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A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent 
Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical 
equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of 
quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total 
angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up 
and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-
ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle 
approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons 
of model simulations with experimental data will help to constrain the poorly known in-medium nucleon 
spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The importance of nucleon spin degree of freedom was first 
recognized more than 50 years ago when Mayer and Jensen in-
troduced the spin–orbit interaction and used it to explain suc-
cessfully the magic numbers and shell structure of nuclei [1,2]. 
Subsequently, the nuclear spin–orbit interaction was found respon-
sible for many interesting phenomena in nuclear structure [3–8]. It 
also affects some features of nuclear reactions, such as the fusion 
threshold [9], the polarization measured in terms of the analyz-
ing power in pick-up or removal reactions [10–13], and the spin 
dependence of nucleon collective flow [14,15] in heavy-ion colli-
sions (HICs). However, the role of nucleon spin is much less known 
in nuclear reactions than structures. In HICs at intermediate en-
ergies, a central issue is the density and isospin dependence of 
the spin–orbit coupling in neutron-rich medium, see, e.g., Ref. [16]
for a recent review. It is also interesting to mention that the 
study of spin-dependent structure functions of nucleons and nu-
clei has been at the forefronts of nuclear and particle physics [17]. 
This study will be boosted by future experiments at the proposed 
electron–ion collider using polarized beams [18]. In this work, 
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we derive for the first time equations of motion (EOMs) of nu-
cleon test particles [19] for solving the spin-dependent Boltzmann 
(Vlasov)–Uehling–Uhlenbeck (BUU or VUU) equation. These EOMs 
provide the physics foundation for simulating spin transport for 
not only nucleons in heavy-ion reactions but also electrons for un-
derstanding many interesting phenomena, such as the spin wave 
[20–23], the spin-Hall effect [24–26], etc.

Considering the spin degree of freedom, the Wigner function 
in phase space becomes a 2 × 2 matrix [27]. Its time evolution 
is governed by the Boltzmann–Vlasov (BV) equation obtained by 
a Wigner transformation of the Liouville equation for the density 
matrix [20,28,29]
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where ε̂ and f̂ are from the Wigner transformation of the energy 
and phase-space density matrix, respectively, and they can be de-
composed into their scalar and vector parts, i.e.,

ε̂(�r, �p) = ε(�r, �p) Î + �h(�r, �p) · �σ , (2)
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f̂ (�r, �p) = f0(�r, �p) Î + �g(�r, �p) · �σ , (3)

where �σ = (σx, σy, σz) and Î are respectively the Pauli matri-
ces and the 2 × 2 unit matrix, ε and f0 are the scalar part of 
the effective single-particle energy ε̂ and phase-space density f̂ , 
respectively, and �h and �g are the corresponding vector distribu-
tions. Adding the Uehling–Uhlenbeck collision term, the resulting 
spin-dependent BUU equation can be used to describe the spin-
dependent dynamics in various systems.

While the spin-dependent BUU equation can be taken as the 
starting point of investigating spin dynamics in HICs, a consistent 
derivation of the EOMs of nucleon test particles for simulations is 
still lacking. The situation is quite different for electron spin trans-
port in solid state physics. To our best knowledge, the treatment 
of electron spin transport relevant to the present study mostly fol-
lows two approaches. One way (Method I) is to start from a model 
Hamiltonian and use the canonical EOMs for the time evolution of 
the electron’s coordinate and momentum, while the time evolution 
of the electron’s spin is given by its commutation relation with the 
model Hamiltonian as in the Heisenberg picture of quantum me-
chanics [24,30,31]. Moreover, an adiabatic approximation is often 
used so that the time evolution of spin can be solved first. Insert-
ing the solution for spin evolution into the EOMs for coordinate 
and momentum then leads to the Berry curvature terms [32–34]. 
Another method (Method II) frequently used is to linearize the 
spin-dependent BUU equation for spin-up and spin-down particles 
separately through the relaxation time approximation [25,35–37]. 
In nuclear physics, EOMs of nucleon test particles should be de-
rived consistently from the BUU transport equation used to model 
HICs. It is well known that the spin-independent BV equation can 
be solved numerically by using the test-particle method [38,39]. 
In particular, it was shown that the EOMs of test particles are 
identical to the canonical EOMs if only the lowest order term in 
expanding the Wigner function is considered (see Ref. [19] and 
comments in Ref. [40]). Applying the test-particle approach to solv-
ing the spin-dependent BUU equation for the first time, we found 
that the EOMs of nucleon test particles are similar to those for 
electrons obtained within Method I described above, albeit with 
different forms of interactions.

2. Decomposition of the spin-dependent phase-space 
distribution function and its evolution

To avoid confusion, we begin by first commenting on the two 
approaches of deriving the BV equation with different definitions 
of the spinor Wigner distribution function often used in the lit-
erature. Equation (1) was derived by means of the density matrix 
method and taking the semiclassical limit as outlined by Smith and 
Jensen [20]. It can be separated into two equations governing the 
scalar and vector distributions, respectively,
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Another way to get the spin-dependent BV equation is to start 
from the time-dependent Hartree–Fock equations for the one-
body density matrix with spin degree of freedom and rewrite the 
equations with the help of the Wigner transformation, see, e.g., 
Refs. [28,29]. In this way, one will get four coupled equations 
which describe the time evolution of the four-component Wigner 
phase-space densities from the 2 × 2 density matrix with spin. The 
definition of the Wigner function of particles with spin-1/2 was 
suggested in Refs. [27,41] as

fσ ,σ ′(�r�p, t) =
∫

d3se−i�p·�s/h̄ψ∗
σ ′(�r − �s

2
, t)ψσ (�r + �s

2
, t), (6)

f (�r�p, t,0) = f1,1(�r�p, t) + f−1,−1(�r�p, t), (7)

τ (�r�p, t, x) = f−1,1(�r�p, t) + f1,−1(�r�p, t), (8)

τ (�r�p, t, y) = −i[ f−1,1(�r�p, t) − f1,−1(�r�p, t)], (9)

τ (�r�p, t, z) = f1,1(�r�p, t) − f−1,−1(�r�p, t), (10)

with σ(σ ′) = 1 for spin up and −1 for spin down. The above def-
initions are convenient in treating the expectation values of the 
spin components. Equation (6) gives the matrix components of 
the Wigner function with spin degree of freedom. f (�r�p, t, 0) is 
the ordinary Wigner phase-space density irrespective of the par-
ticle spin, while τ (�r�p, t, x), τ (�r�p, t, y), and τ (�r�p, t, z), representing 
the three components of the spin Wigner density �τ (�r, �p, t), are the 
probabilities of the spin projection on the x, y, and z directions, re-
spectively. With the above definitions, the Wigner density f (�r, �p, t)
in Eq. (7) and the spin Wigner density �τ (�r, �p, t) (Eqs. (8)–(10)) can 
be expressed in terms of the f0(�r, �p, t) and �g(�r, �p, t) in Eq. (3)
as [41]

f (�r, �p, t) = 2 f0(�r, �p, t), (11)

�τ (�r, �p, t) = 2�g(�r, �p, t). (12)

In this way, the two approaches using two different definitions 
of the spinor Wigner function lead to exactly the same spin-
dependent BV equation.

3. Single-particle energy with spin–orbit interaction

While our derivation is general, to be specific, for the spin-
dependent part of the single-particle Hamiltonian in Eq. (2) we 
take the Skyrme-type effective two-body interaction including the 
spin–orbit coupling [42,43]

ĥso
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where q = n or p is the isospin index, and ρ , �s, �j, and �J are the 
number, spin, momentum, and spin-current densities, respectively. 
According to the definition of the Wigner function in Eq. (6), these 
densities can be directly expressed as [42,43]
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After a Wigner transformation, the Eq. (13) can be readily ex-
pressed in terms of the above densities as

hso
q (�r, �p) = h1 + h4 + (�h2 + �h3) · �σ (18)
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with h1, �h2, �h3, and h4 given by

h1 = − W0

2
∇�r · [�J (�r) + �Jq(�r)], (19)

�h2 = − W0

2
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2
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h4 = − W0

2
∇�r × [�s(�r) + �sq(�r)] · �p. (22)

Comparing with Eq. (2), the effective single-particle energy ε̂ can 
be written as

εq(�r, �p) = p2

2m
+ Uq + h1 + h4, (23)

�hq(�r, �p) = �h2 + �h3, (24)

where Uq is the spin-independent mean-field potential. The nu-
clear tensor force can be implemented in a similar way if needed, 
once the scalar and the vector components are decomposed from 
the corresponding energy-density functional.

4. Spin-dependent EOMs of test particles

We now derive the EOMs from the decoupled spin-dependent 
BV equation [Eqs. (4) and (5)] by using the test-particle method 
[19,38]. The vector part �g(�r, �p) of the spinor Wigner function dis-
tribution in Eq. (3) can be represented by a real unit vector �n times 
a scalar function f1(�r, �p), i.e.,

�g(�r, �p) = �n f1(�r, �p). (25)

Here we assume that �n is independent of �r and �p, which is valid if 
�n evolves much faster than the phase-space coordinates �r and �p or 
if �n is a global constant. Under this assumption and by substituting 
Eq. (25) into Eqs. (4) and (5), we obtain
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Generally, the magnitude of the Poisson bracket { f0, �h}, i.e., 
(∂ f0/∂�r) · (∂�h/∂ �p) − (∂ f0/∂ �p) · (∂�h/∂�r), is much smaller than that 
of �h or { f0, ε}. In this approximation and by separating compo-
nents parallel and perpendicular to �n, Eq. (27) can be divided into 
two parts, i.e.,
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As �n is a unit vector, we have �n · �n = 1. By taking the inner product 
of �n with Eq. (28) (or Eq. (27)) on both sides, one obtains
∂ f1
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Adding and subtracting Eqs. (26) and (30), we get two equations 
for two types of particles with phase-space distribution functions 
f ± = f0 ± f1, i.e.,

∂ f +
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with Vhn ≡ �h · �n. It can be understood from Eqs. (3) and (25) that 
f + and f − are the eigenfunctions of f̂ , representing the phase-
space distributions of particles with their spin in +�n and −�n di-
rections, respectively, i.e., spin-up and spin-down particles.

Following the test-particle method and using an auxiliary vari-
able �s, the time evolution of the Wigner function f ±(�r, �p) can be 
expressed as [19]

f ±(�r, �p, t) =
∫

d3r0d3 p0d3s

(2π h̄)3
exp{i�s · [�p − �P (�r0 �p0�s, t)]/h̄}

× δ[�r − �R(�r0 �p0�s, t)] f ±(�r0, �p0, t0), (33)

where f ±(�r0, �p0, t0) is the Wigner functions at time t0 with the 
initial conditions �R(�r0 �p0�s, t0) = �r0 and �P (�r0 �p0�s, t0) = �p0. Our main 
task is now to find the new phase-space coordinates �R(�r0 �p0�s, t)
and �P (�r0 �p0�s, t) and to obtain the Wigner function at the next time 
step t = t0 +�t with a small increment �t . By substituting Eq. (33)
into Eqs. (31) and (32), we obtain
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Comparing similar terms in the above equation, we get the follow-
ing equations for �R and �P , respectively, i.e.,[
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In order to satisfy the above two equations with arbitrary
f ±(�r, �p, t) and f ±(�r0, �p0, t0), we get the equations of motion for �R
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∂ �R(�r0 �p0�s, t)

∂t
= ∂ε

∂ �p ± ∂Vhn

∂ �p , (37)

and for �P
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2
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2
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Expanding Eq. (38) in �s and keeping only the lowest order term, 
we then obtain

∂ �P (�r0 �p0�s, t)

∂t
= −∂ε

∂�r ∓ ∂Vhn

∂�r . (39)

Considering Eqs. (18)–(24) and combining Eqs. (37), (39), and (29), 
the EOMs of test particles for solving the spin-dependent BV equa-
tion with the spin–orbit interaction are thus

∂ �R
∂t

= �p
m

+ ∇�p(h1 + h4) ± ∇�p(�h2 · �n + �h3 · �n), (40)

∂ �P
∂t
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∂�n
∂t

= 2(�h2 + �h3) × �n
h̄

, (42)

with the upper sign for f + and lower sign for f − , respectively, 
and h1, �h2, �h3, and h4 given by Eqs. (19)–(22). According to the 
definition of the spinor Wigner phase-space density distribution 
in Eqs. (3) and (25), �n is the direction (unit vector) of the local 
spin polarization in 3-dimensional coordinate space, which can be 
expressed by the test-particle method [38,39] as

�n =
∑

i �niδ(�r −�ri)δ(�p − �pi)

|∑i �niδ(�r −�ri)δ(�p − �pi)| , (43)

with �ni being the spin expectation direction of the ith nucleon. 
Based on Eqs. (7)–(10), the scalar Wigner density distribution 
f (�r, �p) and the vector Wigner density distribution �τ (�r, �p) can be 
expressed by the test-particle method as

f (�r, �p) = 1

NT P

∑
i

δ(�r −�ri)δ(�p − �pi), (44)

�τ (�r, �p) = 1

NT P

∑
i

�niδ(�r −�ri)δ(�p − �pi), (45)

with NT P being the number of test particles per nucleon. In this 
way, the number, spin, momentum, and spin-current densities can 
also be calculated via

ρ(�r) = 1

NT P

∑
i

δ(�r −�ri), (46)

�s(�r) = 1

NT P

∑
i

�niδ(�r −�ri), (47)

�j(�r) = 1

NT P

∑
i
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δ(�r −�ri), (48)

�J (�r) = 1

NT P

∑
i

(
�pi

h̄
× �ni)δ(�r −�ri). (49)
5. Quantum nature of spin

The above EOMs for the phase-space coordinates are the same 
as the canonical equations in Hamiltonian dynamics, and the EOM 
of spin is the same as that in the Heisenburg picture of quan-
tum mechanics. These EOMs have been applied in our previous 
studies [14–16]. As first demonstrated by the Stern–Gerlach ex-
periment [44], the projection of spin onto any reference direction 
used in measurements is quantized. In non-central HICs, the angu-
lar momentum is in the y direction perpendicular to the reaction 
plane (x–o–z plane). It is thus natural to set y direction as the 
third (magnetic) spin direction. We then fix �n = ŷ in Eqs. (40) and 
(41) and set �ni = ± ŷ in Eqs. (45), (47), and (49) depending on 
whether the ith particle is spin-up or spin-down with respect to 
the y axis. In this way the time evolution of �n (Eq. (42)) is not 
needed. Thus, as describing the isospin dynamics with separate 
EOMs for neutrons and protons [45], we now have separate EOMs 
for spin-up (upper sign) and spin-down (lower sign) particles

∂ �R
∂t

= �p
m

+ ∇�p(h1 + h4) ± ∇�p(h2y + h3y), (50)

∂ �P
∂t

= −∇�r Uq − ∇�r(h1 + h4) ∓ ∇�r(h2y + h3y). (51)

It is seen that the h2y ≡ �h2 · �n and h3y ≡ �h3 · �n lead to the spin-
dependent motion while the h1 and h4 affect the global motion in 
phase space.

To summarize, the spin-dependent Boltzmann–Vlasov equation 
can be solved by extending the test-particle method. Considering 
the quantum nature of spin and choosing the direction of total an-
gular momentum in heavy-ion reactions as a reference of measur-
ing nucleon spin, the EOMs of spin-up and spin-down nucleons are 
derived. The key elements affecting the spin dynamics in heavy-ion 
collisions are identified. The derived EOMs of test particles provide 
the theoretical foundation of simulating spin-dependent dynamics 
in intermediate-energy heavy-ion collisions. Future comparisons of 
model simulations with experimental data will help to constrain
the poorly known in-medium nucleon spin–orbit coupling.
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