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1. Introduction

Here, K will denote an arbitrary field and n a positive integer. We let M, ,(K) denote the set of
matrices with n rows, p columns and entries in K, and GL;,(K) the set of non-singular matrices in
the algebra M;,(K) of square matrices of order n. The columns of a matrix M € M, (K) will be written
Ci1(M), C3(M), ..., Cy(M), so that

M=[GM) GM) - GM)].

Given a vector space V, we let £(V) denote the algebra of endomorphisms of V. For non-singular P and
Q in GL,(K), we define

My (K) —> M, (K)

: . [Ma(K) —> Mp(K)
Upq : {M —> PMQ and Vp,o n n

"M +— PM'Q.
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Clearly, these are non-singular endomorphisms of the vector space M, (K) which map GL,(K) onto
itself, and the subset

Gn(1€) = [upq|(P,Q) € GLy(K)*} U {vpol(P.Q) € GLa(K)]

is clearly a subgroup of GL(M,(K)), which we will call the Frobenius group.

Determining the endomorphisms of the vector space M, (K) which preserve non-singularity has
historically been one of the first successful linear preserver problem, dating back to Frobenius [6], who
classified the linear preservers of the determinant, and Dieudonné [4], who classified the non-singular
linear preservers of the general linear group. Some improvements have been made later on the issue
(cf. [9,2]). The following theorem is now folklore and essentially sums up what was known to this
date:

Theorem 1

(i) The group G, (K) consists of all the endomorphisms f of My, (K) such that f (GL,(K)) = GL,(K).
(ii) The group Gn(K) consists of all the endomorphisms f of M, (K) such that f ~'(GL,(K)) = GL,(K).
(iii) The group G, (K) consists of all the non-singular endomorphisms f of M, (K) such that f (GL,(K)) C
GLy(K).
(iv) IfK is algebraically closed, then G, consists of all the endomorphisms f of M, (K) such that f (GL, (K))
C GLn(K).

Our main interest here is finding all the endomorphisms f of M, (K) which stabilize GL,(K), i.e.
f(GL,(K)) C GL,(K). The issue here is the existence of non-singular ones. Here are a few examples:

Example 1. In M, (R), the endomorphism
a ¢ a —b
b dT b a

is singular and stabilizes GL, (R). Indeed, if [a ¢

b d] € GLy(R), then (a, b) # (0, 0) hence

a4+ b >o0.

Example 2. In M3(Q), consider the companion matrix

0 0 2
A=1|1 0 0].
0 1 O

Since the minimal polynomial X3 — 2 of A is irreducible over Q, the subalgebra Q[A] is a field. The
singular endomorphism

M +— myq .[3 + mzy1.A + ms .Az

then clearly maps GL3(Q) into Q[A]\{0} hence stabilizes GL3(Q).
All those examples can be described in a normalized way. We will need a few definitions first.

Definition 1. Alinear subspace V of My, (K) will be called non-singular when V\{0} C GL,(K), and full
non-singular when in addition dimV = n.

Let V be a full non-singular subspace of M, (K), with n > 2. The projection onto the first column

[V — Mp1(K)
T {MI—) C](ll\/l)
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is then a linear isomorphism. It follows that

v My (K) —> Mn(K)
M — 71 (M)
is a singular linear map which maps every non-singular matrix to a non-singular matrix. More gener-
ally, given a non-zero vector X € K" and an isomorphism « : K" = V, the linear maps M — «(MX)
and M +— «(M" X) are singular endomorphisms of M,,(K) that stabilize GL, (K).

In this article, we will prove that the aforementioned maps are the only singular preservers of
GL,(K):

Theorem 2 (Main theorem). Let n > 2. Let f be a linear endomorphism of My, (K) such that f (GL,(K)) C
GL,(K). Then:

(i) either f is bijective and then f € G, (K);
(ii) or there exists a full non-singular subspace V of M, (K), an isomorphism « : K" = V and a column
X € K™\{0} such that:

VM € My(K), f(M) = a(MX) or YM € My(K), f(M) = a(M"X).

As a consequence, if f is singular, then Imf is a full non-singular subspace of M, (K).
The rest of the paper is laid out as follows:

o we will first easily derive Theorem 1 from Theorem 2;

e afterwards, we will prove Theorem 2 by using a theorem of Dieudonné on the singular subspaces
of M (K);

e in the last section, we will explain how the existence of full non-singular subspaces of M, (K) is
linked to the existence of n-dimensional division algebras over K. This will prove fruitful in the
case K = R.

2. Some consequences of the main theorem

Let us assume Theorem 2 holds, and use it to prove the various statements in Theorem 1. The
case n = 1 is trivial so we assume n > 2. Remark first that every f € G,(K) is an automorphism of
M, (K) and satisfies all the conditions f (GL, (K)) C GL,(K), f(GLy(K)) = GL,(K) andf ' (GL,(K)) =
GL (K).

Statement (iii) is straightforward by Theorem 2.

Proof of statement (i). Let f : M,(K) — M, (K) be a linear map such that f(GL,(K)) = GL,(K). By
the next lemma, GL,, (K) generates the vector space M, (K), so f must be onto, hence non-singular, and
statement (iii) then shows that f € G,(K). [

Lemma 3. The vector space M, (K) is generated by GL, (K).

Proof. The result is obvious when n = 1. We now assume n > 2. Set (Ej;)1 <;j<n the canonical basis
of Mp(K). Then Ejj = (I, + Ejj) — In € span(GL,(K)) for alli # j.
Onthe other hand, lettingi € [[1, n]] and choosing arbitrarilyj € [[1, n]]\{i}, we find that [, + E;; +
Eji — E;; is non-singular, therefore
Eij=1— I, + EiJ' + Ej,i - Ei,i) + E,‘J + Ej’,‘ € span GL,(K).

This proves that span(GL, (K)) = M,(K). O

Proof of statement (ii). Let f : M, (K) — M, (K) be a linear map such that f ~1(GL,(K)) = GL,(K).
Assume that f is not injective. Then there would be a non-zero matrix A € M, (K) such that f(A) = 0,
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and it would follow that A 4 P is non-singular for every non-singular P (since then f(A + P) = f(P) €
I, 0
0 oy
withr := rkA > 0.However B + (—I,) is singular. This proves that f is one-to-one, hence non-singular,
and since f(GL,(K)) C GL,(K), statement (iii) shows that f € G,(K). [

GL,(K)). Then any matrix B equivalent to A would also verify this property, in particular B := [

Proof of statement (iv). Assume K is algebraically closed. Then every non-singular subspace of M, (K)
has dimension at most 1: indeed, given two non-singular P and Q in M, (K), the polynomial det(P +
xQ) = det(Q) det(PQ ! + x.I,) is non-constant and must then have a root in K. It follows from
Theorem 2 that every linear map f : M,,(K) — M, (K) which stabilizes GL, (K) belongs to G,(K). [

3. Proof of the main theorem

The basic idea is to use a theorem of Dieudonné to study the subspace f ! (V) when V is a singular
subspace of M;, (K), i.e. one that is disjoint from GL, (K). This is essentially the idea in the original proof
of Dieudonné [4] but we will push it to the next level by not assuming that f is one-to-one.

3.1. A reduction principle

Let f : Mp(K) — M;,(K) be a linear map which stabilizes GL,(K), and let (P, Q) € GL,(K). Then
any of the maps upg o f,f o upg and M + f(M)" is linear and stabilizes GL, (K). Moreover, it is easily
checked that if any one of them is of one of the types listed in Theorem 2, then f also is. Our proof will
make a great use of that remark.

3.2. A review of Dieudonné’s theorem
Definition 2. Alinear subspace of a K-algebra is called singular when it contains no invertible element.

For example, given an i € [[1, n]], the subset of matrices M, (K) which have null entries on the ith
column is an (n*> — n)-dimensional singular subspace.

Definition 3. Let E be a finite-dimensional vector space, H a hyperplane! of E and D a line of E. We
define:

e Lp(E) as the set of endomorphisms u of E such that D C Keru;
o £H(E) as the set of endomorphisms u of E such that Imu C H.

Then £p(E) and £ (E) are both (n?> — n)-dimensional singular subspaces of £(E). The singular sub-
space £p(E) will be said to be of kernel-type, and the singular subspace £ (E) of image-type.

The following theorem of Dieudonné [4], later generalized by Flanders [5] and Meshulam [10], will
be used throughout our proof:

Theorem 4 (Dieudonné’s theorem). Let E be an n-dimensional vector space over K, and V a singular
subspace of L(E). Then:

(a) one has dimV <n? — n;
(b) ifdimV = n? — n, then we are in one of the mutually exclusive situations:

o there is one (and only one) hyperplane H of E such that V = " (E);
o there is one (and only one) line D of E such that V = Lp(E).

! Here, by a hyperplane (resp. a line), we mean a linear subspace of codimension one (resp. of dimension one). When we will
exceptionally have to deal with affine subspaces, we will always specify it.
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3.3. Inverse image of a singular subspace of kernel-type

In what follows, the algebra M, (K) will be canonically identified with the algebra £(K") of endo-
morphisms of E := K". Letf : M,(K) — M,(K) be an endomorphism which stabilizes GL, (K). Notice
that, given a line D of E and a non-zero vector X € D, the singular subspace £p(E) is actually the kernel
of the linear map M — MX on M, (K).

Lemma 5. Let X € K"\{0} and set D := span(X). Then:

e either there is an hyperplane H of E such that f =1 (cp(E)) = £ (E);
e or there is a line D’ of E such that f~1(£p(E)) = £p (E).

Moreover, the linear map M +—> f(M)X from M, (K) to K" is onto.

Proof. Since the subspace £p(E) contains no non-singular matrix, the assumption on f guarantees
that f~1(cp(E)) is a singular subspace of M, (K). Since f~1(£p(E)) is the kernel of & : M +— f(M)X,
the rank theorem shows that dim f~'(£p(E)) > n* — n. Theorem 4 then shows our first statement,
hence another use of the rank theorem proves that dim f~!(£p(E)) = n> — nand o isonto. O

We will now show that the type of f~! (£p(E)) (kernel or image) is actually independent of the
given line D. This will prove a lot harder than in Dieudonné’s original proof [4] because f is not assumed
one-to-one.

Proposition 6. Let D; and D, denote two distinct lines in K™. Then the singular subspaces f ! (Lp, (E))
and f~1 (Lp, (E)) are either both of kernel-type or both of image-type.

Proof. We will use a reductio ad absurdum by assuming there is a line D and an hyperplane H of E
such that f~1 (Lp, (E)) = £Lp(E) and f! (Lp,(E)) = £H(E). By right-composing f with upq for some
well-chosen non-singular P and Q, and then left-composing u;, r for some well-chosen non-singular

R, we are reduced to the case Dy = D = span(ey), D, = span(e;) and H = span(ey, . . ., e,), where
(e, ...,ep) denotes the canonical basis of K". Then f has the following properties:
e Any matrix with first column 0 is mapped by f to a matrix with first column 0,and M +— C;(f (M))
is onto.
e Any matrix with first line 0 is mapped by f to a matrix with second column 0,and M +— C,(f (M))
is onto.

By the factorization theorem for linear maps [7, Proposition I, p.45], we deduce that there are two
isomorphisms & : My 1 (K) — M1 (K) and B : My ;,(K) — My, 1 (K) such that, for every

L
M=[C --]= |:} with C € Mp1(K) and L € My ,(K),

one has
fM) =[a(C) BL) --].
1
0
SetnowCy :=« | .|and G, :=B[1 0 --- 0].We then recover two injective linear maps o’ :
0

Mp—_1,1(K) <> My1(K) and 8" : My ;—1(K) <> My, 1(K) such that for every M = [é ﬂ € M, (K)
with first coefficient 1, one has

fM) =[G +d'©) G+pWL) 7]
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Let (L, C) € My —1(K) x Mp—1,1(K). Notice then that there exists an N € M;_1(K) such that M =
[é ﬁ]] is non-singular. Indeed, the matrix N := CL + I, fits this condition (remark that

C CLA+1I,— C In—q1||0 Ihj—
singular, which proves that C; + «’(C) and C; + B’(L) are linearly independent.
However, this has to hold for every pair (L, C) € M —1(K) X Mp—1,1(K). Therefore no vector in the
affine hyperplane H; := C; + Ima/ is colinear to a vector in the affine hyperplane H, := C, + Img’.
There finally lies a contradiction: indeed, should we choose a vector xq in E\ (Ima’ U ImB”) (classically,
such a vector exists because E is never the union of two strict linear subspaces), then the line span(xg)
would have to intersect both hyperplanes #; and H,. [

[1 L ] = [] 0 ] [] L ]). For any such M, the matrix f(M) must then be non-

We may actually assume there is some line D such that f~1(£p(E)) has kernel-type, because, if not,
we may replace f with M — f(M?). Therefore we may now assume, without loss of generality:
For every line D of E, there is a line D’ of E such that f "1 (£p(E)) = £p (E).

3.4. Reducing the problem further

We let here (e, ..., e,) denote the canonical basis of E = K" and set D; := span(e;) for every
i € [[1, n]]l. We now have nlines D, . .., D, inE such that Vi € [[1,n]], f~!(cp,(E)) = Lp, (E).Inevery

line D;, we choose a non-zero vector x;.
Set F := span(xy,...,Xy) and p := dimF. From (xy, . . ., X;;) can be extracted a basis of F.

e Replacing f with M +— f(M)P for some suitable permutation matrix P, we may assume

(x1,...,Xp) is a basis of F.
e Replacing f with M +— f(MP) for some non-singular P € GL,(K), we may finally assume
(X1,...,Xp) = (e1,...,ep),sothat F = span(ey, ..., ep).

After these reductions, let us restate some of the assumptions on f: for every i € [[1, p]] and every
M € M;(K), if the ith column of M is 0, then the ith column of f (M) is also 0,and N + C;(f(N)) is onto
(from M, (K) to My, 1 (K)). By the factorization theorem for linear maps, we recover p automorphisms

o1,...,0p 0f Mp1(K) such that, foreveryM = [C; G --- G ?]in My(K), one has:
M) =[o1(C)  aa(C) -+ ap(Cy)  ?].
We will now reduce the previous situation to the case ¢y = ap = --- = op = id.
Lemma 7. Under the previous assumptions, let (Cy, . . ., Cp) € Mp1(K)? bealinearly independent p-tuple.

Then (a1 (C1), . . ., ap(Cp)) is linearly independent.

Proof. Indeed, (Cy, .. ., G) can be extended into a basis (C, . . ., G;) of M1 (K). Since M := [Cy- - -Cp]
is non-singular, f (M) also is, which proves our claim. [

Define then P € GL,(K) as the matrix canonically associated to «1. Then we may replace f with
foup-1; , which changes no previous assumption. In this case, &1 = idw,; (k). We claim then that
ay, .. ., ap are scalar multiples of the identity. Consider o, for example. Since any linearly independent
pair (Cq, C2) in My 1 (K) can be extended into a linearly independent p-tuple in M, (K), Lemma 7 shows
(C1, a2(C2)) must be linearly independent. It follows that for every C € M, 1 (K), the matrices C and
(02)~1(C) must be linearly dependent. Classically, this proves (cz) ! is a scalar multiple of id, hence
ay also is. The same line of reasoning also shows that this is true of a3, . . ., 0.

We thus find non-zero scalars Ay, ..., Ap such that, forevery M =[C; G --- G ?]in
Mp(K),onehasf(M) = [C1 X.Co --- Ap.G 7).
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By replacing f with f o uy p—1 for P := D(1, A2, ..., Ap, 1,..., 1), we are thus reduced to the fol-
lowing situation:

ForeveryM=[Ci G -+ (G ?]inMp(K),onehasf(M)=[C; C - G ?]

3.5. The coup de grdce

e If p = n, then we are reduced to the case f = id x4, k), in which f = uy,,.
e Assumep = 1.
Then Kerf is the set of matrices with 0 as first column. Indeed, since N;_; £p, (E) = {0}, we find

Kerf = () f~" (Lo () = Ly (E) = £Lp, (E).

k=1 k=1

By the factorization theorem for linear maps, we find a linear injection g : K" < M, (K) such
1
0

that YM € M, (K), f(M) = g(Meq), where e; = | . |. Notice then that Img = Imf and Img is

0
an n-dimensional linear subspace of M, (K).
Finally, Img is actually non-singular: indeed, for every x € K"\ {0}, there exists M € GL,(K) such

that Me; = x, hence g(x) = f(M) is non-singular. We have thus proven that f verifies condition
(ii) in Theorem 2.

Our proof of Theorem 2 will then be finished should we prove that only the above two cases
can arise. Assume then 1 < p < n and consider the vector x,,1. Notice that we now simply have

f~Y(£p(E)) = £p(E) for any line D of F = span(ey, . . ., ep). Moreover, the situation is left unchanged
should we choose anon-singular P € GL,(K),setQ := [g I 0 ] andreplacef withu; p-1 o f o uy p.
n—p

It follows that we may actually assume D; 41 = D1 in addition to the previous assumptions (at this
point, the reader must check that none of the previous reductions changes the lines D1, . .., Dy).

Another use of the factorization theorem then helps us find an endomorphism « of M;, 1 (K) such
that, for every M = [C1 C3 - - - G ?] in Mp(K), one has f(M) = [C1 G2 - - - Cy 2(C1) ?]. Borrowing an
argument from Section 3.4, we deduce that for any linearly independent pair (C1, ;) in M1 (K),
the triple (Ci, C3,@(Cy)) is also linearly independent (this is where the assumption 1 <p <n
comes into play). Clearly, this is absurd: indeed, choose C; arbitrarily in My 1(K)\{0}, then C; :=
a(Cy) if (Cq, ®(Cq)) is linearly independent, and choose arbitrarily C; in My 1(K)\span(Cy) if not
(there again, we use p >2). This contradiction shows p € {1,n}, which completes our proof of
Theorem 2.

4. A link with division algebras

We will show here how the full non-singular subspaces of M, (K) are connected to division algebra
over K. Let us recall first a few basic facts about them.

Definition 4. A division algebra over K is a K-vector space D equipped with a bilinear map % : D X
D — Dsuch that x — a % x and x — x % a are automorphisms of D for every a € D\{0}.

Of course, every field extension of K, and more generally every skew-field extension of K is a division
algebra over K. There are however non-associative division algebras, the most famous example being
the algebra of octonions (see [3] for an extensive treatment on them).
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Remarks 3

(a) Note that associativity is not required on the part of % !

(b) If Dis finite-dimensional, then the latter condition in the definition of a division algebra is verified
ifand only if x — a % x is bijective for every a € D\{0}. The data of % is then equivalent to that
of a linear map

o :D—> £(D)

which maps D\{0} into GL(D) (indeed, to such a map «, we naturally associate the pairing
(a,b) = a(a)[b]).

The correspondence between full non-singular subspaces of GL,(K) and division algebras over K
is now readily explained:

e Let V be a full non-singular subspace V of GL,, (K). Setting a basis of V, we define an isomorphism

6 : K" S V which induces an isomorphism of algebras 6 : M, (K) S £(V). Restricting 6 to V
then gives rise to a division algebra structure on V.
e Conversely, given a division algebra D with structural map « : D — £(D), we can choose a basis

of D, which defines an algebra isomorphism v : £(D) =l M;, (K), and then associate to D the full
non-singular subspace v («(D)) of M, (K).

Working with the canonical basis of K", we have just established a bijective correspondence
between the set of structures of division algebras on K" (which extend its canonical vector space
structure), and the set of full non-singular subspaces of M, (K).

By combining our main theorem with the Bott—-Milnor-Kervaire theorem on division algebras over
the real numbers (cf. [1,8]), this yields:

Proposition 8. Let n € N\{2, 4, 8}. Then every linear endomorphism f of My, (R) which stabilizes GL,(R)
belongs to the Frobenius group G, (R).
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