The singular linear preservers of non-singular matrices

Clément de Seguins Pazzis

Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, France

A R T I C L E I N F O

Article history:

Received 8 February 2010
Accepted 10 March 2010
Available online 3 April 2010
Submitted by H. Schneider

AMS classification:
15A86
15A30
$16 S 50$

Keywords:

Linear preservers
Division algebras
General linear group
Singular subspaces

Abstract

Given an arbitrary field \mathbb{K}, we reduce the determination of the singular endomorphisms f of $\mathrm{M}_{n}(\mathbb{K})$ such that $f\left(\mathrm{GL}_{n}(\mathbb{K})\right) \subset \mathrm{GL}_{n}(\mathbb{K})$ to the classification of n-dimensional division algebras over \mathbb{K}. Our method, which is based upon Dieudonné's theorem on singular subspaces of $\mathrm{M}_{n}(\mathbb{K})$, also yields a proof for the classical non-singular case.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Here, \mathbb{K} will denote an arbitrary field and n a positive integer. We let $\mathrm{M}_{n, p}(\mathbb{K})$ denote the set of matrices with n rows, p columns and entries in \mathbb{K}, and $\mathrm{GL}_{n}(\mathbb{K})$ the set of non-singular matrices in the algebra $\mathrm{M}_{n}(\mathbb{K})$ of square matrices of order n. The columns of a matrix $M \in \mathrm{M}_{n}(\mathbb{K})$ will be written $C_{1}(M), C_{2}(M), \ldots, C_{n}(M)$, so that

$$
M=\left[\begin{array}{llll}
C_{1}(M) & C_{2}(M) & \cdots & C_{n}(M)
\end{array}\right] .
$$

Given a vector space V, we let $\mathcal{L}(V)$ denote the algebra of endomorphisms of V. For non-singular P and Q in $\mathrm{GL}_{n}(\mathbb{K})$, we define

$$
u_{P, Q}:\left\{\begin{array}{l}
\mathrm{M}_{n}(\mathbb{K}) \longrightarrow \mathrm{M}_{n}(\mathbb{K}) \\
M \longmapsto P M Q
\end{array} \text { and } v_{P, Q}:\left\{\begin{array}{l}
\mathrm{M}_{n}(\mathbb{K}) \longrightarrow \mathrm{M}_{n}(\mathbb{K}) \\
M \longmapsto P M^{t} Q .
\end{array}\right.\right.
$$

[^0]Clearly, these are non-singular endomorphisms of the vector space $M_{n}(\mathbb{K})$ which map $G L_{n}(\mathbb{K})$ onto itself, and the subset

$$
\mathcal{G}_{n}(\mathbb{K}):=\left\{u_{P, Q} \mid(P, Q) \in \mathrm{GL}_{n}(\mathbb{K})^{2}\right\} \cup\left\{v_{P, Q} \mid(P, Q) \in \mathrm{GL}_{n}(\mathbb{K})^{2}\right\}
$$

is clearly a subgroup of $\mathrm{GL}\left(\mathrm{M}_{n}(\mathbb{K})\right)$, which we will call the Frobenius group.
Determining the endomorphisms of the vector space $\mathrm{M}_{n}(\mathbb{K})$ which preserve non-singularity has historically been one of the first successful linear preserver problem, dating back to Frobenius [6], who classified the linear preservers of the determinant, and Dieudonné [4], who classified the non-singular linear preservers of the general linear group. Some improvements have been made later on the issue (cf. [9,2]). The following theorem is now folklore and essentially sums up what was known to this date:

Theorem 1

(i) The group $\mathcal{G}_{n}(\mathbb{K})$ consists of all the endomorphisms f of $\mathrm{M}_{n}(\mathbb{K})$ such that $f\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathrm{GL}_{n}(\mathbb{K})$.
(ii) The group $\mathcal{G}_{n}(\mathbb{K})$ consists of all the endomorphisms f of $\mathrm{M}_{n}(\mathbb{K})$ such that $f^{-1}\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathrm{GL}_{n}(\mathbb{K})$.
(iii) The group $\mathcal{G}_{n}(\mathbb{K})$ consists of all the non-singular endomorphisms f of $\mathrm{M}_{n}(\mathbb{K})$ such that $f\left(\mathrm{GL}_{n}(\mathbb{K})\right) \subset$ $\mathrm{GL}_{n}(\mathbb{K})$.
(iv) If \mathbb{K} is algebraically closed, then \mathcal{G}_{n} consists of all the endomorphisms of $\mathrm{M}_{n}(\mathbb{K})$ such that $f\left(\mathrm{GL}_{n}(\mathbb{K})\right)$ $\subset \mathrm{GL}_{n}(\mathbb{K})$.

Our main interest here is finding all the endomorphisms f of $\mathrm{M}_{n}(\mathbb{K})$ which stabilize $\mathrm{GL}_{n}(\mathbb{K})$, i.e. $f\left(\mathrm{GL}_{n}(\mathbb{K})\right) \subset \mathrm{GL}_{n}(\mathbb{K})$. The issue here is the existence of non-singular ones. Here are a few examples:

Example 1. In $\mathrm{M}_{2}(\mathbb{R})$, the endomorphism

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \mapsto\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

is singular and stabilizes $\mathrm{GL}_{2}(\mathbb{R})$. Indeed, if $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$, then $(a, b) \neq(0,0)$ hence $\left|\begin{array}{cc}a & -b \\ b & a\end{array}\right|=$ $a^{2}+b^{2}>0$.

Example 2. In $\mathrm{M}_{3}(\mathbb{Q})$, consider the companion matrix

$$
A=\left[\begin{array}{lll}
0 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Since the minimal polynomial $X^{3}-2$ of A is irreducible over \mathbb{Q}, the subalgebra $\mathbb{Q}[A]$ is a field. The singular endomorphism

$$
M \longmapsto m_{1,1} \cdot I_{3}+m_{2,1} \cdot A+m_{3,1} \cdot A^{2}
$$

then clearly maps $\mathrm{GL}_{3}(\mathbb{Q})$ into $\mathbb{Q}[A] \backslash\{0\}$ hence stabilizes $\mathrm{GL}_{3}(\mathbb{Q})$.
All those examples can be described in a normalized way. We will need a few definitions first.
Definition 1. A linear subspace V of $\mathrm{M}_{n}(\mathbb{K})$ will be called non-singular when $V \backslash\{0\} \subset \mathrm{GL}_{n}(\mathbb{K})$, and full non-singular when in addition $\operatorname{dim} V=n$.

Let V be a full non-singular subspace of $\mathrm{M}_{n}(\mathbb{K})$, with $n \geqslant 2$. The projection onto the first column

$$
\pi:\left\{\begin{array}{l}
V \longrightarrow \mathrm{M}_{n, 1}(\mathbb{K}) \\
M \longmapsto C_{1}(M)
\end{array}\right.
$$

is then a linear isomorphism. It follows that

$$
\psi:\left\{\begin{array}{l}
\mathrm{M}_{n}(\mathbb{K}) \longrightarrow \mathrm{M}_{n}(\mathbb{K}) \\
M \longmapsto \pi^{-1}\left(C_{1}(M)\right)
\end{array}\right.
$$

is a singular linear map which maps every non-singular matrix to a non-singular matrix. More generally, given a non-zero vector $X \in \mathbb{K}^{n}$ and an isomorphism $\alpha: \mathbb{K}^{n} \xrightarrow{\simeq} V$, the linear maps $M \mapsto \alpha(M X)$ and $M \mapsto \alpha\left(M^{t} X\right)$ are singular endomorphisms of $\mathrm{M}_{n}(\mathbb{K})$ that stabilize $\mathrm{GL}_{n}(\mathbb{K})$.

In this article, we will prove that the aforementioned maps are the only singular preservers of $\mathrm{GL}_{n}(\mathbb{K})$:

Theorem 2 (Main theorem). Let $n \geqslant 2$. Let f be a linear endomorphism of $\mathrm{M}_{n}(\mathbb{K})$ such that $f\left(\mathrm{GL}_{n}(\mathbb{K})\right) \subset$ $\mathrm{GL}_{n}(\mathbb{K})$. Then:
(i) either f is bijective and then $f \in \mathcal{G}_{n}(\mathbb{K})$;
(ii) or there exists a full non-singular subspace V of $\mathrm{M}_{n}(\mathbb{K})$, an isomorphism $\alpha: \mathbb{K}^{n} \xrightarrow{\sim} V$ and a column $X \in \mathbb{K}^{n} \backslash\{0\}$ such that:

$$
\forall M \in \mathrm{M}_{n}(\mathbb{K}), f(M)=\alpha(M X) \quad \text { or } \quad \forall M \in \mathrm{M}_{n}(\mathbb{K}), f(M)=\alpha\left(M^{t} X\right) .
$$

As a consequence, iff is singular, then $\operatorname{Im} f$ is a full non-singular subspace of $\mathrm{M}_{n}(\mathbb{K})$.
The rest of the paper is laid out as follows:

- we will first easily derive Theorem 1 from Theorem 2;
- afterwards, we will prove Theorem 2 by using a theorem of Dieudonné on the singular subspaces of $\mathrm{M}_{n}(\mathbb{K})$;
- in the last section, we will explain how the existence of full non-singular subspaces of $\mathrm{M}_{n}(\mathbb{K})$ is linked to the existence of n-dimensional division algebras over \mathbb{K}. This will prove fruitful in the case $\mathbb{K}=\mathbb{R}$.

2. Some consequences of the main theorem

Let us assume Theorem 2 holds, and use it to prove the various statements in Theorem 1. The case $n=1$ is trivial so we assume $n \geqslant 2$. Remark first that every $f \in \mathcal{G}_{n}(\mathbb{K})$ is an automorphism of $\mathrm{M}_{n}(\mathbb{K})$ and satisfies all the conditions $f\left(\mathrm{GL}_{n}(\mathbb{K})\right) \subset \mathrm{GL}_{n}(\mathbb{K}), f\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathrm{GL}_{n}(\mathbb{K})$ and $f^{-1}\left(\mathrm{GL}_{n}(\mathbb{K})\right)=$ $\mathrm{GL}_{n}(\mathbb{K})$.

Statement (iii) is straightforward by Theorem 2.
Proof of statement (i). Let $f: \mathrm{M}_{n}(\mathbb{K}) \rightarrow \mathrm{M}_{n}(\mathbb{K})$ be a linear map such that $f\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathrm{GL}_{n}(\mathbb{K})$. By the next lemma, $\mathrm{GL}_{n}(\mathbb{K})$ generates the vector space $\mathrm{M}_{n}(\mathbb{K})$, so f must be onto, hence non-singular, and statement (iii) then shows that $f \in \mathcal{G}_{n}(\mathbb{K})$.

Lemma 3. The vector space $M_{n}(\mathbb{K})$ is generated by $\mathrm{GL}_{n}(\mathbb{K})$.
Proof. The result is obvious when $n=1$. We now assume $n \geqslant 2$. Set $\left(E_{i, j}\right)_{1 \leqslant i, j \leqslant n}$ the canonical basis of $\mathrm{M}_{n}(\mathbb{K})$. Then $E_{i, j}=\left(I_{n}+E_{i, j}\right)-I_{n} \in \operatorname{span}\left(\mathrm{GL}_{n}(\mathbb{K})\right)$ for all $i \neq j$.

On the other hand, letting $i \in \llbracket[1, n]]$ and choosing arbitrarily $j \in\left[[1, n] \backslash \backslash\{i\}\right.$, we find that $I_{n}+E_{i, j}+$ $E_{j, i}-E_{i, i}$ is non-singular, therefore

$$
E_{i, i}=I_{n}-\left(I_{n}+E_{i, j}+E_{j, i}-E_{i, i}\right)+E_{i, j}+E_{j, i} \in \operatorname{span} \mathrm{GL}_{n}(\mathbb{K})
$$

This proves that $\operatorname{span}\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathrm{M}_{n}(\mathbb{K})$.
Proof of statement (ii). Let $f: \mathrm{M}_{n}(\mathbb{K}) \rightarrow \mathrm{M}_{n}(\mathbb{K})$ be a linear map such that $f^{-1}\left(\mathrm{GL}_{n}(\mathbb{K})\right)=\mathrm{GL}_{n}(\mathbb{K})$. Assume that f is not injective. Then there would be a non-zero matrix $A \in \mathrm{M}_{n}(\mathbb{K})$ such that $f(A)=0$,
and it would follow that $A+P$ is non-singular for every non-singular P (since then $f(A+P)=f(P) \in$ $\mathrm{GL}_{n}(\mathbb{K})$). Then any matrix B equivalent to A would also verify this property, in particular $B:=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$, with $r:=\operatorname{rk} A>0$. However $B+\left(-I_{n}\right)$ is singular. This proves that f is one-to-one, hence non-singular, and since $f\left(\mathrm{GL}_{n}(\mathbb{K})\right) \subset \mathrm{GL}_{n}(\mathbb{K})$, statement (iii) shows that $f \in \mathcal{G}_{n}(\mathbb{K})$.
Proof of statement (iv). Assume \mathbb{K} is algebraically closed. Then every non-singular subspace of $\mathrm{M}_{n}(\mathbb{K})$ has dimension at most 1: indeed, given two non-singular P and Q in $\mathrm{M}_{n}(\mathbb{K})$, the polynomial $\operatorname{det}(P+$ $x Q)=\operatorname{det}(Q) \operatorname{det}\left(P Q^{-1}+x . I_{n}\right)$ is non-constant and must then have a root in \mathbb{K}. It follows from Theorem 2 that every linear map $f: \mathrm{M}_{n}(\mathbb{K}) \rightarrow \mathrm{M}_{n}(\mathbb{K})$ which stabilizes $\mathrm{GL}_{n}(\mathbb{K})$ belongs to $\mathcal{G}_{n}(\mathbb{K})$.

3. Proof of the main theorem

The basic idea is to use a theorem of Dieudonné to study the subspace $f^{-1}(V)$ when V is a singular subspace of $\mathrm{M}_{n}(\mathbb{K})$, i.e. one that is disjoint from $\mathrm{GL}_{n}(\mathbb{K})$. This is essentially the idea in the original proof of Dieudonné [4] but we will push it to the next level by not assuming that f is one-to-one.

3.1. A reduction principle

Let $f: \mathrm{M}_{n}(\mathbb{K}) \rightarrow \mathrm{M}_{n}(\mathbb{K})$ be a linear map which stabilizes $\mathrm{GL}_{n}(\mathbb{K})$, and let $(P, Q) \in \mathrm{GL}_{n}(\mathbb{K})$. Then any of the maps $u_{P, Q} \circ f, f \circ u_{P, Q}$ and $M \mapsto f(M)^{t}$ is linear and stabilizes $\mathrm{GL}_{n}(\mathbb{K})$. Moreover, it is easily checked that if any one of them is of one of the types listed in Theorem 2, then f also is. Our proof will make a great use of that remark.

3.2. A review of Dieudonné's theorem

Definition 2. A linear subspace of a \mathbb{K}-algebra is called singular when it contains no invertible element.
For example, given an $i \in[[1, n]]$, the subset of matrices $\mathrm{M}_{n}(\mathbb{K})$ which have null entries on the i th column is an $\left(n^{2}-n\right)$-dimensional singular subspace.

Definition 3. Let E be a finite-dimensional vector space, H a hyperplane ${ }^{1}$ of E and D a line of E. We define:

- $\mathcal{L}_{D}(E)$ as the set of endomorphisms u of E such that $D \subset \operatorname{Ker} u$;
- $\mathcal{L}^{H}(E)$ as the set of endomorphisms u of E such that $\operatorname{Im} u \subset H$.

Then $\mathcal{L}_{D}(E)$ and $\mathcal{L}^{H}(E)$ are both $\left(n^{2}-n\right)$-dimensional singular subspaces of $\mathcal{L}(E)$. The singular subspace $\mathcal{L}_{D}(E)$ will be said to be of kernel-type, and the singular subspace $\mathcal{L}^{H}(E)$ of image-type.

The following theorem of Dieudonné [4], later generalized by Flanders [5] and Meshulam [10], will be used throughout our proof:

Theorem 4 (Dieudonné's theorem). Let E be an n-dimensional vector space over \mathbb{K}, and V a singular subspace of $\mathcal{L}(E)$. Then:
(a) one has $\operatorname{dim} V \leqslant n^{2}-n$;
(b) if $\operatorname{dim} V=n^{2}-n$, then we are in one of the mutually exclusive situations:

- there is one (and only one) hyperplane H of E such that $V=\mathcal{L}^{H}(E)$;
- there is one (and only one) line D of E such that $V=\mathcal{L}_{D}(E)$.

[^1]
3.3. Inverse image of a singular subspace of kernel-type

In what follows, the algebra $M_{n}(\mathbb{K})$ will be canonically identified with the algebra $\mathcal{L}\left(\mathbb{K}^{n}\right)$ of endomorphisms of $E:=\mathbb{K}^{n}$. Let $f: \mathrm{M}_{n}(\mathbb{K}) \rightarrow \mathrm{M}_{n}(\mathbb{K})$ be an endomorphism which stabilizes $\mathrm{GL}_{n}(\mathbb{K})$. Notice that, given a line D of E and a non-zero vector $X \in D$, the singular subspace $\mathcal{L}_{D}(E)$ is actually the kernel of the linear map $M \mapsto M X$ on $M_{n}(\mathbb{K})$.

Lemma 5. Let $X \in \mathbb{K}^{n} \backslash\{0\}$ and set $D:=\operatorname{span}(X)$. Then:

- either there is an hyperplane H of E such that $f^{-1}\left(\mathcal{L}_{D}(E)\right)=\mathcal{L}^{H}(E)$;
- or there is a line D^{\prime} of E such that $f^{-1}\left(\mathcal{L}_{D}(E)\right)=\mathcal{L}_{D^{\prime}}(E)$.

Moreover, the linear map $M \mapsto f(M) X$ from $\mathrm{M}_{n}(\mathbb{K})$ to \mathbb{K}^{n} is onto.
Proof. Since the subspace $\mathcal{L}_{D}(E)$ contains no non-singular matrix, the assumption on f guarantees that $f^{-1}\left(\mathcal{L}_{D}(E)\right)$ is a singular subspace of $\mathrm{M}_{n}(\mathbb{K})$. Since $f^{-1}\left(\mathcal{L}_{D}(E)\right)$ is the kernel of $\alpha: M \mapsto f(M) X$, the rank theorem shows that $\operatorname{dim} f^{-1}\left(\mathcal{L}_{D}(E)\right) \geqslant n^{2}-n$. Theorem 4 then shows our first statement, hence another use of the rank theorem proves that $\operatorname{dim} f^{-1}\left(\mathcal{L}_{D}(E)\right)=n^{2}-n$ and α is onto.

We will now show that the type of $f^{-1}\left(\mathcal{L}_{D}(E)\right)$ (kernel or image) is actually independent of the given line D. This will prove a lot harder than in Dieudonné's original proof [4] because f is not assumed one-to-one.

Proposition 6. Let D_{1} and D_{2} denote two distinct lines in \mathbb{K}^{n}. Then the singular subspaces $f^{-1}\left(\mathcal{L}_{D_{1}}(E)\right)$ and $f^{-1}\left(\mathcal{L}_{D_{2}}(E)\right)$ are either both of kernel-type or both of image-type.

Proof. We will use a reductio ad absurdum by assuming there is a line D and an hyperplane H of E such that $f^{-1}\left(\mathcal{L}_{D_{1}}(E)\right)=\mathcal{L}_{D}(E)$ and $f^{-1}\left(\mathcal{L}_{D_{2}}(E)\right)=\mathcal{L}^{H}(E)$. By right-composing f with $u_{P, Q}$ for some well-chosen non-singular P and Q, and then left-composing $u_{I_{n}, R}$ for some well-chosen non-singular R, we are reduced to the case $D_{1}=D=\operatorname{span}\left(e_{1}\right), D_{2}=\operatorname{span}\left(e_{2}\right)$ and $H=\operatorname{span}\left(e_{2}, \ldots, e_{n}\right)$, where (e_{1}, \ldots, e_{n}) denotes the canonical basis of \mathbb{K}^{n}. Then f has the following properties:

- Any matrix with first column 0 is mapped by f to a matrix with first column 0 , and $M \mapsto C_{1}(f(M))$ is onto.
- Any matrix with first line 0 is mapped by f to a matrix with second column 0 , and $M \mapsto C_{2}(f(M))$ is onto.

By the factorization theorem for linear maps [7, Proposition I, p.45], we deduce that there are two isomorphisms $\alpha: \mathrm{M}_{n, 1}(\mathbb{K}) \xrightarrow{\simeq} \mathrm{M}_{n, 1}(\mathbb{K})$ and $\beta: \mathrm{M}_{1, n}(\mathbb{K}) \xrightarrow{\simeq} \mathrm{M}_{n, 1}(\mathbb{K})$ such that, for every

$$
M=\left[\begin{array}{ll}
C & \cdots
\end{array}\right]=\left[\begin{array}{c}
L \\
\vdots
\end{array}\right] \quad \text { with } C \in \mathrm{M}_{n, 1}(\mathbb{K}) \text { and } L \in \mathrm{M}_{1, n}(\mathbb{K}) \text {, }
$$

one has

$$
f(M)=\left[\begin{array}{lll}
\alpha(C) & \beta(L) & \cdots
\end{array}\right] .
$$

Set now $C_{1}:=\alpha\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ and $C_{2}:=\beta\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$. We then recover two injective linear maps α^{\prime} :
$\mathrm{M}_{n-1,1}(\mathbb{K}) \hookrightarrow \mathrm{M}_{n, 1}(\mathbb{K})$ and $\beta^{\prime}: \mathrm{M}_{1, n-1}(\mathbb{K}) \hookrightarrow \mathrm{M}_{n, 1}(\mathbb{K})$ such that for every $M=\left[\begin{array}{ll}1 & L \\ C & ?\end{array}\right] \in \mathrm{M}_{n}(\mathbb{K})$ with first coefficient 1 , one has

$$
f(M)=\left[\begin{array}{lll}
C_{1}+\alpha^{\prime}(C) & C_{2}+\beta^{\prime}(L) & ?
\end{array}\right] .
$$

Let $(L, C) \in \mathrm{M}_{1, n-1}(\mathbb{K}) \times \mathrm{M}_{n-1,1}(\mathbb{K})$. Notice then that there exists an $N \in \mathrm{M}_{n-1}(\mathbb{K})$ such that $M=$ $\left[\begin{array}{ll}1 & L \\ C & N\end{array}\right]$ is non-singular. Indeed, the matrix $N:=C L+I_{n-1}$ fits this condition (remark that $\left.\left[\begin{array}{cc}1 & L \\ C & C L+I_{n-1}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ C & I_{n-1}\end{array}\right]\left[\begin{array}{cc}1 & L \\ 0 & I_{n-1}\end{array}\right]\right)$. For any such M, the matrix $f(M)$ must then be nonsingular, which proves that $C_{1}+\alpha^{\prime}(C)$ and $C_{2}+\beta^{\prime}(L)$ are linearly independent.
However, this has to hold for every pair $(L, C) \in M_{1, n-1}(\mathbb{K}) \times M_{n-1,1}(\mathbb{K})$. Therefore no vector in the affine hyperplane $\mathcal{H}_{1}:=C_{1}+\operatorname{Im} \alpha^{\prime}$ is colinear to a vector in the affine hyperplane $\mathcal{H}_{2}:=C_{2}+\operatorname{Im} \beta^{\prime}$. There finally lies a contradiction: indeed, should we choose a vector x_{0} in $E \backslash\left(\operatorname{Im} \alpha^{\prime} \cup \operatorname{Im} \beta^{\prime}\right.$) (classically, such a vector exists because E is never the union of two strict linear subspaces), then the line span $\left(x_{0}\right)$ would have to intersect both hyperplanes \mathcal{H}_{1} and \mathcal{H}_{2}.

We may actually assume there is some line D such that $f^{-1}\left(\mathcal{L}_{D}(E)\right)$ has kernel-type, because, if not, we may replace f with $M \mapsto f\left(M^{t}\right)$. Therefore we may now assume, without loss of generality:

For every line D of E, there is a line D^{\prime} of E such that $f^{-1}\left(\mathcal{L}_{D}(E)\right)=\mathcal{L}_{D^{\prime}}(E)$.

3.4. Reducing the problem further

We let here $\left(e_{1}, \ldots, e_{n}\right)$ denote the canonical basis of $E=\mathbb{K}^{n}$ and set $D_{i}:=\operatorname{span}\left(e_{i}\right)$ for every $i \in[[1, n]]$. We now have n lines $D_{1}^{\prime}, \ldots, D_{n}^{\prime}$ in E such that $\forall i \in[[1, n]], f^{-1}\left(\mathcal{L}_{D_{i}}(E)\right)=\mathcal{L}_{D_{i}^{\prime}}(E)$. In every line D_{i}^{\prime}, we choose a non-zero vector x_{i}.

Set $F:=\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$ and $p:=\operatorname{dim} F$. From $\left(x_{1}, \ldots, x_{n}\right)$ can be extracted a basis of F.

- Replacing f with $M \mapsto f(M) P$ for some suitable permutation matrix P, we may assume $\left(x_{1}, \ldots, x_{p}\right)$ is a basis of F.
- Replacing f with $M \mapsto f(M P)$ for some non-singular $P \in \mathrm{GL}_{n}(\mathbb{K})$, we may finally assume $\left(x_{1}, \ldots, x_{p}\right)=\left(e_{1}, \ldots, e_{p}\right)$, so that $F=\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)$.

After these reductions, let us restate some of the assumptions on f : for every $i \in[[1, p]]$ and every $M \in \mathrm{M}_{n}(\mathbb{K})$, if the i th column of M is 0 , then the i th column of $f(M)$ is also 0 , and $N \mapsto C_{i}(f(N))$ is onto (from $\mathrm{M}_{n}(\mathbb{K})$ to $\mathrm{M}_{n, 1}(\mathbb{K})$). By the factorization theorem for linear maps, we recover p automorphisms $\alpha_{1}, \ldots, \alpha_{p}$ of $\mathrm{M}_{n, 1}(\mathbb{K})$ such that, for every $M=\left[\begin{array}{lllll}C_{1} & C_{2} & \cdots & C_{p} & ?\end{array}\right]$ in $\mathrm{M}_{n}(\mathbb{K})$, one has:

$$
f(M)=\left[\begin{array}{lllll}
\alpha_{1}\left(C_{1}\right) & \alpha_{2}\left(C_{2}\right) & \cdots & \alpha_{p}\left(C_{p}\right) & ?
\end{array}\right]
$$

We will now reduce the previous situation to the case $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{p}=$ id.

Lemma 7. Under the previous assumptions, let $\left(C_{1}, \ldots, C_{p}\right) \in \mathrm{M}_{n, 1}(\mathbb{K})^{p}$ be a linearly independent p-tuple. Then $\left(\alpha_{1}\left(C_{1}\right), \ldots, \alpha_{p}\left(C_{p}\right)\right)$ is linearly independent.

Proof. Indeed, $\left(C_{1}, \ldots, C_{p}\right)$ can be extended into a basis $\left(C_{1}, \ldots, C_{n}\right)$ of $\mathrm{M}_{n, 1}(\mathbb{K})$. Since $M:=\left[C_{1} \cdots C_{n}\right]$ is non-singular, $f(M)$ also is, which proves our claim.

Define then $P \in \mathrm{GL}_{n}(\mathbb{K})$ as the matrix canonically associated to α_{1}. Then we may replace f with $f \circ u_{P-1, I_{n}}$, which changes no previous assumption. In this case, $\alpha_{1}=\operatorname{id}_{\mathrm{M}_{n, 1}(\mathbb{K})}$. We claim then that $\alpha_{2}, \ldots, \alpha_{p}$ are scalar multiples of the identity. Consider α_{2} for example. Since any linearly independent pair $\left(C_{1}, C_{2}\right)$ in $\mathrm{M}_{n, 1}(\mathbb{K})$ can be extended into a linearly independent p-tuple in $\mathrm{M}_{n}(\mathbb{K})$, Lemma 7 shows $\left(C_{1}, \alpha_{2}\left(C_{2}\right)\right)$ must be linearly independent. It follows that for every $C \in M_{n, 1}(\mathbb{K})$, the matrices C and $\left(\alpha_{2}\right)^{-1}(C)$ must be linearly dependent. Classically, this proves $\left(\alpha_{2}\right)^{-1}$ is a scalar multiple of id, hence α_{2} also is. The same line of reasoning also shows that this is true of $\alpha_{3}, \ldots, \alpha_{p}$.

We thus find non-zero scalars $\lambda_{2}, \ldots, \lambda_{p}$ such that, for every $M=\left[\begin{array}{lllll}C_{1} & C_{2} & \cdots & C_{p} & ?\end{array}\right]$ in $\mathrm{M}_{n}(\mathbb{K})$, one has $f(M)=\left[\begin{array}{lllll}C_{1} & \lambda_{2} \cdot C_{2} & \cdots & \lambda_{p} \cdot C_{p} & ?\end{array}\right]$.

By replacing f with $f \circ u_{I_{n}, P^{-1}}$ for $P:=D\left(1, \lambda_{2}, \ldots, \lambda_{p}, 1, \ldots, 1\right)$, we are thus reduced to the following situation:

For every $M=\left[\begin{array}{lllll}C_{1} & C_{2} & \cdots & C_{p} & ?\end{array}\right]$ in $\mathrm{M}_{n}(\mathbb{K})$, one has $f(M)=\left[\begin{array}{lllll}C_{1} & C_{2} & \cdots & C_{p} & \text { ? }\end{array}\right]$.

3.5. The coup de grâce

- If $p=n$, then we are reduced to the case $f=\operatorname{id}_{\mathcal{M}_{n}(\mathbb{K})}$, in which $f=u_{I_{n}, I_{n}}$.
- Assume $p=1$.

Then Kerf is the set of matrices with 0 as first column. Indeed, since $\bigcap_{k=1}^{n} \mathcal{L}_{D_{k}}(E)=\{0\}$, we find

$$
\operatorname{Kerf}=\bigcap_{k=1}^{n} f^{-1}\left(\mathcal{L}_{D_{k}}(E)\right)=\bigcap_{k=1}^{n} \mathcal{L}_{D_{k}^{\prime}}(E)=\mathcal{L}_{D_{1}}(E) .
$$

By the factorization theorem for linear maps, we find a linear injection $g: \mathbb{K}^{n} \hookrightarrow M_{n}(\mathbb{K})$ such that $\forall M \in \mathcal{M}_{n}(\mathbb{K}), f(M)=g\left(M e_{1}\right)$, where $e_{1}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$. Notice then that $\operatorname{Img}=\operatorname{Imf}$ and Img is an n-dimensional linear subspace of $\mathrm{M}_{n}(\mathbb{K})$.
Finally, Img is actually non-singular: indeed, for every $x \in \mathbb{K}^{n} \backslash\{0\}$, there exists $M \in \mathrm{GL}_{n}(\mathbb{K})$ such that $M e_{1}=x$, hence $g(x)=f(M)$ is non-singular. We have thus proven that f verifies condition (ii) in Theorem 2.

Our proof of Theorem 2 will then be finished should we prove that only the above two cases can arise. Assume then $1<p<n$ and consider the vector x_{p+1}. Notice that we now simply have $f^{-1}\left(\mathcal{L}_{D}(E)\right)=\mathcal{L}_{D}(E)$ for any line D of $F=\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)$. Moreover, the situation is left unchanged should we choose a non-singular $P \in \mathrm{GL}_{p}(\mathbb{K})$, set $Q:=\left[\begin{array}{cc}P & 0 \\ 0 & I_{n-p}\end{array}\right]$ and replace f with $u_{I_{n}, P^{-1}} \circ f \circ u_{I_{n}, P}$. It follows that we may actually assume $D_{p+1}^{\prime}=D_{1}$ in addition to the previous assumptions (at this point, the reader must check that none of the previous reductions changes the lines D_{p+1}, \ldots, D_{n}).

Another use of the factorization theorem then helps us find an endomorphism α of $\mathrm{M}_{n, 1}(\mathbb{K})$ such that, for every $M=\left[C_{1} C_{2} \cdots C_{p}\right.$?] in $\mathcal{M}_{n}(\mathbb{K})$, one has $f(M)=\left[C_{1} C_{2} \cdots C_{p} \alpha\left(C_{1}\right)\right.$?]. Borrowing an argument from Section 3.4, we deduce that for any linearly independent pair (C_{1}, C_{2}) in $\mathrm{M}_{n, 1}(\mathbb{K})$, the triple $\left(C_{1}, C_{2}, \alpha\left(C_{1}\right)\right)$ is also linearly independent (this is where the assumption $1<p<n$ comes into play). Clearly, this is absurd: indeed, choose C_{1} arbitrarily in $M_{n, 1}(\mathbb{K}) \backslash\{0\}$, then $C_{2}:=$ $\alpha\left(C_{1}\right)$ if ($C_{1}, \alpha\left(C_{1}\right)$) is linearly independent, and choose arbitrarily C_{2} in $M_{n, 1}(\mathbb{K}) \backslash \operatorname{span}\left(C_{1}\right)$ if not (there again, we use $p \geqslant 2$). This contradiction shows $p \in\{1, n\}$, which completes our proof of Theorem 2.

4. A link with division algebras

We will show here how the full non-singular subspaces of $\mathrm{M}_{n}(\mathbb{K})$ are connected to division algebra over \mathbb{K}. Let us recall first a few basic facts about them.

Definition 4. A division algebra over \mathbb{K} is a \mathbb{K}-vector space D equipped with a bilinear map \star : $D \times$ $D \rightarrow D$ such that $x \mapsto a \star x$ and $x \mapsto x \star a$ are automorphisms of D for every $a \in D \backslash\{0\}$.

Of course, every field extension of \mathbb{K}, and more generally every skew-field extension of \mathbb{K} is a division algebra over \mathbb{K}. There are however non-associative division algebras, the most famous example being the algebra of octonions (see [3] for an extensive treatment on them).

Remarks 3

(a) Note that associativity is not required on the part of \star !
(b) If D is finite-dimensional, then the latter condition in the definition of a division algebra is verified if and only if $x \mapsto a \star x$ is bijective for every $a \in D \backslash\{0\}$. The data of \star is then equivalent to that of a linear map

$$
\alpha: D \longrightarrow \mathcal{L}(D)
$$

which maps $D \backslash\{0\}$ into $G L(D)$ (indeed, to such a map α, we naturally associate the pairing $(a, b) \mapsto \alpha(a)[b])$.

The correspondence between full non-singular subspaces of $\mathrm{GL}_{n}(\mathbb{K})$ and division algebras over \mathbb{K} is now readily explained:

- Let V be a full non-singular subspace V of $\mathrm{GL}_{n}(\mathbb{K})$. Setting a basis of V, we define an isomorphism $\theta: \mathbb{K}^{n} \xrightarrow{\simeq} V$ which induces an isomorphism of algebras $\bar{\theta}: M_{n}(\mathbb{K}) \xrightarrow{\simeq} \mathcal{L}(V)$. Restricting $\bar{\theta}$ to V then gives rise to a division algebra structure on V.
- Conversely, given a division algebra D with structural map $\alpha: D \rightarrow \mathcal{L}(D)$, we can choose a basis of D, which defines an algebra isomorphism $\psi: \mathcal{L}(D) \stackrel{\simeq}{\leftrightarrows} M_{n}(\mathbb{K})$, and then associate to D the full non-singular subspace $\psi(\alpha(D))$ of $\mathrm{M}_{n}(\mathbb{K})$.

Working with the canonical basis of \mathbb{K}^{n}, we have just established a bijective correspondence between the set of structures of division algebras on \mathbb{K}^{n} (which extend its canonical vector space structure), and the set of full non-singular subspaces of $M_{n}(\mathbb{K})$.

By combining our main theorem with the Bott-Milnor-Kervaire theorem on division algebras over the real numbers (cf. [1,8]), this yields:

Proposition 8. Let $n \in \mathbb{N} \backslash\{2,4,8\}$. Then every linear endomorphism f of $\mathrm{M}_{n}(\mathbb{R})$ which stabilizes $\mathrm{GL}_{n}(\mathbb{R})$ belongs to the Frobenius group $\mathcal{G}_{n}(\mathbb{R})$.

Acknowledgements

I would like to thank François Lussier for insisting I should tackle the problem considered here.

References

[1] R. Bott, J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958) 87-89.
[2] P. Botta, Linear maps that preserve singular and nonsingular matrices, Linear Algebra Appl. 20 (1978) 45-49.
[3] J.H. Conway, D. Smith, On Quaternions and Octonions, A.K. Peters, 2003.
[4] J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. 1 (1949) 282-287.
[5] H. Flanders, On spaces of linear transformations with bounded rank, J. London Math. Soc. 37 (1962) 10-16.
[6] G. Frobenius, Uber die Darstellung der endlichen Gruppen durch Linear Substitutionen, Sitzungsber Deutsch Akad. Wiss. Berlin (1897) 994-1015.
[7] W. Greub, Linear algebra, third ed., Grundlehren der Mathematiken Wissenschaften, vol. 97, Springer-Verlag, 1967.
[8] M. Kervaire, Non-parallelizability of the n-sphere for $n>7$, Proc. Nat. Acad. Sci. 44 (1958) 280-283.
[9] M. Marcus, R. Purves, Linear transformations on algebras of matrices, Canad. J. Math. 11 (1959) 383-396.
[10] R. Meshulam, On the maximal rank in a subspace of matrices, Q. J. Math. Oxf. II 36 (1985) 225-229.

[^0]: E-mail address: dsp.prof@gmail.com

[^1]: ${ }^{1}$ Here, by a hyperplane (resp. a line), we mean a linear subspace of codimension one (resp. of dimension one). When we will exceptionally have to deal with affine subspaces, we will always specify it.

