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1. Introduction

Here, K will denote an arbitrary field and n a positive integer. We let Mn,p(K) denote the set of

matrices with n rows, p columns and entries in K, and GLn(K) the set of non-singular matrices in

the algebra Mn(K) of square matrices of order n. The columns of a matrixM ∈ Mn(K)will be written

C1(M), C2(M), . . . , Cn(M), so that

M = [
C1(M) C2(M) · · · Cn(M)

]
.

Given a vector space V , we let L(V) denote the algebra of endomorphisms of V . For non-singular P and

Q in GLn(K), we define

uP,Q :
{
Mn(K) −→ Mn(K)
M �−→ P M Q

and vP,Q :
{
Mn(K) −→ Mn(K)
M �−→ P Mt Q .
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Clearly, these are non-singular endomorphisms of the vector space Mn(K) which map GLn(K) onto
itself, and the subset

Gn(K) :=
{
uP,Q |(P, Q) ∈ GLn(K)

2
}

∪
{
vP,Q |(P, Q) ∈ GLn(K)

2
}

is clearly a subgroup of GL(Mn(K)), which we will call the Frobenius group.

Determining the endomorphisms of the vector space Mn(K) which preserve non-singularity has

historically been one of the first successful linear preserver problem, dating back to Frobenius [6], who

classified the linear preservers of the determinant, and Dieudonné [4], who classified the non-singular

linear preservers of the general linear group. Some improvements have been made later on the issue

(cf. [9,2]). The following theorem is now folklore and essentially sums up what was known to this

date:

Theorem 1

(i) The group Gn(K) consists of all the endomorphisms f of Mn(K) such that f (GLn(K)) = GLn(K).
(ii) The group Gn(K) consists of all the endomorphisms f of Mn(K) such that f−1(GLn(K)) = GLn(K).
(iii) The group Gn(K) consists of all the non-singular endomorphisms f ofMn(K) such that f (GLn(K)) ⊂

GLn(K).
(iv) IfK is algebraically closed, thenGn consists of all the endomorphisms f ofMn(K) such that f (GLn(K))⊂ GLn(K).

Our main interest here is finding all the endomorphisms f of Mn(K) which stabilize GLn(K), i.e.
f (GLn(K)) ⊂ GLn(K). The issue here is the existence of non-singular ones. Here are a few examples:

Example 1. In M2(R), the endomorphism[
a c

b d

]
�→

[
a −b

b a

]

is singular and stabilizes GL2(R). Indeed, if

[
a c

b d

]
∈ GL2(R), then (a, b) /= (0, 0) hence

∣∣∣∣a −b

b a

∣∣∣∣ =
a2 + b2 > 0.

Example 2. In M3(Q), consider the companion matrix

A =
⎡
⎣0 0 2

1 0 0

0 1 0

⎤
⎦ .

Since the minimal polynomial X3 − 2 of A is irreducible over Q, the subalgebra Q[A] is a field. The

singular endomorphism

M �−→ m1,1.I3 + m2,1.A + m3,1.A
2

then clearly maps GL3(Q) into Q[A]\{0} hence stabilizes GL3(Q).

All those examples can be described in a normalized way. We will need a few definitions first.

Definition 1. A linear subspace V ofMn(K)will be called non-singularwhen V\{0} ⊂ GLn(K), and full

non-singularwhen in addition dim V = n.

Let V be a full non-singular subspace of Mn(K), with n� 2. The projection onto the first column

π :
{
V −→ Mn,1(K)
M �−→ C1(M)
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is then a linear isomorphism. It follows that

ψ :
{
Mn(K) −→ Mn(K)

M �−→ π−1(C1(M))

is a singular linear map which maps every non-singular matrix to a non-singular matrix. More gener-

ally, given a non-zero vector X ∈ Kn and an isomorphism α : Kn �→ V , the linear maps M �→ α(MX)
andM �→ α(Mt X) are singular endomorphisms of Mn(K) that stabilize GLn(K).

In this article, we will prove that the aforementioned maps are the only singular preservers of

GLn(K):

Theorem 2 (Main theorem). Let n� 2. Let f be a linear endomorphism ofMn(K) such that f (GLn(K)) ⊂
GLn(K). Then:

(i) either f is bijective and then f ∈ Gn(K);
(ii) or there exists a full non-singular subspace V ofMn(K), an isomorphism α : Kn �→ V and a column

X ∈ Kn\{0} such that:
∀M ∈ Mn(K), f (M) = α(MX) or ∀M ∈ Mn(K), f (M) = α(Mt X).

As a consequence, if f is singular, then Imf is a full non-singular subspace ofMn(K).

The rest of the paper is laid out as follows:

• we will first easily derive Theorem 1 from Theorem 2;

• afterwards, wewill prove Theorem2 by using a theoremof Dieudonné on the singular subspaces

of Mn(K);• in the last section, we will explain how the existence of full non-singular subspaces of Mn(K) is
linked to the existence of n-dimensional division algebras over K. This will prove fruitful in the

case K = R.

2. Some consequences of the main theorem

Let us assume Theorem 2 holds, and use it to prove the various statements in Theorem 1. The

case n = 1 is trivial so we assume n� 2. Remark first that every f ∈ Gn(K) is an automorphism of

Mn(K)andsatisfiesall the conditions f (GLn(K)) ⊂ GLn(K), f (GLn(K)) = GLn(K)and f
−1(GLn(K)) =

GLn(K).
Statement (iii) is straightforward by Theorem 2.

Proof of statement (i). Let f : Mn(K) → Mn(K) be a linear map such that f (GLn(K)) = GLn(K). By
the next lemma, GLn(K) generates the vector spaceMn(K), so f must be onto, hence non-singular, and

statement (iii) then shows that f ∈ Gn(K). �

Lemma 3. The vector spaceMn(K) is generated by GLn(K).

Proof. The result is obvious when n = 1. We now assume n� 2. Set (Ei,j)1� i,j � n the canonical basis

of Mn(K). Then Ei,j = (In + Ei,j)− In ∈ span(GLn(K)) for all i /= j.

On the other hand, letting i ∈ [[1, n]] and choosing arbitrarily j ∈ [[1, n]]\{i}, wefind that In + Ei,j +
Ej,i − Ei,i is non-singular, therefore

Ei,i = In − (In + Ei,j + Ej,i − Ei,i)+ Ei,j + Ej,i ∈ span GLn(K).

This proves that span(GLn(K)) = Mn(K). �

Proof of statement (ii). Let f : Mn(K) → Mn(K) be a linear map such that f−1(GLn(K)) = GLn(K).
Assume that f is not injective. Then there would be a non-zero matrix A ∈ Mn(K) such that f (A) = 0,
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and it would follow that A + P is non-singular for every non-singular P (since then f (A + P) = f (P) ∈
GLn(K)). Then anymatrix B equivalent to Awould also verify this property, in particular B :=

[
Ir 0

0 0

]
,

with r := rkA > 0.HoweverB + (−In) is singular. Thisproves that f is one-to-one,hencenon-singular,
and since f (GLn(K)) ⊂ GLn(K), statement (iii) shows that f ∈ Gn(K). �
Proof of statement (iv).AssumeK is algebraically closed. Then every non-singular subspace ofMn(K)
has dimension at most 1: indeed, given two non-singular P and Q in Mn(K), the polynomial det(P +
x Q) = det(Q) det(PQ−1 + x.In) is non-constant and must then have a root in K. It follows from

Theorem 2 that every linear map f : Mn(K) → Mn(K)which stabilizes GLn(K) belongs to Gn(K). �

3. Proof of the main theorem

The basic idea is to use a theorem of Dieudonné to study the subspace f−1(V)when V is a singular

subspace ofMn(K), i.e. one that is disjoint fromGLn(K). This is essentially the idea in the original proof

of Dieudonné [4] but we will push it to the next level by not assuming that f is one-to-one.

3.1. A reduction principle

Let f : Mn(K) → Mn(K) be a linear map which stabilizes GLn(K), and let (P, Q) ∈ GLn(K). Then
any of themaps uP,Q ◦ f , f ◦ uP,Q andM �→ f (M)t is linear and stabilizes GLn(K). Moreover, it is easily

checked that if any one of them is of one of the types listed in Theorem 2, then f also is. Our proof will

make a great use of that remark.

3.2. A review of Dieudonné’s theorem

Definition 2. A linear subspace of aK-algebra is called singularwhen it contains no invertible element.

For example, given an i ∈ [[1, n]], the subset of matrices Mn(K) which have null entries on the ith

column is an (n2 − n)-dimensional singular subspace.

Definition 3. Let E be a finite-dimensional vector space, H a hyperplane1 of E and D a line of E. We

define:

• LD(E) as the set of endomorphisms u of E such that D ⊂ Keru;

• LH(E) as the set of endomorphisms u of E such that Imu ⊂ H.

Then LD(E) and LH(E) are both (n2 − n)-dimensional singular subspaces of L(E). The singular sub-

space LD(E)will be said to be of kernel-type, and the singular subspace LH(E) of image-type.

The following theorem of Dieudonné [4], later generalized by Flanders [5] andMeshulam [10], will

be used throughout our proof:

Theorem 4 (Dieudonné’s theorem). Let E be an n-dimensional vector space over K, and V a singular

subspace of L(E). Then:
(a) one has dim V � n2 − n;
(b) if dim V = n2 − n, then we are in one of the mutually exclusive situations:

• there is one (and only one) hyperplane H of E such that V = LH(E);
• there is one (and only one) line D of E such that V = LD(E).

1 Here, by a hyperplane (resp. a line), we mean a linear subspace of codimension one (resp. of dimension one). When we will

exceptionally have to deal with affine subspaces, we will always specify it.



C. de Seguins Pazzis / Linear Algebra and its Applications 433 (2010) 483–490 487

3.3. Inverse image of a singular subspace of kernel-type

In what follows, the algebra Mn(K) will be canonically identified with the algebra L(Kn) of endo-
morphisms of E := Kn. Let f : Mn(K) → Mn(K) be an endomorphismwhich stabilizes GLn(K). Notice
that, given a lineD of E and a non-zero vector X ∈ D, the singular subspaceLD(E) is actually the kernel

of the linear map M �→ MX on Mn(K).

Lemma 5. Let X ∈ Kn\{0} and set D := span(X). Then:
• either there is an hyperplane H of E such that f−1(LD(E)) = LH(E);
• or there is a line D′ of E such that f−1(LD(E)) = LD′(E).

Moreover, the linear map M �→ f (M)X from Mn(K) to Kn is onto.

Proof. Since the subspace LD(E) contains no non-singular matrix, the assumption on f guarantees

that f−1(LD(E)) is a singular subspace of Mn(K). Since f−1(LD(E)) is the kernel of α : M �→ f (M)X ,
the rank theorem shows that dim f−1(LD(E))� n2 − n. Theorem 4 then shows our first statement,

hence another use of the rank theorem proves that dim f−1(LD(E)) = n2 − n and α is onto. �

We will now show that the type of f−1 (LD(E)) (kernel or image) is actually independent of the

given lineD. Thiswill prove a lot harder than inDieudonné’s original proof [4] because f is not assumed

one-to-one.

Proposition 6. Let D1 and D2 denote two distinct lines in Kn. Then the singular subspaces f−1(LD1
(E))

and f−1(LD2
(E)) are either both of kernel-type or both of image-type.

Proof. We will use a reductio ad absurdum by assuming there is a line D and an hyperplane H of E

such that f−1(LD1
(E)) = LD(E) and f−1(LD2

(E)) = LH(E). By right-composing f with uP,Q for some

well-chosen non-singular P and Q , and then left-composing uIn,R for some well-chosen non-singular

R, we are reduced to the case D1 = D = span(e1), D2 = span(e2) and H = span(e2, . . . , en), where

(e1, . . . , en) denotes the canonical basis of Kn. Then f has the following properties:

• Anymatrixwithfirst column0 ismappedby f to amatrixwithfirst column0, andM �→ C1(f (M))
is onto.

• Anymatrixwith first line 0 ismapped by f to amatrixwith second column0, andM �→ C2(f (M))
is onto.

By the factorization theorem for linear maps [7, Proposition I, p.45], we deduce that there are two

isomorphisms α : Mn,1(K)
�−→Mn,1(K) and β : M1,n(K)

�−→Mn,1(K) such that, for every

M = [
C · · ·] =

⎡
⎣L
...

⎤
⎦ with C ∈ Mn,1(K) and L ∈ M1,n(K),

one has

f (M) = [
α(C) β(L) · · ·] .

Set now C1 := α

⎡
⎢⎢⎢⎣

1

0
...
0

⎤
⎥⎥⎥⎦ and C2 := β

[
1 0 · · · 0

]
. We then recover two injective linear maps α′ :

Mn−1,1(K) ↪→ Mn,1(K) and β
′ : M1,n−1(K) ↪→ Mn,1(K) such that for every M =

[
1 L

C ?

]
∈ Mn(K)

with first coefficient 1, one has

f (M) = [
C1 + α′(C) C2 + β ′(L) ?

]
.
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Let (L, C) ∈ M1,n−1(K)× Mn−1,1(K). Notice then that there exists an N ∈ Mn−1(K) such that M =[
1 L

C N

]
is non-singular. Indeed, the matrix N := CL + In−1 fits this condition (remark that[

1 L

C CL + In−1

]
=

[
1 0

C In−1

] [
1 L

0 In−1

]
). For any such M, the matrix f (M) must then be non-

singular, which proves that C1 + α′(C) and C2 + β ′(L) are linearly independent.

However, this has to hold for every pair (L, C) ∈ M1,n−1(K)× Mn−1,1(K). Therefore no vector in the

affine hyperplane H1 := C1 + Imα′ is colinear to a vector in the affine hyperplane H2 := C2 + Imβ ′.
There finally lies a contradiction: indeed, shouldwe choose a vector x0 in E\(Imα′ ∪ Imβ ′) (classically,
such a vector exists because E is never the union of two strict linear subspaces), then the line span(x0)
would have to intersect both hyperplanes H1 and H2. �

Wemay actually assume there is some lineD such that f−1(LD(E)) has kernel-type, because, if not,
we may replace f withM �→ f (Mt). Therefore we may now assume, without loss of generality:

For every line D of E, there is a line D′ of E such that f−1(LD(E)) = LD′(E).

3.4. Reducing the problem further

We let here (e1, . . . , en) denote the canonical basis of E = Kn and set Di := span(ei) for every

i ∈ [[1, n]].We nowhave n linesD′
1, . . . , D

′
n in E such that∀i ∈ [[1, n]], f−1(LDi

(E)) = LD′
i
(E). In every

line D′
i , we choose a non-zero vector xi.

Set F := span(x1, . . . , xn) and p := dim F . From (x1, . . . , xn) can be extracted a basis of F .

• Replacing f with M �→ f (M)P for some suitable permutation matrix P, we may assume

(x1, . . . , xp) is a basis of F .

• Replacing f with M �→ f (MP) for some non-singular P ∈ GLn(K), we may finally assume

(x1, . . . , xp) = (e1, . . . , ep), so that F = span(e1, . . . , ep).

After these reductions, let us restate some of the assumptions on f : for every i ∈ [[1, p]] and every

M ∈ Mn(K), if the ith column ofM is 0, then the ith column of f (M) is also 0, andN �→ Ci(f (N)) is onto
(from Mn(K) to Mn,1(K)). By the factorization theorem for linear maps, we recover p automorphisms

α1, . . . ,αp of Mn,1(K) such that, for every M = [
C1 C2 · · · Cp ?

]
in Mn(K), one has:

f (M) = [
α1(C1) α2(C2) · · · αp(Cp) ?

]
.

We will now reduce the previous situation to the case α1 = α2 = · · · = αp = id.

Lemma 7. Under theprevious assumptions, let (C1, . . . , Cp) ∈ Mn,1(K)
p bea linearly independent p-tuple.

Then
(
α1(C1), . . . ,αp(Cp)

)
is linearly independent.

Proof. Indeed, (C1, . . . , Cp) can be extended into a basis (C1, . . . , Cn) ofMn,1(K). SinceM := [
C1· · ·Cn]

is non-singular, f (M) also is, which proves our claim. �

Define then P ∈ GLn(K) as the matrix canonically associated to α1. Then we may replace f with

f ◦ uP−1 ,In
, which changes no previous assumption. In this case, α1 = idMn,1(K). We claim then that

α2, . . . ,αp are scalarmultiples of the identity. Considerα2 for example. Since any linearly independent

pair (C1, C2) inMn,1(K) can be extended into a linearly independent p-tuple inMn(K), Lemma 7 shows

(C1,α2(C2)) must be linearly independent. It follows that for every C ∈ Mn,1(K), the matrices C and

(α2)
−1(C)must be linearly dependent. Classically, this proves (α2)

−1 is a scalar multiple of id, hence

α2 also is. The same line of reasoning also shows that this is true of α3, . . . ,αp.

We thus find non-zero scalars λ2, . . . , λp such that, for every M = [
C1 C2 · · · Cp ?

]
in

Mn(K), one has f (M) = [
C1 λ2.C2 · · · λp.Cp ?

]
.
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By replacing f with f ◦ uIn,P−1 for P := D(1, λ2, . . . , λp, 1, . . . , 1), we are thus reduced to the fol-

lowing situation:

For everyM = [
C1 C2 · · · Cp ?

]
in Mn(K), one has f (M) = [

C1 C2 · · · Cp ?
]
.

3.5. The coup de grâce

• If p = n, then we are reduced to the case f = idMn(K), in which f = uIn,In .• Assume p = 1.

Then Kerf is the set of matrices with 0 as first column. Indeed, since
⋂n

k=1 LDk
(E) = {0}, we find

Kerf =
n⋂

k=1

f−1 (
LDk
(E)

) =
n⋂

k=1

LD′
k
(E) = LD1

(E).

By the factorization theorem for linear maps, we find a linear injection g : Kn ↪→ Mn(K) such

that ∀M ∈ Mn(K), f (M) = g(Me1), where e1 =

⎡
⎢⎢⎢⎣

1

0
...
0

⎤
⎥⎥⎥⎦. Notice then that Img = Imf and Img is

an n-dimensional linear subspace of Mn(K).
Finally, Img is actually non-singular: indeed, for every x ∈ Kn\{0}, there existsM ∈ GLn(K) such
thatMe1 = x, hence g(x) = f (M) is non-singular. We have thus proven that f verifies condition

(ii) in Theorem 2.

Our proof of Theorem 2 will then be finished should we prove that only the above two cases

can arise. Assume then 1 < p < n and consider the vector xp+1. Notice that we now simply have

f−1(LD(E)) = LD(E) for any line D of F = span(e1, . . . , ep). Moreover, the situation is left unchanged

shouldwechooseanon-singularP ∈ GLp(K), setQ :=
[
P 0

0 In−p

]
and replace f withuIn,P−1 ◦ f ◦ uIn,P .

It follows that we may actually assume D′
p+1 = D1 in addition to the previous assumptions (at this

point, the reader must check that none of the previous reductions changes the lines Dp+1, . . . , Dn).

Another use of the factorization theorem then helps us find an endomorphism α of Mn,1(K) such
that, for every M = [

C1 C2 · · · Cp ?
]
in Mn(K), one has f (M) = [

C1 C2 · · · Cp α(C1) ?]. Borrowing an

argument from Section 3.4, we deduce that for any linearly independent pair (C1, C2) in Mn,1(K),
the triple (C1, C2,α(C1)) is also linearly independent (this is where the assumption 1 < p < n

comes into play). Clearly, this is absurd: indeed, choose C1 arbitrarily in Mn,1(K)\{0}, then C2 :=
α(C1) if (C1,α(C1)) is linearly independent, and choose arbitrarily C2 in Mn,1(K)\span(C1) if not

(there again, we use p� 2). This contradiction shows p ∈ {1, n}, which completes our proof of

Theorem 2.

4. A link with division algebras

Wewill show here how the full non-singular subspaces of Mn(K) are connected to division algebra

over K. Let us recall first a few basic facts about them.

Definition 4. A division algebra over K is a K-vector space D equipped with a bilinear map � : D ×
D → D such that x �→ a � x and x �→ x � a are automorphisms of D for every a ∈ D\{0}.

Of course, everyfield extensionofK, andmoregenerally every skew-field extensionofK is a division

algebra over K. There are however non-associative division algebras, the most famous example being

the algebra of octonions (see [3] for an extensive treatment on them).
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Remarks 3

(a) Note that associativity is not required on the part of � !

(b) IfD is finite-dimensional, then the latter condition in thedefinitionof adivision algebra is verified

if and only if x �→ a � x is bijective for every a ∈ D\{0}. The data of � is then equivalent to that

of a linear map

α : D −→ L(D)
which maps D\{0} into GL(D) (indeed, to such a map α, we naturally associate the pairing

(a, b) �→ α(a)[b]).
The correspondence between full non-singular subspaces of GLn(K) and division algebras over K

is now readily explained:

• Let V be a full non-singular subspace V of GLn(K). Setting a basis of V , we define an isomorphism

θ : Kn �→ V which induces an isomorphism of algebras θ : Mn(K)
�→ L(V). Restricting θ to V

then gives rise to a division algebra structure on V .

• Conversely, given a division algebra Dwith structural map α : D → L(D), we can choose a basis

of D, which defines an algebra isomorphismψ : L(D) �→Mn(K), and then associate to D the full

non-singular subspaceψ(α(D)) of Mn(K).

Working with the canonical basis of Kn, we have just established a bijective correspondence

between the set of structures of division algebras on Kn (which extend its canonical vector space

structure), and the set of full non-singular subspaces of Mn(K).
By combining our main theoremwith the Bott–Milnor–Kervaire theorem on division algebras over

the real numbers (cf. [1,8]), this yields:

Proposition 8. Let n ∈ N\{2, 4, 8}. Then every linear endomorphism f ofMn(R)which stabilizes GLn(R)
belongs to the Frobenius group Gn(R).
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