~ ) )  

s a tisfiing 

uSo E c ~ ( [ o , T ] , H " ~ ( K , ) )  n C ' ( [ O , T ] , H ~ ( K , ) ) ,  

upo E c ~ ( [ o , T ] , H " ~ ( K , ) )  n C ' ( [ O , T ] , H ~ ( K , ) ) ,  

8 E L2( [0 ,  T I ,  H " I ( K , ) )  n H1([O? TI?  H"K, ) )?  

where K,, 1 = 1,2, denote the sets K ,  := nxo I , ( x o )  with 

I , ( x o )  = ( ( x , t )  E (R3 x [O,TI)\(lx -x,I = f i t } ) ?  
a ,  = p, a ,  = r .  

By using Proposition 3.5 the Cauchy problem has a unique 
solution (U, 8) E Co([O, TI, H'((rw3)) n C1([O, TI, H"'(rW3)). Let (fi, e") be 
the solution of the corresponding linear Cauchy problem with the same 
data and - homogeneous right-hand side. Then (W, p )  with W := U - 0, 
p := 8 - 8, solves 

Pro05 

W , , + ~ V X V X W - ~ V ~ ~ V W +  y V p = f ( U , O ) ,  

p, - K A ~  + ydivW, = g ( U , 8 ) ,  

W ( t  = 0) = W,(t = 0 )  = P ( t  = 0 )  = 0. 

( f (u ,  8),g(u, 8) )  E C O ( [ O , T ] , H ~ ( ( [ W ~ ) )  n C 1 ( [ ~ , ~ ] , ~ " 1 ( [ W 3 ) ) .  

W E  c ~ ( [ o , T ] , H ~ + + ( ( [ w ~ ) )  n P( [O,T] ,H~( ( [W~) ) ,  
p E c ~ ( [ o , T ] , H ~ + + ( ( [ w ~ ) )  n H ~ ( [ o , T ] , H ~ ( ( [ W ~ ) ) .  

Since s 2 3, it follows that 

The application of Proposition 3.1 implies 

Consequently, the propagation picture of mild H'-singularities of (U, 8) 
coincides with that of (fi, e"), which is the same as desired by using 
Corollary 2.3. Q.E.D. 

At the end of this paper we mention that our approach allows us to 
generalize the main theorem from [lo] to the full semilinear case under 
the weaker assumption s 2 3. Without new difficulties one can prove the 
next result. 
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THEOREM 4.2. Let us consider the semilinear Cauchy problem of one-di- 
mensional thennoelasticity 

u,,--u,,+ y 8 , = f ( u , 8 ) ,  8 , - ~ 8 , , +  y u , , = g ( u , 8 ) ,  

U , ( t  = 0 )  = u l ,  U ( t  = 0 )  = u,, 8 ( t  = 0 )  = 8,. 

Then under the assumptions 

~ , , 8 ,  E H ' ( R )  n H ' + l ( R \ [ ~ , b ] ) ,  

U l ?  ~ O , n n  - Y % , n  E H ' - ~ ( R )  n H ' ( R \ [ a , b ] ) ,  s 2 3 

(compare with (1.211, there exist a positive constant T and a unique solution 

( u ,  8)  E C o ( [ O , T ] , H ' ( R ) )  n C 1 ( [ O , T ] , H " l ( R ) )  

n C 2 ( [ 0 , T ] , H ' - 3 ( R ) )  
s a tisfiing 

( d ,  + &d,)u E Co( [ 0 ,  T I ,  H'( I U 111)), 

( d ,  - h d , ) ~  E Co( [ 0 ,  T I ,  H'( I U 11)), 

( d ,  + & d x ) 8  E L2( [ 0 ,  T I ,  H'( I u 111)), 

( d ,  - h d J 8  E L 2 ( [ 0 , T ] , H S ( I  U 11)), 

where I ,  11, and 111 denote the three regions 

I : = { ( x , t ) : - m < x < a  - & t , O < t < T }  

U { ( x , t ) :  b + f i t  < x  < m,O < t I T }  

( x , t ) :  b - &t <x I b + & t , O  < t < min 

as in Fig. 1.1 of 1101. 
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