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A convergence theory is given for approximation techniques to treat inverse 
problems involving systems of nonlinear parabolic partial differential equations. 
These techniques can be used to estimate density-dependent dispersal coefficients in 
population models, as well as nonlinear growth and predation terms. Numerical 
experiences with the resulting algorithms on both conventional (scalar) and vector 
computers are reported along with an indication of performance of the methods 
with field data from prey-predator experiments. b 1989 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this paper is to give the mathematical and computational 
foundations for techniques we have developed to use with inverse problems 
involving nonlinear density-dependent dispersal, growth, and predation in 
population models. These models entail nonlinear parabolic systems of 
partial differential equations and are playing an increasingly important role 
in studies by population biologists and ecologists [ll, 14, 151. As we shall 
explain briefly in the context of one of the numerical examples presented in 
Section 4, we have already successfully used the techniques investigated in 
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this paper in studies with data from experiments for aphid-ladybird beetle 
interaction in goldenrod stands [4]. 

While the work reported below is thus well motivated by real applica- 
tions, the focus of this paper is mathematical in nature. We present in 
Section 2 a theory for the convergence of approximation schemes in inverse 
problems (this theory also yields a stability or continuous dependence of 
parameter estimates on data similar to that discussed in [ 11). The 
approach we take here involves variational arguments in the spirit of those 
discussed in [ 1 ] and sometimes employed in presentations on convergence 
of finite element techniques. Although we announced these results earlier in 
[7], this is the first rigorous presentation of the mathematical foundations 
of these methods. 

In Section 2 we give a fairly general theoretical framework and show 
in Section 3 how several specific examples (density-dependent dispersal, 
nonlinear growth, predation) of interest fit readily into this framework. 

We discuss computational aspects (implementation and numerical exam- 
ples) in Section 4. In addition to the example involving application of the 
methods to field data already mentioned above, we present in this section 
several numerical test examples designed to demonstrate efficacy of the 
methods. Since (due to the nature of the inverse problems addressed) the 
methods can be computationally quite intensive on sequential computers, 
we also discuss an example to demonstrate how vector machines such as 
a CRAY 1-S can be used to significant advantage in such inverse problem 
methods. 

The mathematical notation we use throughout is quite standard: The 
usual notations L”, Hj(0, l), W1~m(O, 1) represent standard Banach and 
Sobolev spaces. At times we denote spatial differentiation by D = djdx. 

2. THEORETICAL FOUNDATIONS 

For our model equations, we consider the system (i = 1,2) 

au. a 
-g=G =%i(t, x, 42 

( > 
+“fi(u1, %I for ?E [IO, T], xfz [0, l] 

$,O&(t, l)=O 

u,(O, x) = UOi(X). 

In this system, ui(t, x) represents the density of the ith species at time t and 
position x; due to the nature of the experiments which motivated this 
work, we will consider movement as though constrained to one spatial 
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dimension. The parameters on which we would like to focus here are the 
nonlinearities gi andfi. We believe we are the first to treat the problem (at 
the level of generality we do) of estimating such unknown functions. The 
terms gi (which we shall refer to as “diffusion” terms, by analogy with dif- 
fusion/reaction equations) model random spreading (as opposed to direc- 
ted movement). A growing number of biologists now feel a simple constant 
diffusion term is insufficient to describe insect dispersal (see, for example, 
[ 111); here we assume that it is density dependent. The nonlinearities f, 
(which we shall refer to as the “reaction” nonlinearities), also assumed 
to be unknown, represent mechanisms such as birth/death, immigra- 
tion/emigration, and predation. We will establish convergence results for 
estimation of a very general class of the unknown parameters described 
above, but will then present specific, motivating examples of such classes 
which are of interest to population biologists; our numerical examples are 
drawn from these. 

We note that the biological problems motivating our efforts here influen- 
ced our choice of Neumann boundary conditions in the model system (1); 
we could readily treat other standard types of boundary conditions 
(e.g., Robin or Dirichlet) with straightforward modifications of the ideas 
presented here. 

We define our general class /1= LI, x /1, of admissible diffusion coef- 
ficient functions by listing hypotheses that the member elements must 
satisfy. We assume for each i = 1, 2 the following: 

(Al) Every 9 E /ii is such that 5 -+ 9(t, X, 0 is continuous for 5 E I$. 
(A2) There is a constant Bi > 0 such that 

for every 9eni, UEP(O, l), and $EH’(O, 1). 
(A3) There is a constant Oi>O such that 

for every 9 E /li, u E L”(0, l), and II/ E H”(O, 1). 
(A4) There exists Big L”( [0, T] x [0, 11) such that 

for every 9 E ni, 5, q E R. 

Assumption (A4) implies 
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(A5) There exists a constant Ki such that 

P(t, ., ul)-g(t, ‘9 U2)loGKi 101 -uzlo 

for every 9~/i,, and ul, u~EL~(O, 1). 

We will further assume that the sets ni are compact in the following sense: 

(A6) Any sequence in /ii has a convergent subsequence ($3“) with 
limit 9 in ni in the sense that 

pqt, .) u)-qt, .) u)lz, -0 in HO(O, T) 

for every u E L”(0, 1). 

We turn next to a discussion of the admissible class 5 = S$ x 4 of reac- 
tion nonlinearities. We assume that there exist numbers wi > 0 such that f, 
is constant for all (qI, v],) outside W = W, x W,, where Wi E [0, wi]. 
Hence it is sufficient to estimate fi on the bounded region W. We will 
further assume that each e is a compact subset of C(W). Finally, we 
assume that eachfE 6 satisfies a Lipschitz condition of the following form: 

Before stating the parameter estimation problem precisely, we first 
rewrite the original equation (1) in weak, or variational, form. We shall use 
the notation f= (f,,f2)T to denote a vector function, Df= (Ofi, Of*)‘, 
&I, x, U)= (gI(t, x, u,), g2(t, x, u2))‘, and (., .), 1.1 will be used to repre- 
sent the inner product and norm for either H’(O, 1) or H’(O, 1) x H’(O, 1) 
whenever it is clear from the context which is meant. Equation (1) is then 
equivalent to 

(U,, (P) + (g(t, ., 4OW D@) = (f(f4, (p> 

forall @eH’(O, l)xH’(O, l), 

U(0, .) = u,. 

(2) 

We will introduce an approximation scheme and pose a parameter 
estimation problem involving approximating (computationally tractable) 
differential equations. We are interested in questions of convergence for our 
numerical schemes. We want to know when one can expect that optimal 
parameter fits obtained using this approximating system (call these 
parameters qN) will yield useful information regarding best-lit parameters 
for the original system (call these parameters q*), i.e., we want to prove 
that qN+q* as N+ co, in some sense. As we shall see, assumptions 
(Al )-(A6) and (Bl ) are conditions under which we can argue subsequen- 

409:141!2-I9 
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tial convergence of parameters. We are not focusing on questions of 
existence and uniqueness here; we defer such questions to a separate 
investigation. For this paper we will simply assume that members of A and 
9 possess sufficient regularity to guarantee that solutions of (2) satisfy 

(Cl) u E H’([O, T]; W’~X(O, 1) x W’%m(O, 1)) and U, E L’([O, r]; 
HO(0, 1) x HO(O, 1)). 

Let Q = A, x A, x 9, x FZ denote the admissible parameter set. Given 
data y’(x) = (y{(x), y:(x)) corresponding to a solution of (1) or (2), at 
various time observations { t,} :=, , we state the parameter estimation or 
identification problem as: 

Find q = (9, , 9?$, f, , fi) E Q which minimizes 

J(q) = i: /j’- U($, .; q)12 
j= 1 

subject to U a solution of (2). 

(IDI 

We assume that a sequence of approximating state subspaces HN c 
H ‘(0, 1) has been chosen (in our case, these are based on spline functions); 
we then define PN to be the orthogonal projection (in the Ho topology) 
of H’ onto HN. We will discuss the construction of HN in more detail 
when we present our numerical results in a later section. For now, we will 
assume the projections and spline subspaces are such that the following 
convergence statement holds (the spline schemes we have used satisfy such 
hypotheses): 

(Dl) Let PN=PNxPN:(H’xH’)-+(HNxHN). If cpeH”xHo 
then IPNCp-Cpl+0 as N+co; if @EH’xH’, then ID(P,@--@)I--+0 as 
N-CO. 

Given such an approximation family, for each N we define an approxi- 
mating equation to (2) by 

<ii;, (p) + (B(t, .) UN)@DiiN, Dcj) = (f(i”), cp) for all @ E HN x HN 

UN(O, .) = P,U,. VN) 
The associated approximate identification problems can then be stated as 

Find q E Q which minimizes 

F(q)= i lyj-iP(t,, .; q)l” (IDN) 
j=l 

subject to UN a solution of (2N). 
To actually implement these ideas (i.e., to compute the minimizer q of JN), 
one has to either parametrize or approximate the infinite-dimensional 
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parameter set Q. We shall return to this point in later discussions. Suppose 
for now that we have generated a sequence of solutions {qN} for the 
problems {IDN}. We are guaranteed that such solutions exist by the con- 
tinuity of JN in q (that JN is continuous in q follows from the continuity 
of the approximate solutions u’“; this continuity can be seen most clearly 
from the ordinary differential equation representation of (2N) which will be 
discussed in Section 4) and the compactness (by assumption) of Q. The 
compactness of Q also ensures that a subsequence of { qN} converges to a 
limit in Q. We would like to know that this limit is a solution of (ID); as 
argued in previous work by these authors and others (see, for example, 
[2, 3]), this result follows once we show that for an arbitrary sequence 
(4““‘) c Q, qN --f q in Q implies UN(t; qN) + ti(t; q) in H’(O, 1) x H’(O, l), 
for each t in [IO, r], where UN(t; qN) represents the solution of (2N) using 
the parameters q”‘, and ii(t; q) represents the solution of (2) using q. Using 
the convergence statement (Dl), and the triangle inequality 
IUN(t; qN) - zT(t; q)l 6 IUN(t; qN) - P,fZ(t; q)j + IP,ii(t; q) - ti(t; q)l, we see 
that we need only prove that I U”( t; qN) - P,U( t; q)] -+ 0 as N -+ cc for each 
t in [0, r] in order to obtain the desired result. Henceforth, we shall use the 
notation UN = ti”(r; qN), U = z?(t; q), and we shall let ZN = U” - P,U (note 
that Z”(t) E HN x HN); moreover, we shall assume qN -+ q in Q (i.e., for 
i= 1, 2, g;Y -+ 9, in the sense of (A6) and ,f” +f, in C( IV)). Using Eqs. (2) 
and (2N), we have for any II/EH~xH~cH’xH’ 

(Z~,~)=(U~--U,,~)+((~--PN)~,,~) 

= (&U)@DU--N(zTN)@Dz2N, Dtj)+ (f”(ti”)-f(C), 1+6) 

+ ((z-pN)u,, $). 

If we choose $ = jN in the above equation, we get 

;; IZNJ2= (a(ti)@DG-gN(UN)@DtiN, DZN)+ (,f”(U”)-,f(U),ZN) 

+ ((I- P,)ii,, 2”). (3) 

Let us consider each component of the first term on the right-hand side of 
Eq. (3), (~i(ui)Du,-~~(~~)D~N, 0~;“). For convenience, we shall drop 
the subscript i in the following estimates. We have 

(~(u)Du-~~(z/‘)Du~, DzN) 

= (SS(u)Du-BN(uN)DPNu, DzN)- (QN(uN)DzN, DzN) 

< (~(u)Du-9~‘(uN)DPNu, DzN)-0 lDzN12 

= ((9(u)-gN(u))Du, Dz”) + ((~“(u)-~~(u~))Du, DzN) 

+ (@“(uN)(Du-DPNu), DzN)-8 (DzN12 
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<; ID2412 Icqu)-9”(u)l’, +F lDul2, (lU-pNUI*+ lz”l’) 

+g,D(u-PNU)l*+ 2-e IDzN12, ( > 
where we have used (A2), (A5), and (A3), and c is any positive constant. 
If we choose c = 012, we obtain 

(~~(u)Du-~~(u~)Du~, DzN) <f IDul* I9(+9”(u)12, 

+T lDul2, (lu-PNu12+ Iz”l’)+$ ID(u-P%)I*. 

Defining k,(t) =max,, 1,2((1/0,) IDui12), k*(f) =max,,,,,((2Kf/Bi) (Du,~;), 
k, = maxi,,,,(Of/Oi), and combining the above inequality with (3), we 
have 

+k, ID(ti--PNti)~*+;I~“(uN)--f(U)12 

+; I(Z-PPN)iit12+ 1q*. (4) 
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From (Bl ), it follows that 

If”(ii”) -f(ii)12 d 2 If”@“) -f”(u)l’+ 2 If”(C) -f(U)l’ 

<4p21ziN-cl*+2 If”@)-f(ti)l’ 

<8p2 ITN12+8p2 IP,U-iii*+2 I~N(ii)-f(fi)12. 

Finally, substituting the above inequality into (4) we obtain 

;f JZN12< (kz(t)+ 1 +4p2) IzN12+k,(t) IL&+W(U)IZ, 

+ IfNtu) -f@)l’ + &2(l) + 4p2) Itz- pN)“12 

+k, ID@-P,u)lZ+; I(z-P,)ii,12. 

If we define w(t) = 2k,(t) + 2 + 8~~ and 

hN(t)=2k1(t) I@+aN(u)12, +2 If”@)-f(zq2 

+2(k2(t)+4p2) [(I-P,)ti12+2k3 lD((Z-P,,+)12 

+ [(I- pN)“,12 

then the above estimate is of the form 

-$ [TN12 <co(t) IzNl*+hN(t). 

It follows from the convergence qN + q in Q, the smoothness assumptions, 
(Cl), made about the solution of (2) and (Dl) that h”‘+O in L’(0, T) as 
N -+ co; the assumptions in (Cl) also ensure that o E L’(0, T), and hence, 
the Gronwall lemma implies that IZN12 + 0 as N--t 00, as desired. 

The above estimates, together with the discussion preceding them, 
provide the essentials of the proof of the following theorem. 

THEOREM. Consider model equation (1). Suppose we search for 
q=(91,92,fi,f2) in Q=AlxA2xFlx~2, where we assume A,,A, 
satisfy assumptions (Al )-(A4) and (A6), and Fl, F2 satisfy (Bl ) and are 
compact subsets of C( W); we further assume that Eq. (1) has a solution 
satisfying (Cl), and we have an approximation scheme which satisfies (Dl). 
Then, for each N, (IDN) has a solution qN, and there is a subsequence {qNk} 
with the property that qNk + q in Q, with q a solution of (ID). 
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, 

3. SPECIFIC EXAMPLES 

In this section we discuss a particular class of examples that are included 
as a special case of the theoretical framework developed in the previous 
section. This class of examples involves models that have been suggested to 
describe the dynamics of populations in which density-dependent dispersal 
and nonlinear growth/death, etc., are important components. 

Density-dependent “diffusion” has been discussed by several authors, in 
various forms (see, for example, [ll], or [14, 15)). The form we chose to 
consider here is 

1 

f,(t, x) for Y <~,(t, x) 

%i(t, x, Y) = @;(t, xl + Bitt, X)Y for ji(tJ)<yQYj(t,X) 

Li(t, x, for y > yi( t, x), 

where, to satisfy the continuity in y assumed in (Al), we require that 
ei(tyx)-Ui(t,x)+ji(t,~)Yi(t,~) and L,(t,x)~~,(t,x)+/?i(t,x)Yi(t,~); 
Fig. 1 is the graph of a typical such GBj(t, x, y) vs. y for a fixed t and x. One 
biological interpretation of the diffusion represented by such a Bi, in the 
case of insects, for example, is as follows: At sufficiently low densities, the 
insects disperse with a density-independent basal value. Once a certain 
threshold density has been reached, they begin to disperse at a rate which 
increases with increasing density; at high density, the dispersal rate 
saturates at a maximum, density-independent value. This dispersal coef- 
ficient could be used to model a population which is sensitive to overcrow- 
ding effects-the saturation is indicative of the fact that insects can only 
move so fast, despite an inhospitable environment. 

FIGURE 1 
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We will make some further assumptions in order that this particular 
form of gi will fit into the theory outlined in Section 2. We assume for 
i = 1, 2 that cl; E A, pi E B, _yi E r, and ljj E F, where 

A={cc~L~([O,T]x[O,l])~~Qcr(t,x)<5a.e.}, 

B= {fl~L~([0, 7’1~ [0, 11) / b<fi(t,x)<1;a.e.}, 

L= {YEL~([O, T] x CO, 11) I -cl dy(t, x)dZ, a.e.}, 

T= (~EL~([O, T] x [0, 11) 1 _c,<y(t,x)bc,a.e.}, 

and a, 4 b, 6, -cl , Cl, _c,, C, are all positive constants with c, > C,. With 
these assumptions, it is straightforward to verify that (A2)-(A4) are 
satisfied. Furthermore, the compactness condition, (A6), is satisfied if we 
assume that each of the sets A, B, r, r is a compact subset of C( [0, T] x 
[0, 11). (We could impose weaker compactness conditions and still remain 
within our established theory; however, these weaker compactness assump- 
tions are harder to characterize, and thus more difficult to implement 
numerically.) At this point, we have reduced the estimation of L@ to the 
estimation of a set of temporally and spatially varying coefficients. In our 
numerical examples (in the next section) we further reduce cli, pi, )i, jJi to 
constants. We remark, however, that truly temporally and spatially varying 
coefficients have been successfully estimated in other contexts and could be 
here as well. Following the ideas presented in [S, 61, we could, under 
stronger assumptions on the parameter sets A, B, i=, r, develop an exten- 
sion of our theory, in which we search for unknown functional parameters 
within finite-dimensional approximation spaces AM, B”, TM, TM. In this 
case the parameter approximation space n M = AM x BM x CM x FM x AM x 
BM x TM x FM would be chosen in such a way that we could expect AM to 
approximate A in an appropriate sense, with better approximation for 
larger M. We direct the interested reader to [S] for details (both theoreti- 
cal and numerical) of one such approach; there the authors wish to 
estimate a function q(t, x). Using either bilinear or bicubic spline sub- 
spaces, they estimate q”(t, x) = zz.=, 6jjpi(t)pj(x), where 6, are constants 
(the unknowns which are estimated) and fli, pj are (known) spline basis 
elements. 

In many of our numerical examples, we have assumed a parametrized 
form for the reaction nonlinearity terms. We were motivated by a biologi- 
cal application (see [4]) in which Eq. (1) represents the population 
dynamics of a predator-prey relationship, with u1 the density of prey and 
u2 the density of predator. The functionf, encompasses population growth 
of prey and loss due to predation, while f2 is a combination of emigration 
and immigration of predator. The mechanisms for such a model have 
classical representations. Specifically, we consider cases where f,(u,, u2) = 
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r(ui)-p(ui, z+) and f2(u1, u,)=i-e(u,, u,); here r(u,)=r,u,+r,u:- 
r3u: is the growth rate of the prey, p(ur , u2) =p, uluZ represents predation 
on prey, i is the rate of immigration (assumed constant) of predator, and 
e( u r, u2) = u2 @( u r ; 2) is a predator emigration term (we have parametrized 
@ in terms of an unknown vector t? in several ways to be discussed in the 
next section). Both f, and f2 are assumed to be constant outside some 
region W (defined in Section 2). The interested reader can find a discussion 
of the biological justification for such forms of f, in [4]. With these 
parametrizations, the estimation of fi , f2 is reduced to the estimation of the 
constants rir pi, i, e,. If we search for these constants within a set of 
compact subsets of R, then all our required assumptions about the reaction 
nonlinearities are met, and such examples fit into the theory established 
above. 

In some situations it may be desirable to estimate the shapes of unknown 
functions without an a priori parametrization. Such procedures can also be 
treated in the context of the mathematical and computational framework 
presented in this paper. To illustrate the ideas involved, consider the case 
where one wishes to estimate a reproduction term r (i.e., assume 
fi(u,, uz)-Y(u,) without assuming r is necessarily cubic) within a given 
family e={f~ W’,m(W,) 1 f(O)=O, lDfl,<p, IfIm<v}, where W, is 
defined in Section 2, Jo and v are positive constants. The set 9, is a compact 
subset of C( W,), and each f E F1 satisfies (Bl ). Let Sr( W,) denote the 
subspace of piecewise linear functions on W, = [0, wr] with knots at 
tj -jw,/M, 0 <j < A4 (see [ 123); this subspace is spanned by the “hat” 
functions, or linear spline elements. Define 9”;” = % n Sf”( W,). The set 
F”;” is also compact in C( W, ), as 6 is compact, and Sf”( W, ) is closed in 
C( W, ). Moreover, we can characterize 9y as i”F where iM is the inter- 
polating operator from W’*m( W,) to Sy( W,) (i.e.,Lfbr any fE W1,Oo, i”f is 
the unique element in S;U satisfying i”‘f (t,) =f (t,) for j= 0, 1, . . . . M). We 
restate the approximate parameter estimation problem as minimize JN over 
eM where QM = A, x A2 x 9”;” x 4. (For ease in exposition, we have 
assumed that all other parameters besides f, = Y are constant, or have 
been parametrized resulting in a set of constants.) If we define 
IM =id x id x iM x id, where id is the identity map, then we can write 
QM = Z”Q. The sets QM for each M are compact, implying that a solution 
4 N,M will exist for every N, M. Moreover, since qN*M E QM and QM c Q, we 
have a sequence { qN, M } in the compact set Q; thus a subsequence {qy*Mk} 
exists in Q with qy,Mk -+ q* E Q as N,, M, + co. We claim that this limit, 
q*, is a solution of (ID). By the definition of qNj,Mk, we have JNl(qNj,Mk) 6 
JNl(q) for all qE QMk, which implies that JNl(qN~~Mk) < JNI(IMkq) for all 
qE Q. We now use our earlier result (with a relabeling of sequences) and 
let N,, M, + cc. It follows that J(q*) <J(q) for all q E Q (standard spline 
estimates, see, for example, [ 131, can be used to argue that ZMkq + q as 
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M, + cc ). Estimation of nonlinearities in p(u, , u2) or e(ul , u2) could be 
treated in a similar manner. In the next section we present examples in 
which we estimate r(ur) and @(u,; C), without a priori parametrizations. 

4. NUMERICAL IMPLEMENTATION AND EXAMPLES 

In this section we describe some of our computational experiences with 
the methods described above. We were motivated by the problem of fitting 
field data from an experiment involving a ladybug-aphid predator-prey 
interaction [8-lo]. Before (and concurrent with) fitting real data, we test 
our packages using simulated data. This serves to ensure that our codes 
work, as well as giving us insight into the limitations and sensitivities of 
our algorithm. To create a test example, we choose “true” values of the 
parameters, then use these values to solve the model equations, giving us 
our “data.” In some cases we construct our example in such a way that we 
have an analytic solution, in others we generate data numerically, with an 
independent PDE solver (for the examples reported here we have used 
MOLlD-a subroutine package for the numerical solution of PDEs, 
developed by James M. Hyman at Los Alamos Scientific Laboratory). 

In all our test examples, we have used dispersion parameters $3 which 
are either constant or of the form Qi = si(u,); none has time or spatial 
dependence. Thus, in the derivations to follow, we assume 9; = 9Qui), For 
later reference, the model equations we consider are 

(5) 

u,(O, x) = Y,(x). 

Once we have chosen the state approximation subspace HN, a system of 
ordinary differential equations equivalent to (2N) can be derived. Suppose 
(Bi(x)} ri, is a basis for HN; in all examples below, we have chosen { Bi} 
to be the cubic B-splines on the mesh {xi} given by xi= i/N, i= 0, 1, . . . . N 
(see [12]), but other choices of elements can lit into our theory. 

Then ~r(t, .) E HN implies that ~r(t, x) = CyL I w,(t)Bj(x) (for i = 1,2), 
and requiring that (2N) hold for all (p E HN x HN is equivalent to requiring 
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that {W,}yL, and {w,}~~~ satisfy the following system of ordinary 
differential equations for all k = 1, 2, . . . . Nl : For i = 1 and i = 2, 

In order to solve (IDN), we will, for each fixed N, iterate on the unknown 
parameters 9,, f,; within each iteration, we must solve (5~~) for { wij}~~, 
and { wy}~~, in order to form JN. 

First, for the purposes of illustration, consider the very simple case of 
C@ = constant and f, = 0. Then our equations are linear, and system (5N) 
can be written as (i= 1, 2) 

A%J t) = -G&Kw,( 2) 

.Xwi(0) = R, 

where JH is an Nl x Nl matrix with entries M,= (Bi, Bj), K is an 
Nl x Nl matrix with entries K,= (DB,, DBj), R is a vector in RN’ with 
entries R, = ( Yi, Bi), and w, is the solution vector wi = (wi,, . . . . wiNi) for 
i = 1,2. In this simple case, the computations involved in solving (IDN) 
would not be intensive; the entries of the matrices 4’ and K and the vector 
R are computed as numerical quadratures, and stored once for a fixed N. 
An iteration on the parameter LSj requires a multiplication, and then 
solution of the system of differential equations. Once we introduce the non- 
linearities, fi, however, we must recalculate the quadratures represented by 
(fi, B, ) in (5N) every time we iterate on f,. These computations can be 
very unwieldy on a conventional computer--especially with as many as 
10 unknown parameters on which to iterate. This is the situation we 
encounter in the fairly simple model equation having constant diffusion 
and classical parametrizations for f, such as 

fl(Ul> u2) = r1 UI + w: - r34 -pulu2 

f2(uI 5 u2) = i - u2(el + e2 ev( -e3u1 1) 

(6) 

in the bounded region [Uj <K, and fi,f2 constant in U outside this 
region. For polynomial functions in the states, we can alleviate some of 
the computational difficulties described above. Note, for example, 
that r,(u;“J2 = r2 C;“=l, C;“l 1 W,iWljBiBjy so that (r,(u;“)‘, Bk) = 
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rzcT;, 1 WI WjJA BiB,B, d x. The numerical quadratures (specifically, the 
terms j: B,B,B, dx for all i, j, k-many of which would be zero due to the 
nature of the B-splines) can again be computed and stored once for each 
N. The differential equations to be solved for { njjj} will not be linear, and 
the construction of the right-hand sides of these differential equations will 
be more complicated than for the linear case. Yet much is saved over the 
brute force approach of recomputing numerical quadratures for every 
iteration on r2. All the terms in f, except the exponential can be handled 
in a similar manner (e.g., the term containing r3 involves the computations 
of j: B, B,B, B, d-x). A linear diffusion term can also be treated in this way. 
If 2?;(u) = c(; + fliu, then we need to compute 

w;,B, 
> 

F wvDBj, DB, 
,= I > 

= aj f w)~(DB~, DB,) + Bj f wi~W~(B,DBj, DB, >; 
/=I l.j= I 

hence we need to compute and store s: B,DB,DB, dx. 
Our first examples were run on an IBM 3081; to keep our test problems 

manageable, we reduced the complexity in various ways, as will be 
apparent in the examples below. Later, we gained access to a CRAY (the 
l/S, then the X/MP) through Boeing Computer Services, under the 
auspices of NSF. We were then able to test more complex sample problems 
and some of these will be described below. Finally, we will conclude this 
section with some comments about our attempts to fit the field data men- 
tioned earlier. 

In all our test examples, we first chose “true” values for parameters 
(designated q*), then generated “data” (as described above) at 11 equally 
spaced points in space and 3 equally spaced points in time. To generate a 
sequence of parameter estimates with these data, we fix N and choose an 
initial guess for parameter values (4’). We use the IMSL subroutine 
ZXSSQ (based on the Levenberg-Marquardt algorithm) to perform the 
optimization, resulting in a best fit 4”. Within each iteration of ZXSSQ, the 
ordinary differential equations are solved with the IMSL subroutine 
DGEAR (based on Gear’s method). We use the parameter estimate 4” 
obtained with the first value of N as the initial guess to solve (IDN) at the 
next higher value of N, and so on. 

EXAMPLE 1. Our model equation is (5) with constant diffusions g1 and 
&, and with fi as in (6) (here we have K= lo), and Y,(x)= Y,(x)= 
4.0 - 16.0 (x-OS)*. This represents a full two-species interaction, and 
involves 10 parameters. For the purpose of testing the algorithm, with the 
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TABLE 1A 

Parameter values Residual sum of squares 

ry = 2.0 r; = 2.0 ry = 2.0 p” = 2.0 
i4 = 1.027 f4 = 2 0.978 i4 = 1.017 3 /i4 = 0.937 J4(cj4) = 0.434 x 1om4 
rf is = 0.977 1.0 = ri= J8 1.0 1.054 = = r$=l.O is 1.039 p* p8 = = 0.956 1.0 J*(g) = 0.399 x 1om5 

TABLE 1B 

Parameter values Residual sum of squares 

p” = 2.0 e; = 18.0 62; = 2.0 
@4=0.994 z i4 = 20.089 c4 = 1.005 3 J”(cj4) =0.412 x 1O-4 
is = 0.997 P8 = 20.092 g8 3 = 1.005 J8($y=O.171 X 10-S 
p* = 1.0 ef = 20.0 e: = 1.0 

limitations of a conventional (i.e., scalar) computer, we search for only 3 
or 4 of the parameters, assuming the others are known. The true values of 
the parameters are 9: = 0.1, 9; = 0.5, r: = r: = r: = 1.0, p* = 1.0, 
e: = 1.0, e: = 20.0, e: = 1.0, and i* = 3.0. We first estimated r,, r2, r3, and 
p, holding all other parameters fixed at their true values. Our results are 
summarized in Table 1A. We present results in Table 1B from the 
estimation of q = (p, e,, e3), holding all other parameters fixed at their true 
values. 

EXAMPLE 2. Next we consider a state-dependent coefficient 9. So that 
we could use an analytic solution to obtain our data, we considered a 
scalar equation (or a “one-species” model). In this case, we chose a 
solution, chose our parameters 9 and f, then introduced a term F( t, x) into 
the differential equation, determined by 

F=$--& La(u); -f(u). ( > 
Our model equation for this example is thus 

au a 
z=z s(u)g +f(u)+qf,x), 

( > 
O<t<l, OGx61 

(7) 
u(t, 0) = u(t, 1) = 0 

u(0, x) = Y(x). 
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TABLE 2A 

Analytic Solution (No Noise) 

Parameter values Residual sum of squares 

cP= 1.0 p = 3.0 r; = 4.0 r; = 2.0 
c? = 2.99997 /i’ = 1.00002 i; = 2.WOO8 i’: = 0.50003 J4(cj4) = 0.604 x lo- ” 
a* = 3.0 p* = 1.0 r2* = 2.0 r: = 0.5 

TABLE 2B 

Analytic Solution (Noise Added, -2%) 

Parameter values Residual sum of squares 

a0 = 2.0 p” = 2.0 
oi4 = 3.ooO40 /? = 1.01364 J”(ij”) = 0.327 x IO-* 
a* = 3.0 p* = 1.0 

TABLE 2C 

Analytic Solution (Noise Added, -2%) 

Parameter values Residual sum of squares 

i-j = 3.0 i-y = 1.0 
r; i4 = = 2.0 2.17080 i-i i4 = 0.5 0.6009 1 J”(ij”) = 0.297 x 10m2 = 

We chose 9(u) = c( + Bu and f(u) = r2u2 - r3u3, and Y(X) = 6x( 1 -x); the 
true values of the parameters are u * = 3.0, /3* = 1.0, r: = 2.0, r: = 0.5. We 
first estimated all four parameters with our exact data (because we have an 
analytic solution, we can input data with essentially no noise). We then 
estimated each of 9 (i.e., c( and /3) and f (i.e., r2 and r3), using data that 
had been corrupted by noise at a level of about 2%. The results of these 
examples are presented in Tables 2A-2C. The purpose of such an example 
is to obtain some experience with regard to the sensitivity of the estimates 
to the purity of the data (i.e., robustness of estimates with respect to 
observation error). 

EXAMPLE 3A. In this example, we return to the full two-species model 
of Eq. (5), now adding the linear state-dependent “diffusion” coefficient of 
the previous example. The initial conditions are Y,(x) = 6x( 1 -x), 
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TABLE 3A 

IBM 3081 

Total CPU Residual sum 

Parameter Values (=I Time/FE” of squares 

q= 1.0 p:= 1.0 z;= 1.0 p;= 1.0 

ci: =0.1032 8: =0.4823 3i; =O.llOl &=0.4687 1044.0 10.74 55(4’)=0.199x 10-l 

a:=0.1 p: =0.5 z: =O.l p: = 0.5 

a FE = function evaluation = evaluation of J” 

Y,(x) = 60x( 1 - x). To make the parameter estimation feasible on the IBM, 
we parametrize f, solely in terms of polynomial representations (J; are as 
in (6), except that the emigration term used is @(u, ; e) = e , - e2 u i ), and we 
attempt the estimation only of cli, flj in 9i(ui)=a,+/?iui, holding all the 
parameters off, fixed at their true values. The true values of the parameters 
are cc~=cc~=O.l, /I:=/I2*=0.5, v,*=l.O, rf=2.0, r:=0.5, p*=l.O, 
e: = 5.0 ef = 0.5, and 
example. 

i* = 3.0. Table 3A contains the results of this 

We have included CPU times for this example because this is one which 
we later repeated on the CRAY. The CRAY has faster arithmetic than the 
IBM 3081, as well as having vector-processing capabilities. We note that 
numerical quadratures are readily vectorized calculations (while the 
method described earlier for making use of the polynomial form of special 
parametrizations off, is not efficiently vectorized). Thus, we discovered 
that it is actually more effective to recompute the quadratures in the 
differential equations when using a vector supercomputer; this suggests that 
the more complex nonlinearities need no longer be so computationally 
intimidating. We present our next example as a means for comparison of 
the CRAY to the IBM. In the IBM example (Example 3A, above), all 
quadratures have been computed ahead of time and stored, a more efficient 
technique for this machine, while in the CRAY example (Example 3B, 
below) all quadratures are computed as they are needed, the more efficient 
technique for this machine. It should be noted that different versions of 
software packages (e.g., the Levenberg-Marquardt and Gear routines) are 
available on the different machines, so a direct comparison is perhaps not 
completely meaningful. To compensate for the difference in optimization 
algorithms, we have listed CPU time required per evaluation of JN 
(referred to as function evahrations) as well as total CPU time. 

EXAMPLE 3B. The model equations and true parameter values are 
exactly as in Example 3A. The difference is that this example was run on 
the CRAY. See Table 3B. 
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TABLE 3B 

Parameter values 

Total CPU Residual sum 

(set) Time/FE” of squares 

u: = 1.0 by= LO d’= 1.0 

2: = 0.1101 

p:= 1.0 

ri; = 0.1034 & = 0.4817 & = 0.4685 55.0 0.34 Js(ijs)=0.283x lo-’ 
a:=o.1 p:=o.s 1: =O.l /I: = 0.5 

u FE = function evaluation = evaluation of J.’ 

The next two examples illustrate the estimation of a dispersal coefficient 
of the form originally proposed at the beginning of Section 3 (except that 
z, /I, _y = yO, y= y, are constants), and a reaction nonlinearity in which we 
have not assumed an a priori parametrization, as discussed in Section 3. 

EXAMPLE 4A. We again use (7) as our model equation with 

“+bb u < Yo 
9(u) = c( + pu, YOdU<"r', 

"+PYI, U'YI 

and f(u), F(‘(f, x), and Y(x) as in Example 2. We chose true parameter 
values a* = 3.0, p* = 1.0, y$ =OS, y: = 1.6, r; = 2.0, r: =0.5, and 
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TABLE 4A” 

Parameter values Residual sum of squares 

a0 = 2.0 p” = 2.0 y;= 1.0 yy = 1.1 
i6 = 3.177 8” = 0.866 f; = 0.185 f; = 1.644 J6(cj6)=0.156x 10m3 

P = 3.037 Bg’: I ~$69 f: = 0.463 ji;‘= 1.614 J’4(#4) = 0.267 x lo-’ 
a* = 3.0 yo’ = 0.5 y; = 1.6 

‘See Fig. 2. 

generated data (we no longer obtain the analytic solution from Example 2 
if we change 9) with MOLlD. We have indicated parameter values in 
Table 4A, but also include the results of this example in Fig. 2, where we 
have graphed go, &, $14, and 9* (i.e., after estimating ~1, fi, yo, y1 at 
various approximation levels, we graphed the corresponding 9). 

EXAMPLE 4B. We use the same model equation as for Examples 2 and 
4A, with f, F, and rj the same, and r; = 2.0, r: = 0.5, as in these examples. 
We chose 

with N*, /J* as in Example 2, and y$ = 0.0, y: = co; theoretically, then, this 
is exactly the same model problem as that of Example 2. We use the 
numerical code developed for Example 4A to estimate yl; i.e., we ask the 
package to estimate a saturation limit, when there is none. What we found 
is that the estimate returned for y1 is very close to the maximum solution 
value over the region (t, x) E [0, l] x [0, 11, which is the best one could 
expect (see Table 4B). 

TABLE 4B 

Parameter values Residual sum of squares 

yy = 1.5 
9; = 2.909 J4(G4)=0.217x IO-” 
y:=oo 

Note: Max o<,<,.o<y<, lu(t,x)(=3.00025. 
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EXAMPLE 5. In our final test example, we focus on estimating f(u) 
without a priori parametrizations. We use model equation (7) with a con- 
stant diffusion 9* = 3.0, true f*(u) = 2u2 - 0.5~~ and constant outside the 
set IV, initial condition Y(x) = 6x( 1 -x), and F computed as described in 
Example 2 (we have an analytic solution). With our analytic solution, we 
can evaluate W=maxgG,G,,,C,G, lu(t, x)1, then evaluate f on the state- 
interval W= [0, w]. In a problem with field data, w could not be 
calculated in this way (the value of w would be some population level at 
which f saturates; this will be determined by the biology). The value of u’ 
can be estimated, however, by inspecting the data then choosing w as the 
maximum data value (clearly, we cannot hope to estimate f for intervals of 
u outside the range of our data; thus we may as well assume w = max 1~1). 
We have performed numerical experiments in which we purposely over- 
estimate w, and find that fN,M is essentially constant over the “excess” 
interval. Since, in general, we do not know w, and therefore do not know 
the length of the interval over which we need to approximatef, we choose 
a stepsize h (instead of the number of intervals, M; if we know w, then h 
and A4 would be related as h = w/M). We then use fN,h to designate the 
best fit to the parameterf, with level of state approximation denoted by N, 
and level of parameter approximation denoted by h. We have graphed 
the result of one such run, using N = 6, h = 0.65, in Fig. 3. In this same 
run, we simultaneously estimated 9; we guessed go= 1.0, and estimated 
4” = 2.9993. 

FIGURE 3 

409/141/Z-20 
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Finally, we wish to conclude this paper with some relevant observations 
regarding our attempts to tit the field data mentioned earlier. This work 
has been reported on in detail in [4]. The model equations for these data 
are 

au, ah, 
O<t<2, O<xbl 

l;t=92~-%&4,)+~, 

where ui,,(x) is assumed known (it is actually approximated by inter- 
polating discrete observations). The diffusions are expected to be very small 
constants. Kareiva [S-lo] designed and gathered data from experiments in 
which he studied an interaction whose major mechanisms are growth of and 
predation on prey (r and p) and emigration and immigration of predator 
(e and ;). We parametrized (with success) r and p by polynomial represen- 
tations described earlier. The immigration term i is expected to be con- 
stant. We initially tried to parametrize e as e(u,) = e, - e2uI (a form used 
in test Examples 3A, and 3B). A very natural postulate is that this emigra- 
tion function should decrease with increasing u,, i.e., the predator should 
leave the experimental area at a slower rate when more prey are available, 
and this is the simplest form to implement numerically (as discussed 
earlier). We found, however, that our optimization routine consistently 
returned best-fit values of e, and e2 such that the function e became 
negative for high ur values. This is biologically unacceptable. We could at 
that point have tried to implement constraints to keep this from happening, 
but, since we postulated that perhaps the true emigration function should 
be steeply decreasing at low U, values, then more gradually decreasing at 
higher u1 values, we determined that a straight line for e was just not 
appropriate. With our access to the CRAY, we were able to try new 
parametrizations, specifically e(ur ) = max{ e, - e2 u1 , 0} and the exponen- 
tial function of Example 1. We have graphed sample functions of each of 
these three parametrizations in Fig. 4. Both of these last two parametriza- 
tions enabled us to achieve good fits to the data, where we measure quality 
of fit as follows: First we calculate the total sum of square errors TSSQ = 
Cf= r C;l= 1 C;X=, (fi, - U’), where IZ, = number of temporal data points, 
n,=number of spatial data points, ti, represents the observation of the 
ith species at the jth time and kth spatial location, and U represents the 
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FIGURE 4 

mean of all the data; then we calculate a correlation coefficient R = 
(TSSQ - JN(dN))/TSSQ using the residual JN obtained with our estimation 
algorithm. For regression analysis with simpler models, this statistic R has 
rather standard uses in carrying out F-tests for quality of lit. For the 
estimation procedures developed here for nonlinear partial differential 
equations, R is a measure of the model’s ability to explain variance in the 
data. In the examples reported in [4], we have R values between 86 and 
92%. A final variation on the form of e was to estimate the “shape” 
without a priori parametrization, i.e., to search for e in terms of piecewise 
linear approximations (as for r in test Example 5). We began with an initial 
guess that e was constant; the best fit returned by our package looked like 
an interpolant of an exponentially decreasing function. Indeed, without 
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assuming anything about the qualitative behavior of the function e, we 
estimated something very much like the “shape-constrained” a priori 
parametrizations we originally had chosen on biological grounds. This was 
very encouraging, to both the biologist and the mathematicians in this 
particular modeling project. 
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