Linear Algebra and its Applications 433 (2010) 483-490

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage:www.elsevier.com/locate/laa

The singular linear preservers of non-singular matrices

Clément de Seguins Pazzis

Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, France

ARTICLE INFO

Article history: Received 8 February 2010 Accepted 10 March 2010 Available online 3 April 2010

Submitted by H. Schneider

AMS classification: 15A86 15A30 16S50

Keywords: Linear preservers Division algebras General linear group Singular subspaces

1. Introduction

Here, \mathbb{K} will denote an arbitrary field and n a positive integer. We let $M_{n,p}(\mathbb{K})$ denote the set of matrices with n rows, p columns and entries in \mathbb{K} , and $GL_n(\mathbb{K})$ the set of non-singular matrices in the algebra $M_n(\mathbb{K})$ of square matrices of order n. The columns of a matrix $M \in M_n(\mathbb{K})$ will be written $C_1(M), C_2(M), \ldots, C_n(M)$, so that

$$M = \begin{bmatrix} C_1(M) & C_2(M) & \cdots & C_n(M) \end{bmatrix}.$$

Given a vector space V, we let $\mathcal{L}(V)$ denote the algebra of endomorphisms of V. For non-singular P and Q in $GL_n(\mathbb{K})$, we define

$$u_{P,Q}: \begin{cases} \mathsf{M}_n(\mathbb{K}) \longrightarrow \mathsf{M}_n(\mathbb{K}) \\ \mathsf{M} \longmapsto \mathsf{P} \mathsf{M} \mathsf{Q} \end{cases} \quad \text{and} \quad v_{P,Q}: \begin{cases} \mathsf{M}_n(\mathbb{K}) \longrightarrow \mathsf{M}_n(\mathbb{K}) \\ \mathsf{M} \longmapsto \mathsf{P} \mathsf{M}^t \mathsf{Q}. \end{cases}$$

E-mail address: dsp.prof@gmail.com

0024-3795/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2010.03.021

ABSTRACT

Given an arbitrary field \mathbb{K} , we reduce the determination of the singular endomorphisms f of $M_n(\mathbb{K})$ such that $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K})$ to the classification of n-dimensional division algebras over \mathbb{K} . Our method, which is based upon Dieudonné's theorem on singular subspaces of $M_n(\mathbb{K})$, also yields a proof for the classical non-singular case.

© 2010 Elsevier Inc. All rights reserved.

Clearly, these are non-singular endomorphisms of the vector space $M_n(\mathbb{K})$ which map $GL_n(\mathbb{K})$ onto itself, and the subset

$$\mathcal{G}_{n}(\mathbb{K}) := \left\{ u_{P,Q} | (P,Q) \in \mathrm{GL}_{n}(\mathbb{K})^{2} \right\} \cup \left\{ v_{P,Q} | (P,Q) \in \mathrm{GL}_{n}(\mathbb{K})^{2} \right\}$$

is clearly a subgroup of $GL(M_n(\mathbb{K}))$, which we will call the *Frobenius group*.

Determining the endomorphisms of the vector space $M_n(\mathbb{K})$ which preserve non-singularity has historically been one of the first successful linear preserver problem, dating back to Frobenius [6], who classified the linear preservers of the determinant, and Dieudonné [4], who classified the non-singular linear preservers of the general linear group. Some improvements have been made later on the issue (cf. [9,2]). The following theorem is now folklore and essentially sums up what was known to this date:

Theorem 1

- (i) The group $\mathcal{G}_n(\mathbb{K})$ consists of all the endomorphisms f of $M_n(\mathbb{K})$ such that $f(GL_n(\mathbb{K})) = GL_n(\mathbb{K})$.
- (ii) The group $\mathcal{G}_n(\mathbb{K})$ consists of all the endomorphisms f of $M_n(\mathbb{K})$ such that $f^{-1}(\operatorname{GL}_n(\mathbb{K})) = \operatorname{GL}_n(\mathbb{K})$.
- (iii) The group $\mathcal{G}_n(\mathbb{K})$ consists of all the non-singular endomorphisms f of $M_n(\mathbb{K})$ such that $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K})$.
- (iv) If \mathbb{K} is algebraically closed, then \mathcal{G}_n consists of all the endomorphisms f of $M_n(\mathbb{K})$ such that $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K})$.

Our main interest here is finding all the endomorphisms f of $M_n(\mathbb{K})$ which stabilize $GL_n(\mathbb{K})$, i.e. $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K})$. The issue here is the existence of non-singular ones. Here are a few examples:

Example 1. In $M_2(\mathbb{R})$, the endomorphism

 $\begin{bmatrix} a & c \\ b & d \end{bmatrix} \mapsto \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

is singular and stabilizes $GL_2(\mathbb{R})$. Indeed, if $\begin{bmatrix} a & c \\ b & d \end{bmatrix} \in GL_2(\mathbb{R})$, then $(a, b) \neq (0, 0)$ hence $\begin{vmatrix} a & -b \\ b & a \end{vmatrix} = a^2 + b^2 > 0$.

Example 2. In $M_3(\mathbb{Q})$, consider the companion matrix

$$A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Since the minimal polynomial $X^3 - 2$ of A is irreducible over \mathbb{Q} , the subalgebra $\mathbb{Q}[A]$ is a field. The singular endomorphism

$$M \mapsto m_{1,1}.I_3 + m_{2,1}.A + m_{3,1}.A^2$$

then clearly maps $GL_3(\mathbb{Q})$ into $\mathbb{Q}[A]\setminus\{0\}$ hence stabilizes $GL_3(\mathbb{Q})$.

All those examples can be described in a normalized way. We will need a few definitions first.

Definition 1. A linear subspace *V* of $M_n(\mathbb{K})$ will be called *non-singular* when $V \setminus \{0\} \subset GL_n(\mathbb{K})$, and *full non-singular* when in addition dim V = n.

Let *V* be a full non-singular subspace of $M_n(\mathbb{K})$, with $n \ge 2$. The projection onto the first column

$$\pi: \begin{cases} V \longrightarrow \mathsf{M}_{n,1}(\mathbb{K}) \\ M \longmapsto C_1(M) \end{cases}$$

484

is then a linear isomorphism. It follows that

$$\psi: \begin{cases} \mathsf{M}_n(\mathbb{K}) \longrightarrow \mathsf{M}_n(\mathbb{K}) \\ M \longmapsto \pi^{-1}(C_1(M)) \end{cases}$$

is a singular linear map which maps every non-singular matrix to a non-singular matrix. More generally, given a non-zero vector $X \in \mathbb{K}^n$ and an isomorphism $\alpha : \mathbb{K}^n \xrightarrow{\simeq} V$, the linear maps $M \mapsto \alpha(MX)$ and $M \mapsto \alpha(M^t X)$ are singular endomorphisms of $M_n(\mathbb{K})$ that stabilize $GL_n(\mathbb{K})$.

In this article, we will prove that the aforementioned maps are the only singular preservers of $GL_n(\mathbb{K})$:

Theorem 2 (Main theorem). Let $n \ge 2$. Let f be a linear endomorphism of $M_n(\mathbb{K})$ such that $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K})$. Then:

- (i) either f is bijective and then $f \in \mathcal{G}_n(\mathbb{K})$;
- (ii) or there exists a full non-singular subspace V of $M_n(\mathbb{K})$, an isomorphism $\alpha : \mathbb{K}^n \xrightarrow{\simeq} V$ and a column $X \in \mathbb{K}^n \setminus \{0\}$ such that:

 $\forall M \in M_n(\mathbb{K}), f(M) = \alpha(MX) \text{ or } \forall M \in M_n(\mathbb{K}), f(M) = \alpha(M^t X).$

As a consequence, if f is singular, then Imf is a full non-singular subspace of $M_n(\mathbb{K})$.

The rest of the paper is laid out as follows:

- we will first easily derive Theorem 1 from Theorem 2;
- afterwards, we will prove Theorem 2 by using a theorem of Dieudonné on the singular subspaces of $M_n(\mathbb{K})$;
- in the last section, we will explain how the existence of full non-singular subspaces of $M_n(\mathbb{K})$ is linked to the existence of *n*-dimensional division algebras over \mathbb{K} . This will prove fruitful in the case $\mathbb{K} = \mathbb{R}$.

2. Some consequences of the main theorem

Let us assume Theorem 2 holds, and use it to prove the various statements in Theorem 1. The case n = 1 is trivial so we assume $n \ge 2$. Remark first that every $f \in \mathcal{G}_n(\mathbb{K})$ is an automorphism of $M_n(\mathbb{K})$ and satisfies all the conditions $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K}), f(GL_n(\mathbb{K})) = GL_n(\mathbb{K})$ and $f^{-1}(GL_n(\mathbb{K})) = GL_n(\mathbb{K})$.

Statement (iii) is straightforward by Theorem 2.

Proof of statement (i). Let $f : M_n(\mathbb{K}) \to M_n(\mathbb{K})$ be a linear map such that $f(GL_n(\mathbb{K})) = GL_n(\mathbb{K})$. By the next lemma, $GL_n(\mathbb{K})$ generates the vector space $M_n(\mathbb{K})$, so f must be onto, hence non-singular, and statement (iii) then shows that $f \in \mathcal{G}_n(\mathbb{K})$. \Box

Lemma 3. The vector space $M_n(\mathbb{K})$ is generated by $GL_n(\mathbb{K})$.

Proof. The result is obvious when n = 1. We now assume $n \ge 2$. Set $(E_{i,j})_{1 \le i,j \le n}$ the canonical basis of $M_n(\mathbb{K})$. Then $E_{i,j} = (I_n + E_{i,j}) - I_n \in \text{span}(\text{GL}_n(\mathbb{K}))$ for all $i \ne j$.

On the other hand, letting $i \in [[1, n]]$ and choosing arbitrarily $j \in [[1, n]] \setminus \{i\}$, we find that $I_n + E_{i,j} + E_{j,i} - E_{i,i}$ is non-singular, therefore

$$E_{i,i} = I_n - (I_n + E_{i,j} + E_{j,i} - E_{i,i}) + E_{i,j} + E_{j,i} \in \text{span } GL_n(\mathbb{K}).$$

This proves that $\text{span}(\text{GL}_n(\mathbb{K})) = M_n(\mathbb{K})$. \Box

Proof of statement (ii). Let $f : M_n(\mathbb{K}) \to M_n(\mathbb{K})$ be a linear map such that $f^{-1}(GL_n(\mathbb{K})) = GL_n(\mathbb{K})$. Assume that f is not injective. Then there would be a non-zero matrix $A \in M_n(\mathbb{K})$ such that f(A) = 0,

and it would follow that A + P is non-singular for every non-singular P (since then $f(A + P) = f(P) \in$ $GL_n(\mathbb{K})$). Then any matrix *B* equivalent to *A* would also verify this property, in particular $B := \begin{bmatrix} I_r \\ 0 \end{bmatrix}$ with r := rkA > 0. However $B + (-I_n)$ is singular. This proves that f is one-to-one, hence non-singular, and since $f(GL_n(\mathbb{K})) \subset GL_n(\mathbb{K})$, statement (iii) shows that $f \in \mathcal{G}_n(\mathbb{K})$.

Proof of statement (iv). Assume \mathbb{K} is algebraically closed. Then every non-singular subspace of $M_n(\mathbb{K})$ has dimension at most 1: indeed, given two non-singular P and Q in $M_n(\mathbb{K})$, the polynomial det(P + xQ = det(Q) det(PQ⁻¹ + x.I_n) is non-constant and must then have a root in K. It follows from Theorem 2 that every linear map $f : M_n(\mathbb{K}) \to M_n(\mathbb{K})$ which stabilizes $GL_n(\mathbb{K})$ belongs to $\mathcal{G}_n(\mathbb{K})$.

3. Proof of the main theorem

The basic idea is to use a theorem of Dieudonné to study the subspace $f^{-1}(V)$ when V is a singular subspace of $M_n(\mathbb{K})$, i.e. one that is disjoint from $GL_n(\mathbb{K})$. This is essentially the idea in the original proof of Dieudonné [4] but we will push it to the next level by not assuming that f is one-to-one.

3.1. A reduction principle

Let $f: M_n(\mathbb{K}) \to M_n(\mathbb{K})$ be a linear map which stabilizes $GL_n(\mathbb{K})$, and let $(P, Q) \in GL_n(\mathbb{K})$. Then any of the maps $u_{P,Q} \circ f, f \circ u_{P,Q}$ and $M \mapsto f(M)^t$ is linear and stabilizes $GL_n(\mathbb{K})$. Moreover, it is easily checked that if any one of them is of one of the types listed in Theorem 2, then f also is. Our proof will make a great use of that remark.

3.2. A review of Dieudonné's theorem

Definition 2. A linear subspace of a K-algebra is called *singular* when it contains no invertible element.

For example, given an $i \in [[1, n]]$, the subset of matrices $M_n(\mathbb{K})$ which have null entries on the *i*th column is an $(n^2 - n)$ -dimensional singular subspace.

Definition 3. Let *E* be a finite-dimensional vector space, *H* a hyperplane¹ of *E* and *D* a line of *E*. We define:

- $\mathcal{L}_D(E)$ as the set of endomorphisms u of E such that $D \subset \text{Ker}u$; $\mathcal{L}^H(E)$ as the set of endomorphisms u of E such that $\text{Im}u \subset H$.

Then $\mathcal{L}_D(E)$ and $\mathcal{L}^H(E)$ are both $(n^2 - n)$ -dimensional singular subspaces of $\mathcal{L}(E)$. The singular subspace $\mathcal{L}_D(E)$ will be said to be of *kernel-type*, and the singular subspace $\mathcal{L}^H(E)$ of *image-type*.

The following theorem of Dieudonné [4], later generalized by Flanders [5] and Meshulam [10], will be used throughout our proof:

Theorem 4 (Dieudonné's theorem). Let E be an n-dimensional vector space over \mathbb{K} , and V a singular subspace of $\mathcal{L}(E)$. Then:

- (a) one has dim $V \leq n^2 n$;
- (b) if dim $V = n^2 n$, then we are in one of the mutually exclusive situations:
 - there is one (and only one) hyperplane H of E such that $V = \mathcal{L}^{H}(E)$;
 - there is one (and only one) line D of E such that $V = \mathcal{L}_D(E)$.

Here, by a hyperplane (resp. a line), we mean a linear subspace of codimension one (resp. of dimension one). When we will exceptionally have to deal with affine subspaces, we will always specify it.

3.3. Inverse image of a singular subspace of kernel-type

In what follows, the algebra $M_n(\mathbb{K})$ will be canonically identified with the algebra $\mathcal{L}(\mathbb{K}^n)$ of endomorphisms of $E := \mathbb{K}^n$. Let $f : M_n(\mathbb{K}) \to M_n(\mathbb{K})$ be an endomorphism which stabilizes $GL_n(\mathbb{K})$. Notice that, given a line D of E and a non-zero vector $X \in D$, the singular subspace $\mathcal{L}_D(E)$ is actually the kernel of the linear map $M \mapsto MX$ on $M_n(\mathbb{K})$.

Lemma 5. Let $X \in \mathbb{K}^n \setminus \{0\}$ and set $D := \operatorname{span}(X)$. Then:

- either there is an hyperplane H of E such that $f^{-1}(\mathcal{L}_{D}(E)) = \mathcal{L}^{H}(E)$;
- or there is a line D' of E such that $f^{-1}(\mathcal{L}_D(E)) = \mathcal{L}_{D'}(E)$.

Moreover, the linear map $M \mapsto f(M)X$ from $M_n(\mathbb{K})$ to \mathbb{K}^n is onto.

Proof. Since the subspace $\mathcal{L}_D(E)$ contains no non-singular matrix, the assumption on *f* guarantees that $f^{-1}(\mathcal{L}_D(E))$ is a singular subspace of $M_n(\mathbb{K})$. Since $f^{-1}(\mathcal{L}_D(E))$ is the kernel of $\alpha : M \mapsto f(M)X$, the rank theorem shows that dim $f^{-1}(\mathcal{L}_D(E)) \ge n^2 - n$. Theorem 4 then shows our first statement, hence another use of the rank theorem proves that dim $f^{-1}(\mathcal{L}_D(E)) = n^2 - n$ and α is onto.

We will now show that the type of $f^{-1}(\mathcal{L}_D(E))$ (kernel or image) is actually independent of the given line D. This will prove a lot harder than in Dieudonné's original proof [4] because f is not assumed one-to-one.

Proposition 6. Let D_1 and D_2 denote two distinct lines in \mathbb{K}^n . Then the singular subspaces $f^{-1}(\mathcal{L}_{D_1}(E))$ and $f^{-1}(\mathcal{L}_{D_2}(E))$ are either both of kernel-type or both of image-type.

Proof. We will use a *reductio ad absurdum* by assuming there is a line D and an hyperplane H of E such that $f^{-1}(\mathcal{L}_{D_1}(E)) = \mathcal{L}_D(E)$ and $f^{-1}(\mathcal{L}_{D_2}(E)) = \mathcal{L}^H(E)$. By right-composing f with $u_{P,Q}$ for some well-chosen non-singular P and Q, and then left-composing $u_{l_n,R}$ for some well-chosen non-singular R, we are reduced to the case $D_1 = D = \operatorname{span}(e_1)$, $D_2 = \operatorname{span}(e_2)$ and $H = \operatorname{span}(e_2, \ldots, e_n)$, where (e_1, \ldots, e_n) denotes the canonical basis of \mathbb{K}^n . Then f has the following properties:

- Any matrix with first column 0 is mapped by f to a matrix with first column 0, and $M \mapsto C_1(f(M))$ is onto.
- Any matrix with first line 0 is mapped by f to a matrix with second column 0, and $M \mapsto C_2(f(M))$ is onto.

By the factorization theorem for linear maps [7, Proposition I, p.45], we deduce that there are two isomorphisms $\alpha : M_{n,1}(\mathbb{K}) \xrightarrow{\simeq} M_{n,1}(\mathbb{K})$ and $\beta : M_{1,n}(\mathbb{K}) \xrightarrow{\simeq} M_{n,1}(\mathbb{K})$ such that, for every

$$M = \begin{bmatrix} C & \cdots \end{bmatrix} = \begin{bmatrix} L \\ \vdots \end{bmatrix} \text{ with } C \in M_{n,1}(\mathbb{K}) \text{ and } L \in M_{1,n}(\mathbb{K}),$$

one has

 $f(M) = \begin{bmatrix} \alpha(C) & \beta(L) \end{bmatrix}$ $J(M) = [\alpha(C) - \beta(C)]$ Set now $C_1 := \alpha \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ and $C_2 := \beta \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$. We then recover two injective linear maps α' : $M_{n-1,1}(\mathbb{K}) \hookrightarrow M_{n,1}(\mathbb{K}) \text{ and } \beta' : M_{1,n-1}(\mathbb{K}) \hookrightarrow M_{n,1}(\mathbb{K}) \text{ such that for every } M = \begin{bmatrix} 1 & L \\ C & ? \end{bmatrix} \in M_n(\mathbb{K})$

with first coefficient 1, one has

$$f(M) = \begin{bmatrix} C_1 + \alpha'(C) & C_2 + \beta'(L) & ? \end{bmatrix}.$$

Let $(L, C) \in M_{1,n-1}(\mathbb{K}) \times M_{n-1,1}(\mathbb{K})$. Notice then that there exists an $N \in M_{n-1}(\mathbb{K})$ such that $M = \begin{bmatrix} 1 & L \\ C & N \end{bmatrix}$ is non-singular. Indeed, the matrix $N := CL + I_{n-1}$ fits this condition (remark that $\begin{bmatrix} 1 & L \\ C & CL + I_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ C & I_{n-1} \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & I_{n-1} \end{bmatrix}$). For any such M, the matrix f(M) must then be non-singular, which proves that $C_1 + \alpha'(C)$ and $C_2 + \beta'(L)$ are linearly independent.

However, this has to hold for every pair $(L, C) \in M_{1,n-1}(\mathbb{K}) \times M_{n-1,1}(\mathbb{K})$. Therefore no vector in the affine hyperplane $\mathcal{H}_1 := C_1 + \operatorname{Im}\alpha'$ is colinear to a vector in the affine hyperplane $\mathcal{H}_2 := C_2 + \operatorname{Im}\beta'$. There finally lies a contradiction: indeed, should we choose a vector x_0 in $E \setminus (\operatorname{Im}\alpha' \cup \operatorname{Im}\beta')$ (classically, such a vector exists because E is never the union of two strict linear subspaces), then the line span (x_0) would have to intersect both hyperplanes \mathcal{H}_1 and \mathcal{H}_2 . \Box

We may actually assume there is some line *D* such that $f^{-1}(\mathcal{L}_D(E))$ has kernel-type, because, if not, we may replace f with $M \mapsto f(M^t)$. Therefore we may now assume, without loss of generality: For every line *D* of *E*, there is a line *D'* of *E* such that $f^{-1}(\mathcal{L}_D(E)) = \mathcal{L}_{D'}(E)$.

3.4. Reducing the problem further

We let here (e_1, \ldots, e_n) denote the canonical basis of $E = \mathbb{K}^n$ and set $D_i := \operatorname{span}(e_i)$ for every $i \in [[1, n]]$. We now have $n \operatorname{lines} D'_1, \ldots, D'_n$ in E such that $\forall i \in [[1, n]], f^{-1}(\mathcal{L}_{D_i}(E)) = \mathcal{L}_{D'_i}(E)$. In every line D'_i , we choose a non-zero vector x_i .

Set $F := \operatorname{span}(x_1, \ldots, x_n)$ and $p := \dim F$. From (x_1, \ldots, x_n) can be extracted a basis of F.

- Replacing f with $M \mapsto f(M)P$ for some suitable permutation matrix P, we may assume (x_1, \ldots, x_p) is a basis of F.
- Replacing f with $M \mapsto f(MP)$ for some non-singular $P \in GL_n(\mathbb{K})$, we may finally assume $(x_1, \ldots, x_p) = (e_1, \ldots, e_p)$, so that $F = \operatorname{span}(e_1, \ldots, e_p)$.

After these reductions, let us restate some of the assumptions on f: for every $i \in [[1, p]]$ and every $M \in M_n(\mathbb{K})$, if the *i*th column of M is 0, then the *i*th column of f(M) is also 0, and $N \mapsto C_i(f(N))$ is onto (from $M_n(\mathbb{K})$ to $M_{n,1}(\mathbb{K})$). By the factorization theorem for linear maps, we recover p automorphisms $\alpha_1, \ldots, \alpha_p$ of $M_{n,1}(\mathbb{K})$ such that, for every $M = \begin{bmatrix} C_1 & C_2 & \cdots & C_p & ? \end{bmatrix}$ in $M_n(\mathbb{K})$, one has:

 $f(M) = \begin{bmatrix} \alpha_1(C_1) & \alpha_2(C_2) & \cdots & \alpha_p(C_p) & ? \end{bmatrix}.$

We will now reduce the previous situation to the case $\alpha_1 = \alpha_2 = \cdots = \alpha_p = id$.

Lemma 7. Under the previous assumptions, let $(C_1, ..., C_p) \in M_{n,1}(\mathbb{K})^p$ be a linearly independent *p*-tuple. Then $(\alpha_1(C_1), ..., \alpha_p(C_p))$ is linearly independent.

Proof. Indeed, (C_1, \ldots, C_p) can be extended into a basis (C_1, \ldots, C_n) of $M_{n,1}(\mathbb{K})$. Since $M := [C_1 \cdots C_n]$ is non-singular, f(M) also is, which proves our claim. \Box

Define then $P \in GL_n(\mathbb{K})$ as the matrix canonically associated to α_1 . Then we may replace f with $f \circ u_{p^{-1},l_n}$, which changes no previous assumption. In this case, $\alpha_1 = id_{M_{n,1}(\mathbb{K})}$. We claim then that $\alpha_2, \ldots, \alpha_p$ are scalar multiples of the identity. Consider α_2 for example. Since any linearly independent pair (C_1, C_2) in $M_{n,1}(\mathbb{K})$ can be extended into a linearly independent p-tuple in $M_n(\mathbb{K})$, Lemma 7 shows $(C_1, \alpha_2(C_2))$ must be linearly independent. It follows that for every $C \in M_{n,1}(\mathbb{K})$, the matrices C and $(\alpha_2)^{-1}(C)$ must be linearly dependent. Classically, this proves $(\alpha_2)^{-1}$ is a scalar multiple of id, hence α_2 also is. The same line of reasoning also shows that this is true of $\alpha_3, \ldots, \alpha_p$.

We thus find non-zero scalars $\lambda_2, \ldots, \lambda_p$ such that, for every $M = \begin{bmatrix} C_1 & C_2 & \cdots & C_p & ? \end{bmatrix}$ in $M_n(\mathbb{K})$, one has $f(M) = \begin{bmatrix} C_1 & \lambda_2, C_2 & \cdots & \lambda_p, C_p & ? \end{bmatrix}$.

By replacing f with $f \circ u_{l_n,P^{-1}}$ for $P := D(1, \lambda_2, \dots, \lambda_p, 1, \dots, 1)$, we are thus reduced to the following situation:

For every $M = \begin{bmatrix} C_1 & C_2 & \cdots & C_p & ? \end{bmatrix}$ in $M_n(\mathbb{K})$, one has $f(M) = \begin{bmatrix} C_1 & C_2 & \cdots & C_p & ? \end{bmatrix}$.

3.5. The coup de grâce

- If p = n, then we are reduced to the case $f = id_{\mathcal{M}_n(\mathbb{K})}$, in which $f = u_{l_n,l_n}$.
- Assume p = 1.

Then Kerf is the set of matrices with 0 as first column. Indeed, since $\bigcap_{k=1}^{n} \mathcal{L}_{D_k}(E) = \{0\}$, we find

$$\operatorname{Ker} f = \bigcap_{k=1}^{n} f^{-1} \left(\mathcal{L}_{D_{k}}(E) \right) = \bigcap_{k=1}^{n} \mathcal{L}_{D_{k}'}(E) = \mathcal{L}_{D_{1}}(E)$$

By the factorization theorem for linear maps, we find a linear injection $g : \mathbb{K}^n \hookrightarrow M_n(\mathbb{K})$ such

that $\forall M \in \mathcal{M}_n(\mathbb{K}), f(M) = g(Me_1)$, where $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ - \end{bmatrix}$. Notice then that $\operatorname{Im} g = \operatorname{Im} f$ and $\operatorname{Im} g$ is

an *n*-dimensional linear subspace of $M_n(\mathbb{K})$.

Finally, Img is actually non-singular: indeed, for every $x \in \mathbb{K}^n \setminus \{0\}$, there exists $M \in GL_n(\mathbb{K})$ such that $Me_1 = x$, hence g(x) = f(M) is non-singular. We have thus proven that f verifies condition (ii) in Theorem 2.

Our proof of Theorem 2 will then be finished should we prove that only the above two cases can arise. Assume then $1 and consider the vector <math>x_{p+1}$. Notice that we now simply have $f^{-1}(\mathcal{L}_D(E)) = \mathcal{L}_D(E)$ for any line D of $F = \text{span}(e_1, \dots, e_p)$. Moreover, the situation is left unchanged should we choose a non-singular $P \in \text{GL}_p(\mathbb{K})$, set $Q := \begin{bmatrix} P & 0 \\ 0 & I_{n-p} \end{bmatrix}$ and replace f with $u_{I_n,P^{-1}} \circ f \circ u_{I_n,P}$. It follows that we may actually assume $D'_{p+1} = D_1$ in addition to the previous assumptions (at this point, the reader must check that none of the previous reductions changes the lines D_{p+1}, \ldots, D_n).

Another use of the factorization theorem then helps us find an endomorphism α of $M_{n,1}(\mathbb{K})$ such that, for every $M = [C_1 C_2 \cdots C_p ?]$ in $\mathcal{M}_n(\mathbb{K})$, one has $f(M) = [C_1 C_2 \cdots C_p \alpha(C_1) ?]$. Borrowing an argument from Section 3.4, we deduce that for any linearly independent pair (C_1, C_2) in $M_{n,1}(\mathbb{K})$, the triple $(C_1, C_2, \alpha(C_1))$ is also linearly independent (this is where the assumption 1comes into play). Clearly, this is absurd: indeed, choose C_1 arbitrarily in $M_{n,1}(\mathbb{K})\setminus\{0\}$, then $C_2 :=$ $\alpha(C_1)$ if $(C_1, \alpha(C_1))$ is linearly independent, and choose arbitrarily C_2 in $M_{n,1}(\mathbb{K}) \setminus \text{span}(C_1)$ if not (there again, we use $p \ge 2$). This contradiction shows $p \in \{1, n\}$, which completes our proof of Theorem 2.

4. A link with division algebras

We will show here how the full non-singular subspaces of $M_n(\mathbb{K})$ are connected to division algebra over K. Let us recall first a few basic facts about them.

Definition 4. A division algebra over K is a K-vector space D equipped with a bilinear map \star : D × $D \to D$ such that $x \mapsto a \star x$ and $x \mapsto x \star a$ are automorphisms of D for every $a \in D \setminus \{0\}$.

Of course, every field extension of K, and more generally every skew-field extension of K is a division algebra over \mathbb{K} . There are however non-associative division algebras, the most famous example being the algebra of octonions (see [3] for an extensive treatment on them).

Remarks 3

- (a) Note that associativity is not required on the part of \star !
- (b) If *D* is finite-dimensional, then the latter condition in the definition of a division algebra is verified if and only if $x \mapsto a \star x$ is bijective for every $a \in D \setminus \{0\}$. The data of \star is then equivalent to that of a linear map

 $\alpha: D \longrightarrow \mathcal{L}(D)$

which maps $D \setminus \{0\}$ into GL(D) (indeed, to such a map α , we naturally associate the pairing $(a, b) \mapsto \alpha(a)[b]$).

The correspondence between full non-singular subspaces of $GL_n(\mathbb{K})$ and division algebras over \mathbb{K} is now readily explained:

- Let *V* be a full non-singular subspace *V* of $GL_n(\mathbb{K})$. Setting a basis of *V*, we define an isomorphism $\theta : \mathbb{K}^n \xrightarrow{\simeq} V$ which induces an isomorphism of algebras $\overline{\theta} : M_n(\mathbb{K}) \xrightarrow{\simeq} \mathcal{L}(V)$. Restricting $\overline{\theta}$ to *V* then gives rise to a division algebra structure on *V*.
- Conversely, given a division algebra D with structural map $\alpha : D \to \mathcal{L}(D)$, we can choose a basis of D, which defines an algebra isomorphism $\psi : \mathcal{L}(D) \xrightarrow{\simeq} M_n(\mathbb{K})$, and then associate to D the full non-singular subspace $\psi(\alpha(D))$ of $M_n(\mathbb{K})$.

Working with the canonical basis of \mathbb{K}^n , we have just established a bijective correspondence between the set of structures of division algebras on \mathbb{K}^n (which extend its canonical vector space structure), and the set of full non-singular subspaces of $M_n(\mathbb{K})$.

By combining our main theorem with the Bott–Milnor–Kervaire theorem on division algebras over the real numbers (cf. [1,8]), this yields:

Proposition 8. Let $n \in \mathbb{N} \setminus \{2, 4, 8\}$. Then every linear endomorphism f of $M_n(\mathbb{R})$ which stabilizes $GL_n(\mathbb{R})$ belongs to the Frobenius group $\mathcal{G}_n(\mathbb{R})$.

Acknowledgements

I would like to thank François Lussier for insisting I should tackle the problem considered here.

References

- [1] R. Bott, J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958) 87-89.
- [2] P. Botta, Linear maps that preserve singular and nonsingular matrices, Linear Algebra Appl. 20 (1978) 45–49.
- [3] J.H. Conway, D. Smith, On Quaternions and Octonions, A.K. Peters, 2003.
- [4] J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949) 282–287.
- [5] H. Flanders, On spaces of linear transformations with bounded rank, J. London Math. Soc. 37 (1962) 10-16.
- [6] G. Frobenius, Uber die Darstellung der endlichen Gruppen durch Linear Substitutionen, Sitzungsber Deutsch Akad. Wiss. Berlin (1897) 994–1015.
- [7] W. Greub, Linear algebra, third ed., Grundlehren der Mathematiken Wissenschaften, vol. 97, Springer-Verlag, 1967.
- [8] M. Kervaire, Non-parallelizability of the *n*-sphere for n > 7, Proc. Nat. Acad. Sci. 44 (1958) 280–283.
- [9] M. Marcus, R. Purves, Linear transformations on algebras of matrices, Canad. J. Math. 11 (1959) 383–396.
- [10] R. Meshulam, On the maximal rank in a subspace of matrices, Q. J. Math. Oxf. II 36 (1985) 225-229.