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Rotenone (ROT) is a widely used inhibitor of complex I (CI), the first complex of the mitochondrial oxidative
phosphorylation (OXPHOS) system. However, particularly at high concentrations ROT was also described to
display off-target effects. Here we studied how ROT affected in vitro primary murine myotube formation. We
demonstrate that myotube formation is specifically inhibited by ROT (10–100 nM), but not by piericidin A
(PA; 100 nM), another CI inhibitor. At 100 nM, both ROT and PA fully blocked myoblast oxygen consumption.
Knock-down of Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) and, to a lesser extent ROCK1,
prevented the ROT-induced inhibition of myotube formation. Moreover, the latter was reversed by inhibiting
Raf-1 activity. In contrast, ROT-induced inhibition of myotube formation was not prevented by knock-down of
RhoA. Taken together, our results support a model in which ROT reduces primary myotube formation indepen-
dent of its inhibitory effect on CI-drivenmitochondrial ATP production, but via a mechanism primarily involving
the Raf-1/ROCK2 pathway.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Rotenone (ROT) is an agricultural pesticide, insecticide and pisciside.
ROT is well-known to exerts its effect by inhibiting complex I (CI or
NADH:ubiquinone oxidoreductase; EC 1.6.5.3) of themitochondrial ox-
idative phosphorylation (OXPHOS) system, which is among the prime
generators of cellular ATP to sustain cell function and survival [1,2].
The latter system consists of five multiprotein complexes (CI–CV),
which consume NADH, succinate and molecular oxygen to generate
ATP by chemiosmotic coupling [3]. In this sense, ROT treatment is wide-
ly used to study the consequences of CI inhibition and ensuing OXPHOS
dysfunction [4].

Skeletal muscle is a high-energy demanding tissue and therefore an
attractive model to study CI- or OXPHOS dysfunction. Within skeletal
muscle, satellite cells play a crucial role [5,6]. In vitro differentiation of
satellite cells (aka myoblasts) into myotubes can be triggered by trans-
ferring the former cells from a proliferation to a differentiation medium
[7–9]. This differentiation process shares many features with the in vivo
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myogenic differentiation program and consists of a proliferation,
differentiation and fusion phase [10–12]. Evidence was provided that
myotube formation requires mitochondrial activity [13–19] and is
paralleled by mitochondrial biogenesis, increased expression of
OXPHOS complexes and higher cellular oxygen consumption [20,21].
Moreover, ROT treatment inhibited in vitro myotube formation [22,
23], suggesting that active CI is required for proper myoblast differenti-
ation. However, ROT can also induce other effects than CI inhibition,
which include microtubule depolarization and altering the activity of
RhoA, Cdc42 and Rac1, which are members of the Rho family of small
GTPases [24,25]. This leaves open the possibility that a CI-independent
mechanism is involved in ROT-induced inhibition ofmyotube formation
[22,23]. In fact, RhoA activity is required during earlymyoblast differen-
tiation [26], while Rac1 and Cdc42 negatively regulate this process
[27–29]. Conversely, at the final stage of differentiation (i.e. myotube
formation), the activity of RhoA and its effector Rho-associated, coiled-
coil containing protein kinase (ROCK) must be decreased [30–32],
while Rac1 and Cdc42 activity is essential [33]. As ROT increases RhoA
activity in neurons and thereby, via ROCK activity, prevented in vitro
axon formation [25], we hypothesize that the ROT-induced inhibition
of myotube formation could be mediated by the RhoA/ROCK pathway.

Here we demonstrate that ROT, but not the CI inhibitor piericidin A
(PA), inhibits primary myotube formation when used at the lowest
concentration that fully blocks cellular oxygen consumption. Subse-
quent RNA interference and inhibitor studies revealed that this inhibi-
tion depends on Raf-1 and ROCK2 (and to a lesser extend ROCK1), but
not RhoA.
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2. Materials and methods

2.1. Animals and housing conditions

Wild-type (WT) mice were bred with a mixed 129/sv × C57BL/6
background. All animals received a standard rodent diet ad libitum and
were maintained at 21.0 °C and 60% humidity, and with a light/dark
(12 h/12 h) cycle. All breeding and experiments were approved by the
Animal Experimentation Committee at the Radboud University Medical
Center, in accordancewith Dutch laws and regulations regarding animal
experimentation.

2.2. Myofiber and primary myoblast isolation

Female WT mice (8–12 weeks) were sacrificed by decapitation and
extensor digitorum longus (EDL) muscles were dissected. Individual
myofibers were isolated as described in detail elsewhere [34]. Briefly,
EDL muscles were digested in 0.2% (w/v) Collagenase type I (Sigma
Chemical CO, St Louis, MO, USA) in high-glucose (25 mM) Dulbecco's
Modified Eagle's medium (DMEM-HG; Invitrogen HQ, San Diego, CA,
USA) + 1% penicillin/streptomycin (p/s, PAA Laboratories, Cölbe,
Germany) for 1.5 h. Using a heat-polished wide-mouthed glass pipette,
myofibers were liberated. Individual myofibers were transferred to a
new Petri dish containing DMEM-HG + 1% p/s with a heat-polished
small-mouthed glass pipette. Each Petri dish containing one-hundred
fifty myofibers were washed by replacing the medium with fresh
DMEM-HG+1% p/s. Washedmyofibers were plated onto 6-well plates
coated with Matrigel (MatrigelTM Basement Membrane Matrix, BD
Bioscience, Bedford, MA, USA) and containing 6 ml culture medium
(CM; DMEM-HG supplemented with 30% (v/v) fetal bovine serum
(FBS, PAA Laboratories), 10% (v/v) horse serum (HS, PAA Laboratories),
1% (v/v) chick embryo extract (CEE, MP Biomedicals Europe, Illkirch
Cedex, France), 10 ng/ml basic fibroblast growth factor (bFGF;
Invitrogen), and 1% (v/v) p/s (PAA Laboratories)). Next, the cells were
cultured for three days at 37 °C (95% air, 5% CO2), during which satellite
cells grew out of themyofibers. After removal of themyofibers, satellite
cells were trypsinized and pre-plated for 10 min in uncoated 6-well
plate. Non-adherent cells were transferred to a fresh Matrigel-coated
6-well plate, cultured for 1 week in CM, and then used for experiments.

2.3. Primary myoblast cell culture

Coverslips (∅14 mm) were coated first with 20 μg/ml fibronectin
(Roche Diagnostics GmbH, Mannheim, Germany) and subsequently
with 10 μl Matrigel (1 mg/ml) to create a “Matrigel-spot” for the cells.
A total of 5,000 primary myoblasts were seeded onto the Matrigel-
spot in 10 μl CM and incubated for 10 min at 37 °C (95% air, 5% CO2)
for adherence. Next, 0.5 ml CM was added and cells were cultured at
37 °C (95% air, 5% CO2) for 4 h. Then, differentiation and fusion of
myoblasts was induced by replacing the CM by differentiation medium
(DM; DMEM-HG supplemented with 2% (v/v) HS (PAA Laboratories)
and 1% (v/v) p/s) and culturing the cells for an additional 3 days.
Depending on the experiment, differentiation of primary myoblasts
was carried out in the presence of vehicle (0.1% (v/v) EtOH), 0–
100 nMROT (Sigma), or 0–100 nMPA (Enzo Life Sciences, Farmingdale,
NY, USA). Primarymyoblasts were also differentiated in the presence of
100 nM ROT with or without 0–10 μM of GW5074 or U0126 (both
Sigma).

2.4. C2C12 cell culture

C2C12 myoblasts were cultured in DMEM-HG (Invitrogen) supple-
mented with 10% (v/v) FBS and 1% (v/v) p/s and in the presence of ei-
ther vehicle (0.1% (v/v) EtOH), 100 nM ROT (Sigma) or 100 nM PA
(Sigma). After 3 days cells were used for high-resolution respirometry.
2.5. High-resolution respirometry of C2C12 myoblasts

The DMEM-HG culture medium was collected, and the C2C12 myo-
blasts were trypsinized, washed and resuspended to approximately one
million cells per 2 ml in the collected culture medium and used to
measure cellular oxygen consumption. Oxygen consumption was
measured at 37 °C using polarographic oxygen sensors in a two-
chamber Oxygraph (Oroboros Instruments, Innsbruck, Austria) using an
established protocol [35]. Briefly, untreated cells were first allowed to
respire at basal level for 10 min and then inhibited acutely by a stepwise
addition of increasing concentrations (0–1000 nM) of either ROT (Sigma)
or PA (Enzo Life Sciences) until respiration was maximally blocked. Basal
(routine) respiration was set at 100% to which all other data points were
related. A logistic model (nonlinear regression; Y = Bottom + (Top −
Bottom) / (1 + 10^((LogIC50 − X) * HillSlope))) was created to deter-
mine the IC50 of each inhibitor. C2C12 myoblasts treated with vehicle
(0.1% (v/v) EtOH), ROT, or PA for 3 days were also first allowed to respire
at basal level for 10 min after which ROT and antimycin A were added to
determine non-mitochondrial oxygen consumption rates.

2.6. Hydroethidium oxidation and quantification in primary myotubes

To measure the level of hydroethidium (HEt) oxidizing reactive ox-
ygen species (ROS), myoblasts were first differentiated in the presence
of 100 nM ROT or PA for 3 days. Then cells were loaded with 10 μM
HEt (Molecular Probes, Eugene, OR, USA) in the ROT- and PA-
containing DM for exactly 4.5 min. Finally, the cells were washed and
transferred to a HEPES–Tris medium (132 mM NaCl, 4.2 mM KCl,
1 mM CaCl2, 1 mM MgCl2, 5.5 mM D-glucose and 10 mM HEPES,
pH 7.4). The coverslips were mounted in an incubation chamber and
placed on the stage of a inverted microscope (Axiovert 200 M, Carl
Zeiss, Germany). Cells were excited at 490 nm for 100msusing amono-
chromator (Polychrome IV, TILL Photonics, Gräfelfing, Germany) and
fluorescence emission was directed by a 525DRLP dichroic mirror
(Omega Optical Inc, Brattleboro, VT, USA) and through a 565ALP emis-
sion filter (Omega Optical Inc.). Cells were visualized using the Zeiss
40×/1.3 NA Plan NeoFluar objective and a CoolSNAP HQ monochrome
CCD-camera (Roper Scientific, Vianen, The Netherlands) and the
Metafluor 6.0 software (Universal Imaging Corporation, Downingtown,
PA, USA). Quantitative analyses were performed with the Metamorph
6.0 software (Universal Imaging Corporation). For analysis, the mean
fluorescent intensity in an intracellular region in at least 10 differentmi-
croscopic fields was determined and corrected for background using an
extracellular region of the same size. The average values were related to
the average value of WT myotubes treated with vehicle (0.1% (v/v)
EtOH), which was set at 100%.

2.7. Transfection of primary myoblasts with small interfering RNA
molecules

Primarymyoblasts were transfectedwith the Dharmacon siGENOME
SMARTpool siRNAs (Thermo Fisher Scientific, Pittsburgh, PA); RhoA (M-
042634-01), ROCK1 (M-046504-01), ROCK2 (M-040429-01), or Non-
targeting (control pool, D-001206-13-05). For every siRNA, 900,000
myoblasts were transfected with 900 pmol siRNA using the Neon
TransfectionTM system (Invitrogen, Carlsbad, CA, USA) with a single
pulse of 1350 V and a pulse width of 30, according to manufacturer's
protocol. After transfection, myoblasts were seeded either into a
Matrigel-coated 24-well plate (200,000 cells; 4 wells/transfection) or
onto “Matrigel-spots” (10,000 cells; 2 spots/transfection) on a coverslip
(∅14 mm) and cultured in CM for 1 day. Twenty-four hours after the
transfection, the cells in the 24-well plate were differentiated in DM for
3 days (HS with a different lot was used: B02311-7049), and the myo-
blasts on the “Matrigel-spot” were differentiated in DM in the presence
of either vehicle (0.1% EtOH) or 100 nM ROT for 3 days. To assess the
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knock-down of RhoA, ROCK1, and ROCK2, proteins were isolated from
untreated myoblasts (D0) and myotubes (D3).

2.8. Western blotting

Myoblasts were washed with PBS and lysed by scratching the cells
from the wells using 50 μl RIPA buffer containing 50 mM Tris–HCl,
50 mM NaCl, 1% (v/v) Triton X-100, 5 mM Na-EDTA, 10 mM Na4P2O7,
50 mM NaF, 1× protease inhibitor cocktail (Complete, Roche), 1 mg/ml
DNAse, and 10 mM PMSF. Proteins (150 μg protein per lane) were sepa-
rated using SDS-PAGE with a 12% gel for RhoA and a 6% gel for ROCK1
and ROCK2, and subsequently transferred to a PVDF membrane
(Millipore, Amsterdam, The Netherlands). Then blots were blocked in
Odyssey blocking buffer (Li-Cor, Lincoln, USA) and PBS/Tween-20 (1:1)
and incubated with mouse anti-beta-actin (1:100,000; Sigma), mouse
anti-RhoA (1:1000; Cytoskeleton, Denver, CO, USA), rabbit anti-ROCK1
(1:2000; Millipore), and rabbit anti-ROCK2 (1:10,000; Abcam,
Cambridge, MA, USA) at 4 °C overnight. Bound anti-beta-actin and anti-
RhoA were visualized using IRdye680-labeled goat-anti-mouse IgG
(H + L; Li-Cor). Bound anti-ROCK1 and anti-ROCK2 were visualized
using IRdye800-labeled goat-anti-rabbit IgG (H+ L; Li-Cor). Blots were
scanned with the Odyssey Imaging system (Li-Cor) and fluorograms
were inverted for visualization. A down-regulation of beta-actin was
observed during differentiation and fusion (Fig. 3A) as shown previously
[36]. However, this was not a consequence of differences in protein
loading as a Coomassie blue gel staining was similar in all experimental
conditions (data not shown). Therefore beta-actin-corrected protein
levels of RhoA, ROCK1, and ROCK2 were only compared within the
same time-point (D0 or D3).

2.9. Immunocytochemistry of primary myotubes

For immunocytochemistry, cells were fixed using 4% (v/v) formalde-
hyde in PBS for 15 min and permeabilized in 0.5% (v/v) Triton X-100 in
PBS for 20 min. After washing with 0.05% (v/v) Tween-20 in PBS, cells
were blocked in blockingbuffer containing 2% (w/v) bovine serumalbu-
min (BSA), 2% (v/v) normal goat serum (NGS), 0.1% (v/v) Triton X-100,
0.05% (v/v) Tween-20, and 100mMglycine in PBS for 30min. To deter-
mine fusion, cells were incubated with mouse anti-Myosin (1:300,
MF20 IgG2b; Developmental Studies Hybridoma Bank) in blocking
buffer without glycine for 1 h. To determine tubulin morphology, cells
were incubated with the primary antibody mouse anti-beta-tubulin
(1:300, E7 IgG1; Developmental Studies Hybridoma Bank). Bound
anti-beta-tubulin was visualized with AlexaFluor-488-labeled goat
anti-mouse IgG1 (1:200; Molecular Probes) and anti-Myosin was
visualized with AlexaFluor-594-labeled goat anti-mouse IgG2b (1:200;
Molecular Probes). The cells were sealed using Vectashield mounting
medium containing 4′,6-diamidino-2-phenylindole (DAPI), which
stains all nuclei (Vector Laboratories, Burlingame, CA, USA) and visual-
ized using the Zeiss Axiophot2 fluorescence microscope with Axiocam
MRm CCD camera and photographed. Microscopy images were proc-
essed with the NIH ImageJ software using the background subtraction
(rolling ball radius of 150 pixels) and automatically adjusted for bright-
ness and contrast. The myoblast fusion index, which is the number of
nuclei within the myotubes relative to the total number of nuclei was
calculated using 5 different fields for each culturing condition (N = 3).

2.10. Cell viability assay

For cell viability, myoblasts/myotubes were stained with 20 μg/ml
Hoechst 33342 (Life Technologies), 2 μMYo-Pro-1-iodide (Life Technol-
ogies) and 1 μg/ml propidium iodide (PI; Sigma Aldrich) for 20 min at
37 °C to identify early apoptosis and necrosis, respectively [37]. The
cells were visualized using the Zeiss Axiophot 2 fluorescence micro-
scope with an Axiocam MRm CCD camera and photographed. From
these images the number of nuclei in myoblasts/myotubes positive for
Yo-Pro-1 and PI or Yo-Pro-1 alone relative to the total number of
Hoechst 33342 positive nuclei was calculated using 5 different fields
for each culturing condition (N = 3).

2.11. Statistical analyses

Average values are presented as mean ± SD. The myoblast fusion
index of each culturing condition was tested for significance (p b 0.05)
using either the one-way ANOVA or two-way ANOVAwith a Bonferroni
post hoc test. The results of the HEt oxidation were tested using a one-
way ANOVA Kruskal–Wallis with a Dunns post hoc test. The results of
the cell viability assay were tested using a two-way ANOVA with a
Bonferroni post hoc test.

3. Results

Pilot studies revealed that myotube formation from primary myo-
blasts derived from murine skeletal muscle is inhibited in the presence
of 100 nM ROT. This finding urged us to investigate whether this effect
was general to CI inhibitors or specific to ROT. To address the specificity
of the inhibitory effect of ROT,we decided to compare its effectwith that
of piericidin A (PA).

3.1. Lowest inhibitor concentration for maximal reduction of cellular
oxygen consumption

CI inhibitors acutely decrease cellular oxygen consumption and for
the purpose of standardization we first set out to establish the lowest
inhibitor concentration that maximally reduced the rate of oxygen
consumption. Both ROT and PA dose-dependently decreased the rate
of oxygen consumption when added to a suspension of murine skeletal
muscle-derived C2C12 myoblasts (Fig. 1A; half-maximal inhibitory
concentrations of 10.06 ± 0.01 nM and 8.41 ± 0.01 nM, respectively).
Both inhibitors virtually completely inhibited oxygen consumption
and in both cases the lowest maximal inhibitory concentration was
100 nM. Myoblast fusion experiments last 3 days and Fig. 1B shows
that oxygen consumption was still virtually completely inhibited in
C2C12myoblasts cultured for 3 days in proliferationmedium containing
100 nM of either ROT or PA. These results indicate that both inhibitors
remain effective during 3 days of chronic application.

3.2. Chronic rotenone exposure specifically and dose-dependently inhibits
myoblast fusion

Primary myoblasts derived from murine skeletal muscle readily
fused into large myotubes within 3 days after the onset of differentia-
tion (Fig. 2A). Inclusion of 100 nM PA in the differentiation medium
did not visibly affect myotube formation. In sharp contrast, however,
the presence of 100 nM ROT clearly impaired this process in that
fewer myotubes were formed, which, in addition, appeared smaller,
thinner, and occasionally rounded. This visual impression was corrobo-
rated by calculation of the fusion index or the percentage of nuclei
present in the myotubes. Fig. 2B shows that chronic ROT decreased
this index dose-dependently, whereas chronic PA was without effect.
The number of myogenin positive cells was not affected by ROT and
PA (mean ± SD values of 79 ± 5%, 77 ± 3%, and 78 ± 4%, for vehicle
(0.1% EtOH), ROT (100 nM), and PA (100 nM), respectively). ROT and
PA also did not induce cell detachment as indicated by the absence of
any significant change in the total number of nuclei (mean± SD values
of 100 ± 48%, 89 ± 47% and 80 ± 32%, for vehicle (0.1% EtOH), ROT
(100 nM) and PA (100 nM), respectively). Additionally, myoblasts and
myotubes were stained with Yo-Pro-1, PI, and Hoechst 33342 to
determine cell death (Fig. 2C) after 3 days of differentiation. Only low
numbers of nuclei in myoblasts/myotubes positive for Yo-Pro-1 and PI
or Yo-Pro-1 alone were found, which did not significantly differ
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between control, ROT and PA. This indicates that cell death is not
stimulated under these conditions.

Reactive oxygen species (ROS) are implicated in the differentiation
and fusion of muscle cells [38] and ROT, when added at a concentration
of 100 nM, readily stimulates the intracellular oxidation of HEt [39].
Both chronic ROT (100 nM) and PA (100 nM) showed a modest but
significantly increased level of HEt-oxidizable ROS in myotubes after
3 days of differentiation (Fig. 2D). High concentrations of ROT are also
known to disrupt the tubulin network, which could result in hampered
myotube formation [25,40,41]. Such an off-target effect of ROT on the
tubulin network should be most apparent in myoblasts as myotube
formation is initiated by the fusion of functional myoblasts and requires
remodeling of the myoblast tubulin network. To prevent this, the mini-
mal concentration of ROT (100 nM) that maximally inhibited cellular
oxygen consumption was used (Fig. 1A). At this concentration ROT did
not visibly alter the tubulin network in primary myoblasts (Fig. 2E).
This is in agreement with the observation that ROT did not induce mi-
crotubule disorganization in neurons [25]. As a positive control,
nocodazole (500 nM, 24 h) [42] inducedmarked changes in tubulin net-
work organization in myoblasts.

Taken together, the above results indicate that CI inhibition, cell
death, and microtubule disorganization do not underlie the inhibitory
effect of ROT on myotube formation and that, therefore, another
mechanism should be considered. Below we explored this mechanism
in more detail.

3.3. Rotenone-induced inhibition of primary myotube formation is
primarily restored by ROCK2 knock-down

Evidence was provided that ROT affects the activities of several Rho-
GTPases in neurons including RhoA [25]. RhoA and its effectors ROCK1/
ROCK2 have been shown to be involved in myotube formation [28–33,
43]. To address the possibility that ROT might exert its effect on
myotube formation through these proteins, we performed specific
knock-down experiments. Importantly, the transfection procedure did
not increase Oas1 gene expression in primary myoblasts, indicating
that the delivery of the siRNAs did not provoke an IFN response in
these cells [44,45]. Twenty-four hours after the transfection and at the
onset of differentiation (D0), the mRNA levels of RhoA, ROCK1, and
ROCK2 in primary myoblasts were, relative to control (non-targeting
siRNA), specifically and effectively knocked-down at the mRNA level
by 97 ± 0.08%, 75 ± 30%, and 96 ± 3.3%, respectively. The knock-
down remained very effective for 3 days during differentiation as the
mRNA levels of RhoA, ROCK1, and ROCK2 in primary myotubes were
still reduced by 88 ± 15.7%, 93 ± 5.0%, and 95 ± 0.8%, respectively.
Western blot analysis of RhoA and ROCK1 confirmed the specificity
and effectiveness of the knock-down approach at the protein level in
myoblasts (D0) and myotubes (D3) (Fig. 3A). RhoA protein level was
knocked-down by 95 ± 2.8% and 98 ± 2.8%, respectively, whereas
ROCK1 protein level was completely knocked-down by 100% in
myoblasts (D0) and myotubes (D3). However, ROCK2 expression was
already very low in control (non-targeting) myoblasts (D0) and espe-
cially myotubes (D3), but a knock-down of 84 ± 12.6% in myoblasts
(D0) and 69 ± 27.8% in myotubes (D3) to almost no detectable levels
could still be observed. Nevertheless, this level of ROCK2 knock-down
was able to fully prevent the ROT-induced inhibition of primary
myotube formation whereas RhoA knock-down was ineffective
(Fig. 3B and C). ROCK1 knock-down by itself tended to decrease the
fusion index and, as a consequence, there was no significant inhibitory
effect of ROT on myoblast fusion. However, when compared to the
ROT-treated control, only knock-down of ROCK2, but not RhoA and
ROCK1, significantly increased the fusion index to untreated control.
We conclude that mainly ROCK2, independently from RhoA, is essential
for ROT to exert its inhibitory effect on primary myotube formation.

3.4. Inhibition of Raf-1 activity prevents rotenone-induced inhibition of
primary myotube formation

Activation of Raf-1 has been shown to inhibit muscle cell differenti-
ation upstream of ROCK activity but also of MEK-ERK activity [30,46].
Therefore we pharmacologically inhibited Raf-1 activity by GW5074
andMEK-ERK activity by U0126 to investigate whether Raf-1, indepen-
dently fromMEK-ERK activity, is involved in the ROT-induced inhibition
ofmyotube formation. As shown in Fig. 4, Raf-1 andMEK-ERK inhibition
by GW5074 and U0126, respectively, did not affect the formation of
myotubes at the highest concentration used (10 μM; Fig. 4A and B).
However, in the presence of ROT (100 nM), only GW5074 but not
U0126 restored myotube formation (Fig. 4A). Quantification of the
fusion index (Fig. 4B) indicates that at 5 and 10 μM of GW5074 the
ROT-induced inhibition of myotube formation was fully restored. In
contrast, when similar concentrations of U0126 were used to inhibit
MEK-ERK activity, myotube formation remained significantly decreased
in the presence of ROT. This suggests that in the presence of ROT, Raf-1
activity, independently from MEK-ERK activity, is required to inhibit
primary myotube formation.

4. Discussion

We demonstrate here for the first time that the ROT-induced inhibi-
tion of primary myotube formation requires active Raf-1 and ROCK2
and is independent of its inhibitory effect on CI-driven mitochondrial
ATP production. We also show that inhibition of Raf-1 activity or
ROCK2 knock-down alone does not significantly affect primary
myotube formation. This altogether is favoring a model in which Raf-1
and ROCK2 most likely act, modulated by ROT, as negative regulators
in the process of myotube formation. These conclusions are based on
the following.
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It has been shown that active Raf-1 blocks myoblast differentiation
either via regulating MEK-ERK activity [46] or ROCK activity [30].
However, in the latter study, inhibition of MEK-ERK activity was not
sufficient to restore muscle cell differentiation, suggesting that
primarily ROCK activity is involved.Moreover, differentiation and fusion
of C2C12myoblastswere inhibitedwhen they expressed either a consti-
tutively active RhoA or ROCK1 mutant [30–32,47]. In these studies,
myoblast differentiation and fusion could be restored by pharmacolog-
ical inhibition of ROCK by Y27632. However, Y27632 inhibits both
ROCK1 and ROCK2 and might also display other side-effects. Therefore,
we performed specific knock-down of RhoA, ROCK1, and ROCK2 in pri-
mary mouse myoblasts to decipher their individual roles in the ROT-
induced inhibition of primary myotube formation. Here we demon-
strate that this was primarily restored by knock-down of ROCK2, but
not RhoA and to a lesser extent ROCK1. Based upon the mRNA levels,
ROCK2 knock-down was very efficient, however, the magnitude of
ROCK2 knock-down at the protein level appears to be less convincing.
This is most likely due to the low ROCK2 signal found (with Western
blot) in myoblast and especially in myotubes when transfected with
non-targeting, RhoA and ROCK1 siRNA. Importantly, only in myoblasts
in which ROCK2 was knocked-down, ROT was much less successful in
preventing myotube formation. Especially because ROCK2 protein
levels are not greatly reduced suggest that this protein is very important
in mediating the ROT-induced inhibition of primary myotube
formation.

The inhibitory effect of ROT on the formation of primary myotubes
was also achieved by pharmacological inhibition of Raf-1 by GW5074
used at a concentration (5 μM) known to inhibit Raf-1 by at least 80%,
but not of MEK-ERK by U0126. It has been demonstrated that
GW5074 selectively acts on Raf-1 without significant effect on the
activity of other proteins (i.e. cdk1, cdk2, cdk5, cdk6, c-src, p38 MAP ki-
nase, VEGFR2, c-fms, JNK1-3, MEK1, MKK6, MKK7 and Gsk3β) [48,49].
Moreover, Raf-1 is ubiquitously expressed whereas A-Raf is expressed
in several cell types (but not in skeletal muscle) and B-Raf is primarily
expressed in the central nervous system [51,52]. This indicates that
skeletal muscle (hence myoblasts/myotubes) primarily expresses Raf-
1. It has been shown that GW5074 inhibits SIRT5 desuccinylation
activity, however, this is minimally inhibited at 5 μM GW5074 [50],
which exerts a maximum effect on myotube formation during chronic
ROT treatment. Therefore it is unlikely that inhibition of SIRT5
desuccinylation activity plays any significant role in our studies. In the
light of the above, we believe that our results with GW5074 support
our conclusion that Raf-1 is involved in ROT-induced inhibition of
myotube formation.

It was shown that ROT increased NADPH oxidase (NOX)-derived
superoxide leading to neurotoxicity. This could be attributed to a direct
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interaction of ROT with gp91phox and was found to be dependent on
Rac1 activity [53–55]. Moreover, it was shown that ROT activates NOX
in phagocytes and that upregulated NOX4 results in increased ROT-
sensitive superoxide production in cardiac myocytes [54,56]. This indi-
cates that ROT-induced activation of NOX is not specific to one cell
type. In this sense, we observed that both ROT and PA stimulated oxida-
tion of the ROS-sensor HEt to a similar extent (Fig. 2D), suggesting that
HEt-oxidizing ROS derived from either CI inhibition or NOX activation is
not responsible for the differential effect of ROT and PA onmyotube for-
mation. However, evidence in the literature suggests that both an in-
crease and decrease in NOX4 expression can be associated with
reducedmyogeninmRNA levels in C2C12 cells. This is paralleled by a re-
duction in the number ofmyogenin positive C2C12 cells detected by im-
munocytochemical analysis [57]. This suggests that in the present study
the ROT-induced inhibition of myotube formation could be a result of
NOX4 activation. However, we did not observe such a reduction in
myogenin positive myoblasts/myotubes and argues against a role for
ROT-induced activation of NOX4 in ROT-induced inhibition of primary
myotube formation.

In our experiments, individual and specific knock-down of RhoA,
ROCK1, or ROCK2 in vehicle-treated cells did not significantly affect
myotube formation. A similar lack of effect was observed in C2C12
myoblasts upon specific knock-down of ROCK2 and the ROCK2m
isoform [58]. Similarly, knock-down of either ROCK1 or ROCK2 in
C2C12 myoblasts only slightly increased myogenesis [30]. Strikingly,
a recent study using stable knock-down clones of ROCK1 and ROCK2
in C2C12 myoblasts suggested that ROCK acted stimulatory on
myotube formation [59]. However, the same study revealed that
ROCK inhibition by Y27632 enhanced myotube formation. Similar
to our knock-down experiments, we show that inhibition of Raf-1
activity alone does not significantly affect primary myotube forma-
tion. This suggests that Raf-1 and ROCK2 might not be essential for
primary myotube formation, but are most likely negative regulators
in this process.

We provide additional evidence indicating that the ROT-induced
inhibition of primary myotube formation is most likely independent of
its inhibitory effect on CI-driven mitochondrial ATP production. Firstly,
this process was not hampered by the presence of the CI inhibitor PA
(the binding pocket of which overlaps the CI binding pocket of ROT
[60,61]) at a concentration at which this inhibitor virtually completely
inhibited cellular oxygen consumption acutely and chronically
(3 days). Secondly, a reduction in myotube formation was already
observed at ROT concentrations (10 nM) that not fully blocked cellular
oxygen consumption. Taken together, this suggests that ROT-induced
inhibition of myotube formation is independent of CI-drivenmitochon-
drial ATP production (i.e. fusion occurred normally in the presence of
PA). We cannot entirely exclude CI to have a function in myotube
formation as it might still play a different role apart frommitochondrial
ATP production.

The finding above may also shed new light on results obtained in
studies using ROT to demonstrate, among others, the role of CI and
mitochondrial ROS levels in muscle differentiation [23]. In the latter
study, ROT has shown to reduce the ROS levels and thereby inhibit
myotube formation of H9c2 rat cardiac myoblasts. However, in our
study, both chronic ROT and PA increased the levels of HEt-oxidizable
ROS in murine primary myotubes. This favors the idea that differences
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in inhibitor-induced ROS levels are not the mechanism of ROT-induced
inhibition of primarymyotube formation.Moreover, the lack of effect on
myotube formation by chronic PA resemblesmore thefinding that com-
plex I deficiency induces myogenesis [62].

Next to this, the use of ROT as an agricultural pesticide and insecti-
cide has been associated to the development of Parkinson's disease
(PD) [63]. Rats and mice treated with ROT induced key features of PD
[64,65] and some of these ROT-induced neurotoxic effects could be
explained by the induction of neuronal apoptosis via Raf-1-MEK-
ERK1/2 or inhibition of neuronal outgrowth via RhoA/ROCK [25,66].
However, in the latter study, Y27632was used to inhibit ROCK signaling
and thus our results may also providemore specific mechanistic insight
in that Raf-1/ROCK2 pathway could be involved in the neurotoxic
effects of ROT.

In summary, we conclude that ROT reduces the formation of
myotubes in a manner that is independent of its inhibitory effect on
CI-driven mitochondrial ATP production, but primarily requires the
activity of the Raf-1/ROCK2 pathway, independently of RhoA and
MEK-ERK (Fig. 5). However, it remains unknown (Fig. 5; two arrows)
whether 1) ROT directly interacts with and increases the activity of
Raf-1/ROCK2 or 2) exerts its effect via upstream activators of Raf-1
such as Ras, phosphatidylinositol 3-kinase, Cdc42/Rac, and/or Pak [67,
68]. The effector mechanism of ROT-induced alteration of Raf-1/
ROCK2 pathway on primary myotube formation also remains unknown
(Fig. 5; dotted inhibitory line). For myotube formation to take place, a
reorganization of the cytoskeleton in myoblasts is needed and F-actin
depolarization is needed [69,70]. In contrast F-actin polymerization is
stimulated by ROCK2 and might therefore be a potential effector
mechanism [71–73]. However, many ROCK2-dependent substrates are
involved in actin cytoskeleton rearrangements [71,73] and their
identification will be of future investigation. Further, we show that
Raf-1 and ROCK2 are not essential for myotube formation, but that
upon activation (i.e. by ROT) this is inhibited, suggesting that this
pathway is a negative regulator.

Most importantly, our results indicate that 1) ROT-induced inhibition
of primary myotube formation requires Raf-1/ROCK2 activity, 2) ROT is
not suited to study the effect CI-driven mitochondrial ATP production in
primary murine myoblasts, 3) any effect of ROT should be carefully
checked to specifically address its CI-independent side-effects, and
4) our resultsmight provide new insight for the neurotoxic effects of ROT.
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