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The histones which pack new DNA during the S phase of animal

cells are made from mRNAs that are cleaved at their 30 end but

not polyadenylated. Some of the factors used in this reaction

are unique to it while others are shared with the polyadenylation

process that generates all other mRNAs. Recent work has

begun to shed light on how the cell manages the assignment of

these common components to the two 30 processing systems,

and how it achieves their cell cycle-regulation and recruitment

to the histone pre-mRNA. Moreover, recent and older findings

reveal multiple connections between the nuclear organization

of histone genes, their transcription and 30 end processing as

well as the control of cell proliferation.
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Introduction

‘‘And the end and the beginning were always there

Before the beginning and after the end.’’

(T.S. Eliot, ‘‘Burnt Norton’’, 1935)

By reminding us of the importance of ends (or endings)

and of the cyclic nature of many aspects of life, this quote

from Eliot’s ‘Four Quartets’, sets an appropriate stage for

this review. In the RNA World, transcription termination

and 30 end processing are as important as transcription

initiation for RNA biogenesis. For mRNAs, the rate and

site of 30 end processing also play important roles in
www.sciencedirect.com 
regulating their biological functions. Moreover, early

determinants of gene expression, for example, chroma-

tin structure and transcription, are interconnected with

later ones, as RNA processing or the cytoplasmic fate of

the mRNAs. Such connections have been well described

for the bulk of mRNAs that acquire their 30 ends by

cleavage/polyadenylation (CPA; reviewed in [1–3]). The

aim of this review is to discuss new aspects of the

regulation of the animal replication-dependent (RD)

histone genes whose mRNAs are generated by a differ-

ent 30 processing mechanism and which are expressed in

a cyclic manner during the cell cycle. We particularly

discuss the regulation of the so-called heat-labile pro-

cessing factor and its relation to the CPA machinery.

Additionally, we highlight how the organization of the

RD histone genes in specific subnuclear domains termed

histone locus bodies allows for cross-talks between tran-

scription, 30 processing, chromatin structure, cell prolif-

eration and disease.

The main points of this review are summarized in

Table 1.

The animal replication-dependent histone genes

In multicellular animals (metazoans), the synthesis of

histones during the S phase of the cell cycle is ensured

by a particular class of genes, termed RD histone genes.

These are usually present in multiple copies. In humans,

�50 genes for the five histone types are clustered in two

major loci on chromosomes 6 and 1 [4]. These genes do

not contain introns, and their mRNA 30 ends are produced

by cleavage of longer precursors but do not get polyade-

nylated. This unique mode of RNA processing is impor-

tant to ensure that adequate amounts of histone proteins

are produced to pack the new DNA synthesized during S

phase and that the expression of these genes is low in

other cell cycle phases. In mammalian cells, RD histone

transcription  increases �5-fold during the G1 to S phase

transition, and processing is enhanced �8-fold, resulting

in an overall 30–40-fold increase of mature histone

mRNAs [5]. At the end of S phase, the half-life of these

histone mRNAs drops dramatically in response to a

destabilization  of the specific 30 ends (see ‘Cell cycle

regulation of SLBP’). Another class of histone tran-

scripts which are expressed constitutively at a basal

level throughout the cell cycle (encoding so-called re-

placement histones) contain introns and are polyadeny-

lated [6].
Current Opinion in Cell Biology 2016, 40:23–31

https://core.ac.uk/display/82779263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ceb.2016.01.015&domain=pdf
mailto:daniel.schuemperli@izb.unibe.ch
http://www.sciencedirect.com/science/journal/09550674/40
http://dx.doi.org/10.1016/j.ceb.2016.05.007
http://dx.doi.org/10.1016/j.ceb.2016.01.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/09550674


24 Cell nucleus

Table 1

Overview of replication-dependent histone gene regulation

Process Entity S phase Non-S phases References

Histone gene transcription NPAT Phosphorylated Unphosphorylated [38–40]

FLASH Abundant in HLBs Less abundant in HLBs [34,43,59]

U7 snRNP No interaction with hnRNP UL1 Interaction with hnRNP UL1 [51��]

FUS/TLS Interaction with NPAT and histone promoters Interaction with hnRNP UL1 [52��]

HLB staining Strong (4 HLBs) Weak (2 HLBs) [34,43,59]

Histone RNA 30 processing SLBP concentration High Low [19]

CstF64 concentration High Low [23��]

HLF Active Inactive [20]

U7 snRNP/Lsm11 Interaction with FLASH in HLBs No interaction with FLASH [33��]

FUS/TLS Interaction with U7 snRNP [52��]

Transcription and RNA 30 end processing of the animal replication-dependent histone genes are minimal in G1 phase and activated upon entry into S

phase of the cell cycle. The table summarizes the regulatory events involved in this regulation as discussed in this review. These are coordinated in

histone locus bodies (HLBs) which are specialised subnuclear structures containing the histone gene clusters and their expression machinery.

Stimulatory and inhibitory mechanisms are highlighted bybold and italic lettering, respectively.
Unique histone RNA 30 end processing mechanism

RD histone RNA processing (RHP; reviewed in [7,8])

requires two cis-acting elements which are recognized by

histone mRNA-specific factors (Figure 1). A highly con-

served stem-loop (or hairpin) structure upstream of the

cleavage site constitutes the binding site for the stem-

loop-binding or hairpin-binding protein (SLBP/HBP)

[9,10]. The second so-called histone downstream element

(HDE) is bound by the RNA moiety of the U7 small

nuclear ribonucleoprotein (snRNP) [11,12]. This minor

snRNP (present in few thousand copies per cell) has a

specific protein composition consisting of five Sm pro-

teins that are also present in spliceosomal snRNPs and

two U7-specific Sm-like proteins named Lsm10 and

Lsm11 [13,14]. Three further proteins associate with

the U7 snRNP: a zinc finger protein of 100 kDa (ZFP-

100, ZNF473) that connects the U7 snRNP to SLBP [15],

FLASH (short for FLICE-Associated Huge Protein, also

named Caspase 8 Associated Protein 2, CASP8AP2) [16]

and the 68 kDa subunit of mammalian cleavage factor I

(CFIm68, CPSF6) [17]. Additional trans-acting proteins

that contribute to RHP are organized in the so-called

heat-labile factor (HLF) [18]. Two of the RHP factors

have been shown to be cell cycle-regulated: SLBP [19]

and the HLF [20]. These regulations, in particular that of

the HLF, will be discussed in more detail below.

Interestingly, most if not all RD histone genes contain at

least one polyadenylation signal downstream of the

U7-dependent site (Figure 1). When RHP is disturbed

experimentally, these downstream signals are used to

produce polyadenylated transcripts [21,22]. These read-

through transcripts are present in low amounts compared

to the canonical histone mRNAs and can also be detected

in unperturbed cells, especially outside of S phase when

RHP is less efficient [23��]. Most of them remain nuclear

and appear to be rapidly degraded by the nuclear exo-

some. However, a small fraction can be detected on

polysomes, indicating that they can function in protein
Current Opinion in Cell Biology 2016, 40:23–31 
synthesis [23��]. This may be a way to ensure that the cell

can produce small amounts of histones outside of S phase

or during proliferative arrest to replace lost histones, for

example, during chromatin remodeling and/or DNA

damage events. This back-up mechanism may also pre-

vent transcription from overrunning the neighboring

genes. A more pronounced case of this behavior is exem-

plified by the replication-independent H2A.X gene

which is processed to polyadenylated mRNA in G1 phase

but selects an upstream U7-dependent cleavage site in

S phase [24].

Cell cycle regulation of SLBP

The SLBP levels fluctuate during the cell cycle in parallel

with those of the histone mRNAs [19]. The upregulation of

SLBP during the G1/S phase transition is brought about by

an activation of its translation, and its down-regulation after

S phase is a consequence of an accelerated degradation by

the proteasome. Besides being involved in RHP (Figure 1),

SLBP protects histone mRNAs from degradation and is a

positive effector of their translation [25–27]. Its degrada-

tion at the end of S phase leads to a stop of histone

translation and to the rapid elimination of histone mRNAs

from the cell [19].

The cell cycle-regulated heat-labile factor plays a pivotal

role between RHP and CPA

The other regulated RHP factor, HLF, is composed of

symplekin, the complete Cleavage and Polyadenylation

Specificity Factor (CPSF) and the 64 kDa subunit of

Cleavage Stimulation Factor (CstF64) [28]. Although

symplekin was shown to be the heat-labile component

[28], it has, until recently, remained unclear how the

activity of HLF is regulated nor how it gets recruited

to the histone pre-mRNA. Moreover, the fact that all its

components are shared with the CPA machinery raised

the question how the cell manages the assignment of

these components to the two 30 processing systems. Based

on work in Drosophila cells, it has been proposed that a
www.sciencedirect.com
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Figure 1
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Schematic view of the replication-dependent histone RNA processing complex. Within �50 nucleotides of the stop codon, histone pre-mRNAs

contain two conserved processing signals, the stem-loop element and the purine-rich histone downstream element (HDE). These elements are

recognized by stem-loop binding protein (SLBP) and the U7 snRNP, respectively. A 100 kDa zinc finger protein (ZFP-100) forms a connection

between these two factors and stabilizes the complex. The U7 snRNP contains a ring-like structure composed of five Sm proteins and the U7-

specific Sm-like proteins, Lsm10 and Lsm11. A N-terminal extension of Lsm11 additionally binds the 68 kDa subunit of mammalian cleavage

factor I (CFIm68) and FLASH. Together, Lsm11 and FLASH provide a docking platform for the Heat Labile Factor (HLF) which consists of proteins

that are also involved in cleavage/polyadenylation (CPA): symplekin (SYMPK), Cleavage Stimulation Factor 64 kDa subunit (CstF64) and all six

subunits of Cleavage and Polyadenylation Factor (CPSF). CPSF-73 is the endonuclease that cleaves the pre-mRNA after a CA dinucleotide. While

SLBP binds to the 50 side of the hairpin, the 30 side is occupied by 30hExo, an exonuclease that trims the 30 end of the mRNA after cleavage and

may also be involved in histone mRNA degradation. If the canonical histone processing site is not recognized, a downstream polyadenylation

signal can be used by the CPA machinery, resulting in polyadenylated histone transcripts.
subcomplex of the HLF, composed of CPSF73, CPSF100

and symplekin (termed core cleavage complex (CCC)), is

operational in both RHP and CPA [29,30�] (Figure 2).

Moreover, CstF64 is known to undergo mutually exclu-

sive interactions with CstF77 and symplekin [31,32], and

recent work showed that the CstF64-symplekin interac-

tion is essential for RHP [23��,32]. These mutually ex-

clusive interactions may determine whether CstF64 gets

incorporated into the CstF complex used in CPA or the

HLF involved in RHP. However, it is not known whether

and how this binding to CstF77 or symplekin is regulated

and whether HLF exists throughout the cell cycle or has

to be assembled during the G1/S phase transition. As
www.sciencedirect.com 
CstF64 levels also show a slight cell cycle regulation, its

increasing amounts during S phase might favor its incor-

poration into the HLF, whereas the lower amounts pres-

ent in other cell cycle phases might be incorporated

preferentially into CstF complexes [23��]. However it

is also possible that other events, for example, posttrans-

lational modifications, play a role in HLF assembly and/or

activation.

Concerning the recruitment of the HLF to the histone

pre-mRNA, it has been shown that the U7 component

Lsm11 and FLASH are essential for RHP [14,16] and, by

interacting with each other, provide a platform for binding
Current Opinion in Cell Biology 2016, 40:23–31
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Figure 2
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Molecular interactions guiding the formation of cleavage/polyadenylation (CPA) and replication-dependent histone RNA processing (RHP)

complexes. A core cleavage complex common to RHP and CPA is formed by the interaction of the C-termini of CPSF-73 and CPSF-100 with a

CPSF-binding segment (green) of symplekin (SYMPK). Mutually exclusive interactions of the hinge domain of CstF-64 with either CstF-77 or

SYMPK are decisive for the formation of the CstF complex involved in CPA or the heat-labile factor (HLF) active in RHP. The HLF is tethered to

FLASH by interactions of the MEARA/G domain of CstF-64 and a yet undefined region of SYMPK with FLASH. FLASH, in turn, makes contact

with NPAT (leading to the formation/stabilization of HLBs and stimulation of histone gene transcription) and with the U7 snRNP component Lsm11

to allow the recruitment of the HLF to the histone pre-mRNA.
the HLF [33��]. On the other hand, two of the HLF

components can bind to FLASH: CstF64 does this

through its MEARA/G domain, and symplekin with a

not yet characterized domain [23��]. Additionally, CstF64

and symplekin must bind to each other to fully tether the
Current Opinion in Cell Biology 2016, 40:23–31 
HLF to FLASH and the histone pre-mRNA [23��,32]

(Figures 1 and 2).

Another possibility which is also compatible with the

above interactions is that HLF does not get assembled
www.sciencedirect.com
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as a separate entity, but rather directly on the U7 snRNP/

FLASH platform. An argument against this is the fact that

the original affinity-purified HLF did not contain U7

snRNP components or FLASH [28], but this might have

been a purification artefact.

Nuclear 3D organization and the co-regulation of histone

gene transcription and processing

The repetitive nature and genomic clustering of the RD

histone genes and the formation of specialized subnuclear

structures at these loci, called histone locus bodies

(HLBs) [34,35], are important features in the cell cycle

control of histone gene expression. HLBs are enriched in

transcription factors and 30 processing components need-

ed for histone gene expression, and their formation fol-

lows a hierarchical protein recruitment that appears to be

nucleated by transcription [36,37]. By immunostaining of

HLB components, two foci, corresponding to the largest
Figure 3
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cluster on chromosome 6, can be visualized in G1 phase

cells, whereas the two additional HLBs corresponding to

the minor cluster on chromosome 1 only appear during

the transition to S phase (Figure 3).

NPAT (Nuclear Protein, Ataxia-Telangiectasia Locus) is

the main factor responsible for the S-phase-specific tran-

scriptional activation of all RD histone genes. It gets

activated by cyclin E/Cdk2-dependent phosphorylation

which most likely is the primary event that triggers a

cascade of protein recruitments to the HLBs at the G1/S

phase boundary [35,38–41]. This phosphorylation acti-

vates histone transcription and promotes the recruitment

of FLASH (by direct interaction with NPAT) to the

HLBs [42], thus reinforcing the formation of active HLBs

[34,43,44] (Figure 3). Subsequently, FLASH makes con-

tacts with the U7 component Lsm11 to provide a platform

for the recruitment of the HLF [33��] while transcription
-dependent histone genes
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occurs. This may involve the non-coding Y3** RNA

which was recently shown to promote the accumulation

of CPSF into HLBs and to stimulate RHP [45�].

Even though there is no direct evidence for an association

of processing factors with the C-terminal domain (CTD) of

RNAP II as for CPA, several lines of evidence indicate that

the transcription machinery for the RD histone genes has

special features which contribute to both the cell cycle

regulation and the particular mode of RNA 30 processing.

Studies on Drosophila polytene chromosomes indicate that

the TATA-less H1 gene promoter utilizes TBP (TATA-

box-binding protein)-related factor 2 (TRF2) [46]. By

contrast, the core histone promoters appear to use TBP

and TFIIA but neither TFIIB nor the complete TFIID

complex [47�]. Even though both types of promoters show

an S phase-specific activity, their actual kinetics within the

S phase are different. Moreover, the phosphorylation of the

CTD at Thr-4 has been reported to be important for RHP

in mammalian cells [48�]. However, Thr-4 phosphorylation

is also more generally enriched at the 30 ends of genes that

generate polyadenylated mRNAs, and its suppression gen-

erates global elongation defects [49,50].

Another interesting connection between RHP and his-

tone gene transcription is that the U7 snRNP interacts

with the hnRNP protein U-like 1 (hnRNP UL1) and

represses histone gene transcription in growth-arrested

cells [51��] (Figure 3). The mechanism has not been

investigated in detail and it is not clear whether this

phenomenon also occurs in cycling cells. Nevertheless, it

is likely that this feed-back inhibition co-operates with

the NPAT-dependent transcriptional activation to regu-

late histone gene transcription. Furthermore, recent

work has suggested that FUS/TLS (fused in sarcoma/

translocated in liposarcoma) may play a role in histone

gene regulation [52��]. FUS was shown to interact with

NPAT in S phase and to positively affect transcription

and 30 end processing of histone mRNAs. Additionally,

through interactions with the U7 snRNP and hnRNP

UL1, FUS also seems to be involved in the transcrip-

tional repression of the RD histone genes outside of

S phase.

Connections with chromatin, DNA damage and cell

proliferation

In addition to its role in RD histone gene transcription,

NPAT interacts with Cdk9 and thereby regulates chro-

matin modifications through a complex network of phos-

phorylations and protein interactions which ultimately

also affect RHP [53��]. This recruitment of Cdk9 to

histone genes increases the phosphorylation of Ser2 on

the RNAP II CTD, which is essential for the enrollment

of the multifunctional RNA Polymerase II Associated

Factor (PAF). PAF in turn stimulates the activity of

the E3 ubiquitin ligase complex RNF20/40 that catalyzes

H2B monoubiquitination (H2Bub1). On the histone
Current Opinion in Cell Biology 2016, 40:23–31 
loci, H2Bub1 levels are specifically elevated near the 30

cleavage sites. H2Bub1 can recruit the ASH2L or SET2D

methyltransferase complex that methylates the lysine

4 position of histone H3 (H3K4me) [54]. This modifica-

tion serves as docking site for the chromodomain helicase

DNA binding protein 1 (CHD1) that can recruit spliceo-

somal components, in particular the U2 snRNP [55]. This

sequence of events is most likely relevant for RHP, since

histone open reading frames (ORFs) contain a conserved

22nt binding site for the U2 snRNP and this binding

stimulates RHP [56]. Furthermore, one component of the

PAF complex, the tumor suppressor Cdc73, has been

shown to associate with CPSF and CstF and to contribute

to the 30 end maturation of polyadenylated [57] and RD

histone mRNAs [58].

RHP is also affected by the DNA damage response.

When DNA damage occurs during DNA replication,

FLASH relocates from HLBs to the cytoplasm leading

to the disruption of HLBs and to a cell cycle block in S/G2

phase [59,60]. Another component of HLBs is ARS2

(Arsenite Resistance Protein 2, SRRT), a component of

the cap-binding complex (CBC) that interacts with

FLASH through its central domain. A disruption of this

interaction results in proliferation defects [42]. Moreover,

a depletion of SLBP leads to defects in chromatin con-

densation and to cell death [61]. Thus RHD is not only

cell cycle-regulated but also important for a normal chro-

matin structure and cell proliferation.

Outlook
Even though the major players in the actual histone RNA

processing reaction are known, it is conceivable that

additional components may be found, especially ones

that link RHP to other nuclear events. Concerning the

cell cycle regulation of RHP components, that of SLBP is

fairly well understood, but the regulation of the HLF is

still in an early phase of investigation. To fully understand

how the cell manages the assembly of this complex

composed of proteins used in both CPA and RHP, how

it regulates its activity and how the HLF integrates into

the RHP complex will require a detailed study of all

possible interactions and post-translational modifications

of these components. Moreover, for most of the connec-

tions between the nuclear organization of RD histone

genes in HLBs, their transcription and processing and

other nuclear events discussed here, the underlying

mechanisms remain to be characterized in detail. Finally,

the fact that histone gene expression, and in particular

FLASH, may be involved in the regulation of cell prolif-

eration [59,60] suggests that RHP may be related to

diseases. There is emerging evidence for a role of the

polyadenylated histone read-through transcripts in cancer

[62–64]. Moreover, partial deletions of the histone gene

cluster on chromosome 6 have been linked to Down

syndrome acute lymphoblastic leukemia [65]. Thus,
www.sciencedirect.com
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future studies of the metabolism of RD histone genes are

likely to yield further interesting discoveries.
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5. Harris ME, Böhni R, Schneiderman MH, Ramamurthy L,
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