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Abstract

Motivated by wavelet analysis, we prove that there is a one-to-one correspondence
between the following data:

(i) Solutions toR(h) = h whereR is a certain non-positive Ruelle transfer operator;
(ii) Operators that intertwine a certain class of representations of theC∗-algebraAN on

two unitary generatorsU , V subject to the relation

UVU−1 = VN .

This correspondence enables us to give a criterion for the biorthogonality of a pair of
scaling functions and calculate all solutions of the equationR(h) = h in some concrete
cases.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The multiresolution wavelet theory establishes a close interconnection between
two operators:M—the cascade refinement operator andR—the transfer operator,
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also called Ruelle operator (see [6,7]). Our present approach stresses representa-
tion theory and intertwining operators.

In this paper we show how to get wavelets from representations and we
compare representations which yield different wavelets. Examples are given in
Section 4.

We recall thatM operates onL2(R) by

Mψ(x) = √
N
∑
k∈Z

akψ(Nx − k) (x ∈ R),

or, equivalently, in Fourier space

M̂ψ(x) = m0(x/N)√
N

ψ̂

(
x

N

)
(x ∈ R),

whereN � 2 is an integer—the scale,m0(z) =∑
k∈Z

akz
k for z ∈ T, T being the

unit circle, and̂ψ denotes the Fourier transform

ψ̂(x) =
∫
R

ψ(t)e−itx dt.

The Ruelle transfer operator is defined onL1(T) by

Rf (z) = 1

N

∑
wN=z

|m0(w)|2f (w) (z ∈ T).

On T, we considerµ, the normalized Haar measure.
It is the equation

Mϕ = ϕ, (1.1)

or, equivalently,

ϕ(x)= √
N
∑
k∈Z

akϕ(Nx − k) (x ∈ R),

which generates the wavelets. It is called the refinement (or scaling) equation.
The orthogonality properties of the integer translates of the scaling function

ϕ ∈ L2(R), Mϕ = ϕ are closely connected to the problem of finding a positive
eigenvector forR

h ∈ L1(T), h � 0, Rh = h (1.2)

(see [2–4] where a correspondence is established between the non-zeroL2(R)-
solutionsϕ to (1.1) and the non-zero solutionsh to (1.2). In general, solutions
need not exist.) A necessary condition for the orthogonality of the translates of
the scaling function is the quadrature mirror filter restriction:

1

N

∑
wN=z

|m0(w)|2 = 1 (z ∈ T)
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which, in terms of the Ruelle operator, can be rewritten as

R1 = 1.

Lawton [8] gave a necessary and sufficient condition formulated also in terms
of the Ruelle operator: the translates of the scaling function are orthogonal if and
only if the constant function1 is the only continuous solution of (1.2) (up to a
multiplicative constant).

The scaling equation (1.1) can be reformulated in aC∗-algebra setting.
ConsiderAN , theC∗-algebra generated by two unitary operatorsU andV ,

satisfying the relationUVU−1 = V N . It has a representation onL2(R) given by

U :ψ �→ 1√
N

ψ

(
x

N

)
, V :ψ �→ ψ(x − 1) (x ∈ R)

V = π(z) whereπ is the representation ofL∞(T) given by(
π(f )ψ

)ˆ = f ψ̂
(
f ∈ L∞(T)

)
.

The scaling equation (1.1) becomes

Uϕ = π(m0)ϕ.

The system(U,π,L2(R), ϕ,m0) is called the wavelet representation with
scaling functionϕ (see [7]).

If a wavelet representation is given with scaling functionϕ then it produces a
solution for (1.2):

hϕ(z) =
∑
n∈Z

zn
〈
π(zn)ϕ

∣∣ϕ〉= 1

2π

∑
k∈Z

∣∣ϕ̂(ω + 2kπ)
∣∣2 (z = e−iω).

In [7] it is proved that a converse also holds. Any solutionh � 0 to Rh = h

arises in this way, ash = hϕ for some representationπ of AN .
Thus, the analysis of orthogonal wavelets is closely related to the study of the

positive Ruelle operatorR and this operator is linked to the representations of the
algebraAN .

For an analysis of biorthogonal wavelets, it turns out that we have to consider
non-positive Ruelle operators. They correspond to a pair of filtersm0,m

′
0 ∈

L∞(T) and are defined by

Rm0,m
′
0
f (z) = 1

N

∑
wN=z

m0(w)m′
0(w)f (w)

(
f ∈ L1(T), z ∈ T

)
.

The condition corresponding to the quadrature mirror filter condition, and
necessary for the biorthogonality of wavelets, is

1

N

∑
wN=z

m0(w)m′
0(w) = 1 (z ∈ T)
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which rewrites as

Rm0,m
′
0
1 = 1.

If two scaling functionsϕ,ϕ′ are given, withUϕ = π(m0)ϕ, Uϕ′ = π(m′
0)ϕ

′,
then

hϕ,ϕ′ (z) =
∑
n∈Z

zn
〈
π(zn)ϕ

∣∣ϕ′〉= 1

2π

∑
k∈Z

¯̂ϕϕ̂′(ω + 2kπ) (z = e−iω)

satisfies

Rm0,m
′
0
hϕ,ϕ′ = hϕ,ϕ′ .

For more background on wavelets we refer the reader to [6].
We will see in this paper that solutions toRm0,m

′
0
h = h correspond to operators

that intertwine the representations ofAN introduced in [7] arising fromm0
and m′

0, respectively. In Section 2 we establish this correspondence and in
Section 3 we give a criterion for the biorthogonality of two given scaling functions
in terms of the eigenspace of the non-positive Ruelle transfer operatorRm0,m

′
0

associated to the eigenvalue 1. In Section 4 we consider some concrete examples
of filters and give complete solutions for the equationRh = h.

2. Main results

In this section we prove our main theorems on wavelets and representations:
Theorem 2.4 and Theorem 2.7. These results prove the bijective correspondence
between two sets: operators that intertwine the cyclic representations presented
in [7] and solutions toRm0,m

′
0
h = h.

We begin with some properties of the Ruelle operator. We will denote by
R = Rm0,m

′
0
, m0,m

′
0 ∈ L∞(T).

Lemma 2.1. For f ∈ L1(T)

(i)
∫
T

Rf (z) dµ =
∫
T

m0(z)m
′
0(z)f (z) dµ.

(ii)
∫
T

g(z)Rf (z) dµ =
∫
T

g(zN)m0(z)m
′
0(z)f (z) dµ.

(iii) R
(
g(zN)f (z)

)= g(z)Rf (z), Rn
(
g
(
zN

n)
f (z)

)= g(z)Rnf (z).

(iv)
∫
T

Rnf (z) dµ =
∫
T

m
(n)
0 (z)m′

0
(n)

f (z) dµ.

wherem(n)
0 (z) = m0(z)m0(z

N) . . .m0(z
Nn−1

).
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Proof. (i)

∫
T

Rf (z) dµ = 1

N

N−1∑
k=0

1

2π

2π∫
0

m0

(
θ + 2kπ

N

)
m′

0

(
θ + 2kπ

N

)

× f

(
θ + 2kπ

N

)
dθ

=
N−1∑
k=0

1

2π

2(k+1)π/N∫
2kπ/N

m0(θ)m
′
0(θ)f (θ) dθ

=
∫
T

m0(z)m
′
0(z)f (z) dµ.

(iii) Clear.
(ii) Follows from (i) and (iii).
(iv) Proof by induction. Forn = 1 it is (i).∫

T

Rn+1f dµ =
∫
T

R(Rnf ) dµ =
∫
T

m0(z)m
′
0(z)R

nf (z) dµ

=
∫
T

Rn
(
m0(zN

n
)m′

0

(
zN

n)
f (z)

)
dµ

=
∫
T

m
(n)
0 (z)m′

0
(n)

(z)m0(zN
n
)m′

0

(
zN

n)
f (z) dµ

=
∫
T

m
(n+1)
0 (z)m′

0
(n+1)

(z)f (z) dµ. ✷

From [7, Theorem 2.4] we know that, givenm0 ∈ L∞(T) which is non-singular
(i.e., does not vanish on a subset of positive measure), there is a 1–1 correspon-
dence between

(a)h ∈ L1(T), h � 0, R(h) = h (hereR = Rm0,m0)

and

(b) π̃ ∈ Rep(AN,H), ϕ ∈ H,

with the unitaryU from π̃ satisfying

Uϕ = π(m0)ϕ.
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Rep(AN,H) is the set of normal representations of the algebraAN . These rep-
resentations are in fact generated by a unitaryU onH and a representationπ of
L∞(T) onH, with the property that

Uπ
(
f (z)

)
U−1 = π

(
f (zN)

) (
f ∈ L∞(T)

)
.

Here is again Theorem 2.4 from [7]:

Theorem 2.2.

(i) Let m0 ∈ L∞(T), and supposem0 does not vanish on a subset ofT of
positive measure. Let

(Rf )(z) = 1

N

∑
wN=z

|m0(w)|2f (w), f ∈ L1(T). (2.1)

Then there is a one-to-one correspondence between the data(a) and (b)
below, where(b) is understood as equivalence classes under unitary equiv-
alence:
(a) h ∈ L1(T), h � 0, and

R(h) = h. (2.2)

(b) π̃ ∈ Rep(AN,H), ϕ ∈H, and the unitaryU from π̃ satisfying

Uϕ = π(m0)ϕ. (2.3)

(ii) From (a)→(b), the correspondence is given by〈
ϕ
∣∣π(f )ϕ

〉
H =

∫
T

f hdµ, (2.4)

whereµ denotes the normalized Haar measure onT.
From (a)→(b), the correspondence is given by

h(z) = hϕ(z) =
∑
n∈Z

zn
〈
π(en)ϕ

∣∣ϕ〉H. (2.5)

(iii) When(a) is given to hold for someh, and π̃ ∈ Rep(AN,H) is the cor-
responding cyclic representation withUϕ = π(m0)ϕ, then the represen-
tation is unique fromh and (2.4) up to unitary equivalence: that is, if
π̃ ′ ∈ Rep(AN,H′), ϕ′ ∈ H′ also cyclic and satisfying〈

ϕ′∣∣π ′(f )ϕ′〉= ∫
T

fhdµ

and

U ′ϕ′ = π ′(m0)ϕ
′,

then there is a unitary isomorphismW of H ontoH′ such thatWπ(f ) =
π ′(f )W , for f ∈ L∞(T), WU = U ′W andWϕ = ϕ′.
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Definition 2.3. Given h as in Theorem 2.2, call(π,U,H, ϕ) the cyclic rep-
resentation ofAN associated toh.

The next theorem shows how solutions ofRm0,m
′
0
h0 = h0 induce operators that

intertwine these cyclic representations.

Theorem 2.4. Let m0,m
′
0 ∈ L∞(T) be non-singular andh,h′ ∈ L1(T), h,h′

� 0, Rm0,m0(h) = h, Rm′
0,m

′
0
(h′) = h′. Let (π,U,H, ϕ), (π ′,U ′,H′, ϕ′) be the

cyclic representations corresponding toh and h′, respectively. Ifh0 ∈ L1(T),
Rm0,m

′
0
(h0) = h0 and |h0|2 � chh′ for somec > 0 then there exists a unique

operatorS :H′ →H such that

SU ′ = US, Sπ ′(f ) = π(f )S
(
f ∈ L∞(T)

)
,〈

ϕ
∣∣π(f )Sϕ′〉= ∫

T

fh0 dµ
(
f ∈ L∞(T)

)
.

Moreover,‖S‖ � √
c.

Proof. To simplify the notation letR0 := Rm0,m
′
0
. Look at the construction of̃π

andH in the proof of Theorem 2.4 in [7]. We reproduce here the main steps of
this construction. First, one considers

Vn := {
(ξ, n) | ξ ∈ L∞(T)

}
and 〈

(ξ, n)
∣∣(η,n)〉H =

∫
T

Rn(ξ̄ηh) dµ for n = 1,2, . . . .

Let Hn be the completion ofVn in this scalar product.
Whenn, k are given,n � 0, k � 1, one constructs the isometryVn ↪→ Vn+k by

iteration of the one fromVn to Vn+1, i.e.,

Vn ↪→ Vn+1 ↪→ Vn+2 ↪→ ·· · ↪→ Vn+k,

whereJ :Vn → Vn+1 is defined by

J
(
(ξ, n)

) := (
ξ(zN),n + 1

)
.

Then H is defined as the inductive limit of the Hilbert spacesHn. The set⋃
n�0Vn is dense inH.
The representation is defined as follows:

U(ξ,0) := (S0ξ,0) = (
m0(z)ξ(z

N),0
)
,

U(ξ,n + 1) := (
m0
(
zN

n)
ξ(z), n

)
,
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and

π(f )(ξ, n) := (
f
(
zN

n)
ξ(z), n

)
.

The scaling functionϕ is (1,0). Recall also the main property of this rep-
resentation

Uπ(f ) = π
(
f (zN)

)
U

(
f ∈ L∞(T)

)
.

Having these, we return to our proof. Define

B
[
(ξ, n)

∣∣(ξ ′, n)
]=

∫
T

Rn
0(ξξ

′h0) dµ, for (ξ, n) ∈ Vn, (ξ ′, n) ∈ V ′
n.

Then ∣∣B[(ξ, n)∣∣(ξ ′, n)
]∣∣= ∣∣∣∣∣

∫
T

Rn
0(ξξ

′h0) dµ

∣∣∣∣∣
�
∫
T

∣∣m(n)
0 (z)m′

0
(n)

(z)ξξ ′h0
∣∣dµ

(by (iv) of Lemma 2.1)

�
√
c

∫
T

∣∣m(n)
0 (z)

∣∣∣∣m′
0
(n)

(z)
∣∣|ξ ′||ξ ||h|1/2|h′|1/2dµ

�
√
c

(∫
T

∣∣m(n)
0 (z)

∣∣2|ξ |2hdµ

)1/2

×
(∫

T

∣∣m′
0
(n)∣∣2|ξ ′|2h′ dµ

)1/2

= √
c‖(ξ, n)‖H‖(ξ ′, n)‖H′ .

Therefore∣∣B[(ξ, n)∣∣(ξ ′, n)
]∣∣� √

c‖(ξ, n)‖H‖(ξ ′, n)‖H′ . (2.6)

Equation (2.6) implies also thatB can be extended fromVn × V ′
n to Hn × H′

n

such that (2.6) remains valid.
Next we prove thatB is compatible with the inductive limit structure that

defines the Hilbert spacesH andH′.

B
[
J (ξ,n)

∣∣J ′(ξ ′, n)
]= B

[(
ξ(zN),n + 1

)∣∣(ξ ′(zN),n+ 1
)]

=
∫
T

Rn+1
0

(
ξ(zN)ξ ′(zN)h0(z)

)
dµ



598 D.E. Dutkay / J. Math. Anal. Appl. 273 (2002) 590–617

=
∫
T

Rn
0

(
R0
(
ξ(zN)ξ ′(zN)h0(z)

))
dµ

=
∫
T

Rn
0

(
ξ(z)ξ ′(z)R0(h0)

)
dµ

=
∫
T

Rn
0

(
ξ(z)ξ ′(z)h0

)
dµ = B

[
(ξ, n)

∣∣(ξ ′, n)
]
.

The compatibility with the inductive limit entails the existence of a sesquilinear
extension ofB to H×H′ with∣∣B[ξ |ξ ′]∣∣� √

c‖ξ‖H‖ξ ′‖H′ . (2.7)

There are some commuting properties betweenB and(π̃, π̃ ′) as follows:

B
[
U(ξ,n + 1)

∣∣U(ξ ′, n+ 1)
]= B

[(
m0
(
zN

n)
ξ(z), n

)∣∣(m′
0

(
zN

n)
ξ ′(z), n

)]
=
∫
T

Rn
0

(
m0(zN

n
)m′

0

(
zN

n)
ξ(z)ξ ′(z)h0(z)

)
dµ

=
∫
T

m0(z)m
′
0(z)R

n
0

(
ξ(z)ξ ′(z)h0(z)

)
dµ

=
∫
T

R0
(
Rn

0

(
ξ(z)ξ ′(z)h0(z)

))
dµ = B

[
(ξ, n+ 1)

∣∣(ξ ′, n + 1)
]
.

So, by density

B[Uξ |U ′ξ ′] = B[ξ |ξ ′] (ξ ∈ H, ξ ′ ∈H′). (2.8)

Forf ∈ L∞(T),

B
[
π(f )(ξ, n)

∣∣(ξ ′, n)
]= B

[(
f
(
zN

n)
ξ(z), n

)∣∣(ξ ′, n)
]

=
∫
T

Rn
0

(
f
(
zN

n)
ξ(z)ξ ′(z)h0(z)

)
dµ

= B
[
(ξ, n)

∣∣(f (zNn)
ξ ′(z), n

)]= B
[
(ξ, n)

∣∣π ′(f )(ξ ′, n)
]

and, again by density,

B
[
π(f )ξ

∣∣ξ ′]= B
[
ξ
∣∣π ′(f )ξ ′] (ξ ∈ H, ξ ′ ∈ H′). (2.9)

As ϕ = (1,0) = ϕ′ we obtain also

B
[
ϕ
∣∣π ′(f )ϕ′]= B

[
(1,0)

∣∣π ′(f )(1,0)
]=

∫
T

f (z)h0(z) dµ. (2.10)
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SinceB is sesquilinear and bounded, there existsS :H′ → H, a bounded linear
operator with‖S‖ � √

c such that

B[ξ |ξ ′] = 〈ξ |Sξ ′〉 (ξ ∈H, ξ ′ ∈H′).

Rewriting (2.8) in terms ofS, one obtains

SU ′ = US,

(2.9) gives

π(f )S = Sπ ′(f )
(
f ∈ L∞(T)

)
,

and (2.10) yields〈
ϕ
∣∣π(f )Sϕ′〉= ∫

T

f h0 dµ.

For the uniqueness part we will use a lemma which will be useful outside this
context too.

Lemma 2.5. If n1, n2 are integers andf1, f2 ∈ L∞(T) then〈
U−n1π(f1)ϕ

∣∣SU ′−n2π ′(f2)ϕ
〉

=
{∫

T
f1(z

Nn2−n1 )m
(n2−n1)
0 (z)f2(z)h0(z) dµ for n2 � n1,∫

T
f1(z)m

′
0
(n1−n2)(z)f2(z

Nn1−n2
)h0(z) dµ for n1 � n2.

Proof. Forn2 � n1〈
U−n1π(f1)ϕ

∣∣SU ′−n2π ′(f2)ϕ
〉

= 〈
Un2U−n1π(f1)ϕ

∣∣Un2SU ′−n2π ′(f2)ϕ
〉

= 〈
Un2−n1π(f1)ϕ

∣∣Sπ ′(f2)ϕ
〉= 〈

π
(
f1
(
zN

n2−n1))
Un2−n1ϕ

∣∣Sπ ′(f2)ϕ
′〉

and usingUnϕ = π(m
(n)
0 )ϕ

= 〈
π
(
f1
(
zN

n2−n1 ))
π
(
m

(n2−n1)
0

)
ϕ
∣∣Sπ ′(f2)ϕ

′〉
= 〈

ϕ
∣∣Sπ ′(f1

(
zN

n2−n1)
m

(n2−n1)
0 (z)f2(z)

)
ϕ′〉

=
∫
T

f1
(
zN

n2−n1 )
m

(n2−n1)
0 (z)f2(z)h0(z) dµ.

Forn1 � n2 the computation is completely analogous.✷
The set{

U−nπ(f )ϕ | n ∈ N, f ∈ L∞(T)
}
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is dense inH and similarly forH′, therefore Lemma 2.5 implies the uniqueness
of S. ✷

Even more uniqueness holds. In Theorem 2.4 in [7] it is proved that if(π1,U1,

H1, ϕ1) and(π2,U2,H2, ϕ2) are two cyclic representations ofAN corresponding
to the sameh then there exists a unique unitary isomorphismW :H1 →H2 such
that

Wπ1(f ) = π2(f )W, f ∈ L∞(T), WU1 = U2W, Wϕ1 = ϕ2.

Theorem 2.6. Let m0,m
′
0, h,h

′, h0 be as in Theorem2.4. Suppose(πi,Ui,Hi ,

ϕi), i = 1,2, are cyclic representations corresponding toh, (π ′
i ,U

′
i ,H′

i , ϕ
′
i ), i =

1,2, are cyclic representations corresponding toh′ andSi :H′
i → Hi , i = 1,2,

are bounded operators such that

Siπ
′
i (f ) = πi(f )Si

(
f ∈ L∞(T)

)
, SiU

′
i = UiSi (i = 1,2),〈

ϕi

∣∣Siπ
′
i (f )ϕ′

i

〉= ∫
T

f h0dµ (i = 1,2).

Then there exists unique unitary isomorphismsW :H1 →H2 andW ′ :H′
1 → H′

2
such that

Wπ1(f ) = π2(f )W
(
f ∈ L∞(T)

)
, WU1 = U2W, Wϕ1 = ϕ2,

W ′π ′
1(f ) = π ′

2(f )W ′ (
f ∈ L∞(T)

)
, W ′U ′

1 = U ′
2W

′,
Wϕ′

1 = ϕ′
2, S2W

′ = WS1.

Proof. LetW,W ′ be given by Theorem 2.4 in [7]. ConsiderS̃1 = W−1S2W
′ :H′

1
→H1; we prove that̃S1 satisfies the same conditions asS1 so it must be equal to
S1 (see Theorem 2.4). Letf ∈ L∞(T).

S̃1π
′
1(f ) = W−1S2W

′π ′
1(f ) = W−1S2π

′
2(f )W ′

= W−1π2(f )S2W
′ = π1(f )W−1S2W

′ = π1(f )S̃1.

Similarly S̃1U
′
1 = U1S̃1. Also〈

ϕ1
∣∣S̃1π

′
1(f )ϕ′

1

〉= 〈
ϕ1
∣∣π1(f )W−1S2W

′ϕ′
1

〉= 〈
ϕ1
∣∣π1(f )W−1S2ϕ

′
2

〉
= 〈

ϕ1
∣∣W−1π2(f )S2ϕ

′
2

〉= 〈
Wϕ1

∣∣π2(f )S2ϕ
′
2

〉
= 〈

ϕ2
∣∣π2(f )S2ϕ

′
2

〉= ∫
T

fh0 dµ. ✷

Next we approach the converse problem: that is, given non-singularm0,m
′
0 ∈

L∞(T) andh,h′ ∈ L1(T), h,h′ � 0, Rm0,m0h = h, Rm′
0,m

′
0
h′ = h′, consider the
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cyclic representations(π,U,H, ϕ) and (π ′,U ′,H′, ϕ′). We want to see if an
intertwining operatorS :H′ → H induces an eigenvectorh0 ∈ L1(T) with

Rm0,m
′
0
h0 = h0

and 〈
ϕ
∣∣Sπ ′(f )ϕ′〉= ∫

T

f h0dµ
(
f ∈ L∞(T)

)
.

The answer is positive and is given in the next theorem.

Theorem 2.7. Let m0,m
′
0, h,h

′, (π,U,H, ϕ), (π ′,U ′,H′, ϕ′) be as in Theo-
rem2.4. SupposeS :H′ →H is a bounded operator that satisfies

Sπ ′(f ) = π(f )S
(
f ∈ L∞(T)

)
, SU ′ = US.

Then there exists a uniqueh0 ∈ L1(T) such that

Rm0,m
′
0
h0 = h0

and 〈
ϕ
∣∣Sπ ′(f )ϕ′〉= ∫

T

f h0dµ
(
f ∈ L∞(T)

)
.

Moreover,

|h0|2 � ‖S‖2hh′ almost everywhere onT.

Proof. We will need the following result:

Lemma 2.8. If fi ∈ L∞(T), i ∈ N, fi converges pointwise tof ∈ L∞(T) µ-a.e.
and‖fi‖∞ � M < ∞ for i ∈ N then

π(fi)(ξ) → π(f )(ξ) in H (ξ ∈ H).

Proof. Consider first(ξ, n) ∈ Vn soξ ∈ L∞(T),∥∥π(fi)(ξ, n) − π(f )(ξ, n)
∥∥2
H =

∥∥∥((fi

(
zN

n)− f
(
zN

n))
ξ(z), n

)∥∥∥2

=
∫
T

Rn
m0,m0

(|fi − f |2(zNn)|ξ |2(z)h(z))dµ
=
∫
T

|fi − f |2(z)Rn
m0,m0

(|ξ |2h)dµ → 0

by Lebesgue’s dominated convergence theorem.
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The set

V = {
(ξ, n) | ξ ∈ L∞(T), n ∈ N

}
is dense inH. Fix ε > 0 and leta ∈ H. There exists ab ∈ V with ‖a − b‖H <

ε/(3M),∥∥π(fi)(a)− π(f )(a)
∥∥
H �

∥∥π(fi)(a)− π(fi)(b)
∥∥
H

+ ∥∥π(fi)(b)− π(f )(b)
∥∥
H

+ ∥∥π(f )(b)− π(f )(a)
∥∥
H

� ‖π(fi)‖‖a − b‖H + ∥∥π(fi)(b)− π(f )(b)
∥∥
H

+ ‖π(f )‖‖a − b‖H.

There is annε such that fori � nε one has‖π(fi)(b)− π(f )(b)‖H < ε/3. Then
for such indicesi,∥∥π(fi)(a)− π(f )(a)

∥∥
H � ‖fi‖∞

ε

3M
+ ε

3
+ ‖f ‖∞

ε

3M
� ε.

This concludes the proof of the lemma.✷
Returning to the proof of the theorem, construct the continuous linear func-

tional onL∞(T) by

Λ :f �→ 〈
ϕ
∣∣π(f )Sϕ′〉.

Its restriction to the continuous functions onT is continuous so there is a finite
regular Borel measureν onT such that〈

ϕ
∣∣π(f )Sϕ′〉= ∫

T

f dν, f ∈ C(T).

Now takef ∈ L∞(T). Lusin’s theorem provides a sequence of continuous
functionsfi on T that converges tof pointwiseµ + |ν|-a.e. and with‖fi‖∞ �
‖f ‖∞ for all i ∈ N. Using our lemma〈

ϕ
∣∣π(f )Sϕ′〉= lim

i→∞
〈
ϕ
∣∣π(fi)Sϕ

′〉= lim
i→∞

∫
T

fi dν =
∫
T

f dν,

the last equality following from Lebesgue’s dominated convergence theorem.
Hence〈

ϕ
∣∣π(f )Sϕ′〉= ∫

T

f dν
(
f ∈ L∞(T)

)
.
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The measureν in absolutely continuous, because, ifE is a Borel set ofµ meas-
ure zero, thenπ(χE) = 0 so ν(E) = ∫

T
χE dν = 0. Consequently, there is an

h0 ∈ L1(T) such thatdν = h0 dµ and we rewrite the previous equation:〈
ϕ
∣∣π(f )Sϕ′〉= ∫

T

f h0 dµ, f ∈ L∞(T).

Next we prove thatR0h0 = h0. Take an arbitraryf ∈ L∞(T),∫
T

f h0dµ = 〈
ϕ
∣∣π(f )Sϕ′〉= 〈

Uϕ
∣∣Uπ(f )Sϕ′〉

= 〈
π(m0)ϕ

∣∣π(f (zN)
)
SU ′ϕ′〉

= 〈
π(m0)ϕ

∣∣Sπ ′(f (zN)
)
π ′(m′

0)ϕ
′〉

= 〈
π(m0)ϕ

∣∣π(f (zN)m′
0(z)

)
Sϕ′〉

= 〈
ϕ
∣∣π(f (zN)m′

0(z)m0(z)
)
Sϕ′〉

=
∫
T

f (zN)m′
0(z)m0(z)h0(z) dµ =

∫
T

f (z)R0h0dµ.

As f is arbitrary inL∞(T) this implies thatR0h0 = h0.
Uniqueness ofh0 is clear and we concentrate on last inequality stated in the

theorem. For allf,g ∈ L∞(T) we have∣∣∣∣∣
∫
T

f gh0 dµ

∣∣∣∣∣= ∣∣〈π(f )ϕ
∣∣π(g)Sϕ′〉∣∣� ∥∥π(f )ϕ

∥∥
H‖S‖∥∥π ′(g)ϕ′∥∥

H

�
(∫

T

|f |2hdµ

)1/2

‖S‖
(∫

T

|g|2h′ dµ
)1/2

.

Sinceh0, h,h
′ are inL1(T), almost every point is a Lebesgue density point for

all of them. Takez a Lebesgue point andf = g = χI whereI is a small segment
centered atz. The inequality above implies∣∣∣∣∣

∫
I

h0 dµ

∣∣∣∣∣� ‖S‖
(∫

I

h dµ

)1/2(∫
I

h′ dµ
)1/2

,

and, dividing byµ(I),∣∣∣∣∣ 1

µ(I)

∫
I

h0 dµ

∣∣∣∣∣� ‖S‖
(

1

µ(I)

∫
I

h dµ

)1/2(
1

µ(I)

∫
I

h′ dµ
)1/2

.

Then letI shrink to{z},
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|h0(z)| � ‖S‖h1/2(z)h′1/2
(z),

and the proof is complete.✷

3. Applications to wavelets

We have wavelet representations ofAN : (U,π,L2(R), ϕ,m0). Then, by
Theorem 2.2, it is the cyclic representation associated to some positiveh with
Rm0,m0h = h. Let us see what the correspondingh is. We must have〈

ϕ
∣∣π(f )ϕ

〉= ∫
T

f hdµ
(
f ∈ L∞(T)

)
,

and by the unitarity of the Fourier transform

1

2π

∫
R

¯̂ϕf ϕ̂ dµ =
∫
T

fhdµ,

and after periodization∫
T

f Per
(|ϕ̂|2)dµ =

∫
T

f hdµ,

which implies Per(|ϕ̂|2) = h. Here, forf ∈ L1(R),

Per(f )(ω) =
∑
k∈Z

f (ω + 2kπ), ω ∈ [0,2π].

Hence the wavelet representation is the cyclic representation corresponding to
Per(|ϕ̂|2).

Next, we try to give a necessary and sufficient condition for the biorthogonality
of wavelets. In the case of biorthogonal wavelets we have the following identity
for the filtersm0,m

′
0:

1

N

∑
wN=z

m0(w)m′
0(w) = 1, z ∈ T,

which can be rewritten as

Rm0,m
′
0
1 = 1.

If ϕ,ϕ′ are scaling functions corresponding tom0,m
′
0, respectively, then we

see that Per( ¯̂ϕϕ̂′) is also an eigenvector forRm0,m
′
0
.

Indeed, one has the corresponding scaling equations

Uϕ = π(m0)ϕ, Uϕ′ = π(m′
0)ϕ

′,
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or the Fourier transform versions

ϕ̂(ω) = m0(ω/N)√
N

ϕ̂

(
ω

N

)
, ϕ̂′(ω) = m′

0(ω/N)√
N

ϕ̂′
(
ω

N

)
.

Then

Per
( ¯̂ϕϕ̂′)(ω) =

∑
k∈Z

¯̂ϕϕ̂′(ω + 2kπ)=
N−1∑
l=0

∑
k∈Z

¯̂ϕϕ̂′(ω + 2kNπ + 2lπ)

=
N−1∑
l=0

∑
k∈Z

m0
(
ω+2lπ

N

)
√
N

¯̂ϕ
(
ω + 2lπ

N
+ 2kπ

)
m′

0

(
ω+2lπ

N

)
√
N

× ϕ̂′
(
ω + 2lπ

N
+ 2kπ

)
= 1

N

N−1∑
l=0

m0

(
ω + 2lπ

N

)
m′

0

(
ω + 2lπ

N

)
×
∑
k∈Z

¯̂ϕϕ̂′
(
ω + 2lπ

N
+ 2kπ

)

= 1

N

N−1∑
l=0

m0

(
ω + 2lπ

N

)
m′

0

(
ω + 2lπ

N

)
× Per

( ¯̂ϕϕ̂′)(ω + 2lπ

N

)
= Rm0,m

′
0

(
Per
( ¯̂ϕϕ̂′))(ω).

Thus, if we know thatRm0,m
′
0

has only one eigenvector (up to a multiplicative
constant) in some subspace containing1 and Per( ¯̂ϕϕ̂′), then we get that

Per
( ¯̂ϕϕ̂)= 1

which is the Fourier transform version of the biorthogonality ofϕ andϕ′.
We shall see that, under some mild regularity assumptions onϕ andϕ′, the

converse also holds so the biorthogonality implies thatRm0,m
′
0

has a 1-dimen-
sional eigenspace corresponding to the eigenvalue 1.

We set up the framework for this converse. Suppose we have cyclic vectors
ϕ, ϕ′ for the wavelet representatioñπ of AN on L2(R), satisfying the scaling
equations

Uϕ = π(m0)ϕ, Uϕ′ = π(m′
0)ϕ

′

with m0,m
′
0 non-singular inL∞(T).

The wavelet representation(U,π,L2(R), ϕ,m0) is the cyclic representation
corresponding toh = Per(|ϕ̂|2). Similarly, forϕ′, the wavelet representation cor-
responds toh′ = Per(|ϕ̂′|2).
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Theorem 3.1. Let m0,m
′
0, ϕ,ϕ

′ as above. Suppose the following conditions are
satisfied:

(i) ϕ̂(0) �= 0 �= ϕ̂′(0).

(ii) The integer translates ofϕ andϕ′ form Riesz bases for their corresponding
linear spans.

(iii) ϕ̂ andϕ̂′ are continuous at0 and∑
k �=0

|ϕ̂|2(x + 2kπ)→ 0 asx → 0,

∑
k �=0

|ϕ̂′|2(x + 2kπ)→ 0 asx → 0.

(iv) ϕ andϕ′ are biorthogonal or equivalently∑
k∈Z

¯̂ϕ(x + 2kπ)ϕ̂′(x + 2kπ) = 1, a.e. onR.

Then there exist exactly one(up to a constant multiple) solution for

Rm0,m
′
0
h0 = h0, h0 ∈ L∞(T),

which is continuous atz = 1. (The solution ish0 = 1.)

Proof. Employing Schwarz’ inequality we have

1= ∣∣Per
( ¯̂ϕϕ̂′)∣∣2(ω) =

∣∣∣∣∑
k∈Z

¯̂ϕϕ̂′(ω + 2kπ)

∣∣∣∣2
�
(∑

k∈Z

|ϕ̂|2(ω + 2kπ)

)(∑
k∈Z

|ϕ̂′|2(ω + 2kπ)

)
= (

Per|ϕ̂|2)(Per|ϕ̂′|2)(ω) = h(ω)h′(ω).

Supposeh0 is a solution inL∞(T) of Rm0,m
′
0
h0 = h0 which is continuous at

z = 1. Sinceh0 ∈ L∞(T), there is ac < ∞ such that|h0|2 � c almost everywhere
onT and the previous inequality implies

|h0|2 � chh′.

Therefore, by Theorem 2.4,h0 induces an operatorS :L2(R) → L2(R) such that

US = SU, π(f )S = Sπ(f )
(
f ∈ L∞(T)

)
,〈

ϕ
∣∣Sπ(f )ϕ′〉= ∫

T

fh0 dµ.
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Fourier transform the last equation and then periodize to obtain forf ∈ L∞(T)∫
T

f h0dµ = 1

2π

〈
ϕ̂
∣∣f (̂Sϕ′)

〉= ∫
T

Per
(
ϕ̂(Sϕ′)

)
f dµ.

So

h0 = Per
(
ϕ̂(Sϕ′)

)
. (3.1)

Also the commuting properties ofS imply thatSϕ′ is a solution for the scaling
equation

USϕ′ = π(m′
0)Sϕ

′.
AssumeSϕ′ �= cϕ′ wherec is some constant. We want to prove that̂Sϕ′ can

not be continuous at 0. Otherwise, consider the Fourier version of the scaling
equation

Ŝϕ′(ω) = m′
0(ω/N)√

N
Ŝϕ′

(
ω

N

)
and by induction

Ŝϕ′(ω) =
[

n∏
i=1

m′
0(ω/Ni)√

N

]
Ŝϕ′

(
ω

Nn

)
.

A similar equation can be constructed forϕ̂′. If Ŝϕ′ is continuous at 0 then

Ŝϕ′(x)
ϕ̂′(x)

= lim
n→∞

Ŝϕ′(x/Nn)

ϕ̂′(x/Nn)
= Ŝϕ′(0)

ϕ̂′(0)
.

SoSϕ′ = cϕ with c = Ŝϕ′(0)/ϕ̂′(0), a contradiction.
On the other hand, from (3.1) we get

¯̂ϕ(x)Ŝϕ′(x) = h0(x)−
∑
k �=0

¯̂ϕ(x + 2kπ)Ŝϕ′(x + 2kπ). (3.2)

¯̂ϕ andh0 are continuous atx = 0. We prove that the sum in (3.2) converges to 0
asx → 0. By the Schwarz inequality∣∣∣∣∑

k �=0

¯̂ϕŜϕ′(x + 2kπ)

∣∣∣∣� (∑
k �=0

|ϕ̂|2(x + 2kπ)

)(∑
k �=0

∣∣Ŝϕ′∣∣2(x + 2kπ)

)
.

(3.3)

We try to bound the second factor. SinceS commutes withπ andU , the same is
true forS∗ andS∗S. By Theorem 2.7,S∗S induces someh′

0 with Rm′
0,m

′
0
h′

0 = h′
0,

|h′
0|2 � ch′2 for somec > 0 and〈

ϕ′∣∣π(f )S∗Sϕ′〉= ∫
T

f h′
0dµ

(
f ∈ L∞(T)

)
.
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Then 〈
Sϕ′∣∣π(f )Sϕ′〉= ∫

T

fh′
0 dµ.

Using again the Fourier transform and periodization we obtain

Per
∣∣Ŝϕ′∣∣2 = h′

0 �
√
ch′.

Sinceϕ′ generates a Riesz basis (see [6]), there is aB < ∞ such that

h′ = Per|ϕ̂′|2 � B.

Thus Per|Ŝϕ′|2 is bounded and, using the hypothesis (iii), in (3.3) we obtain that

lim
x→0

∣∣∣∣∑
k �=0

¯̂ϕŜϕ′(x + 2kπ)

∣∣∣∣= 0.

Now apply this to (3.2) and use the fact thatϕ̂ is continuous at 0 witĥϕ(0) �= 0 to
conclude that̂Sϕ′ is continuous 0, again a contradiction which leads toSϕ′ = cϕ′.
Without loss of generality, take the constantc to be 1.∫

T

f h0dµ = 〈
ϕ
∣∣π(f )Sϕ′〉= 〈

ϕ
∣∣π(f )ϕ′〉= ∫

T

f dµ,

the last equality follows from (iv) using the usual Fourier-periodization technique.
The equality holds for allf ∈ L∞(T) soh0 = 1. ✷
Corollary 3.2. If ϕ andϕ′ are compactly supported, biorthogonal,

m0(0)= √
N = m′

0(0),

m0

(
2kπ

N

)
= 0 = m′

0

(
2kπ

N

)
, k ∈ {1, . . . ,N − 1},

then1 is the only solution ofRm0,m
′
0
h0 = h0 which is continuous atz = 1 (up to

a multiplicative constant).

Proof. We have to check the conditions of Theorem 3.1. The Fourier coefficients
of Per|ϕ̂|2 are given by∫

T

ek Per|ϕ̂|2dµ = 〈
ϕ
∣∣π(ek)ϕ

〉= 〈
ϕ
∣∣ϕ(ω − k)

〉
,

whereek = e−ikθ . Therefore the coefficients are zero except for a finite number
of them, so Per|ϕ̂|2 is a trigonometric polynomial. The same is true for Per|ϕ̂′|2.
Also the fact thatϕ and ϕ′ are compactly supported implies thatϕ̂, ϕ̂′ are
continuous. From the scaling equation we obtain thatϕ̂(0) = 1 = ϕ̂′(0).
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For k ∈ Z, k �= 0, we can writek = Npl with l = Nq + r, r ∈ {1, . . . ,N − 1}.
Then

ϕ̂(2kπ)= ϕ̂(2Nplπ)

= m0(2Np−1lπ)√
N

· · · m0(2Nlπ)√
N

m0(2lπ)√
N

m0(2lπ/N)√
N

ϕ̂

(
2lπ

N

)
= 0

because

m0

(
2lπ

N

)
= m0

(
2(Nq + r)π

N

)
= m0

(
2rπ

N

)
= 0.

Thusϕ̂(2kπ) = 0 for k �= 0. This shows that Per|ϕ̂|2(0)= 1. Then∑
k �=0

|ϕ̂|2(x + 2kπ) = Per|ϕ̂|2(x)− ϕ̂(x) → Per|ϕ̂|2(0)− ϕ̂(0) = 0

asx → 0.

The same argument applies toϕ̂′.
Condition (ii) is obtained as follows: look at the first inequality in the proof of

Theorem 3.1. We have

1�
(
Per|ϕ̂|2)(Per|ϕ̂′|2)(ω).

As both factors are trigonometric polynomials they are bounded by a common
constant 0<A< ∞. Hence

1/A �
(
Per|ϕ̂|2)� A

which implies that the translates ofϕ form a Riesz basis for their linear span
(see [6]). Similarly forϕ′. ✷

4. Some examples

We know that in the case of a quadrature mirror filterm0 for which the transfer
operatorRm0,m0 has 1 as a simple eigenvalue inC(T), the cyclic representation
that corresponds to the constant function1 is in fact the wavelet representation
onL2(R). Then the commutant of this representation is in one-to-one correspon-
dence withL∞(T)-solutions forRm0,m0h = h. We will describe this commutant
and give the form of all correspondingL∞(T)-solutions.

We recall that the wavelet representation ofAN is generated by

U :ψ �→ 1√
N

ψ

(
x

N

)
, V :ψ �→ ψ(x − 1),
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V = π(z) whereπ is the representation ofL∞(T) given by(
π(f )ψ

)ˆ = f ψ̂
(
f ∈ L∞(T), ψ ∈ L2(R)

)
.

It will be useful to consider the representation in Fourier space and in this caseU

has the form

Û ψ̂(x) = √
Nψ̂(Nx). (4.1)

Thus we have another representation ofAN on L2(R), which is generated bŷU
given in (4.1) and the representationπ̂ of L∞(T) given by

π̂(f )ψ̂ = f ψ̂
(
f ∈ L∞(T), ψ̂ ∈ L2(R)

)
.

This representation is equivalent to the wavelet representation via the Fourier
transform.

Theorem 4.1. The commutant of(π̂, Û ,L2(T)) is{
Mf | f ∈ L∞(R), f (Nx) = f (x) a.e. onR

}
,

whereMf (ψ) = fψ for all ψ ∈ L2(R), f ∈ L∞(R).

Proof. (The theorem is valid even in a more general case, see [9]). LetA be an
operator that commutes witĥU andπ̂(f ) for all f ∈ L∞(T). We prove first that
A commutes withMg , whereg ∈ L∞(R) is periodic of period 2Nπ .

Indeed, letf (x) = g(Nx) for x ∈ R. Thenf is 2π -periodic and bounded, so
π̂(f ) commutes withA. ThenA commutes also witĥU−1π̂(f )Û . But(

Û−1π̂ (f )Ûψ
)
(x)= Û−1(f (x)

√
Nψ(Nx)

)
= f

(
x

N

)
ψ(x) = g(x)ψ(x).

So Û−1π̂(f )Û = Mg . It follows by induction thatA commutes with any
multiplication by a 2πNk-periodic function inL∞(R). Now, considerf ∈
L∞(R). We claim thatA commutes withMf . Definefn(x) = f (x) on [−πNn,

πNn] and extended it onR by 2πNn-periodicity. First we prove thatMfn

converges toMf in the strong operator topology. For this, takeψ ∈ L2(R). Then

‖Mfnψ − Mfψ‖2 =
∫
R

|fn − f |2|ψ|2dx =
∫

|x|�πNn

|fn − f |2|ψ|2 dx

�
(
2‖f ‖∞

)2∫
R

χ{|x|�πNn}|ψ|2 dx → 0 asn → ∞.

Thus Mf is the limit of Mfn in the strong operator topology and, conse-
quently,A will commute withMf also. Using then Theorem IX.6.6 in [5] we
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obtain thatA = Mf for somef ∈ L∞(R). Then, the fact thatA andÛ commute
implies

f (Nx) = f (x) a.e. onR.

This proves one inclusion, the other one is a straightforward verification.✷
Using this theorem we can find all solutions toRm0,m

′
0
h = h as follows:

Corollary 4.2. Suppose we have the wavelet representations(U,π,L2(R), ϕ,m0)

and (U,π,L2(R), ϕ′,m′
0). Let h = Per(|ϕ̂|2) and h′ = Per(|ϕ̂′|2). Then each

solution h0 ∈ L1(R) for Rm0,m
′
0
h0 = h0 with |h0|2 � chh′ for some positive

constantc has the form

h0 = Per
(
f ¯̂ϕϕ̂′)

for somef ∈ L∞(R) with f (Nx) = f (x) a.e.
Conversely, any suchh0 is anL1(R)-solution forRm0,m

′
0
h0 = h0 and |h0|2 �

chh′ for somec > 0.

Proof. The cyclic representations corresponding toh and h′ are the wavelet
representations given in the hypothesis. Hence the intertwining operators are in
fact the ones in the commutant of the wavelet representation. We will transfer
everything into the Fourier space by applying the Fourier transform and then use
Theorem 4.1 and the results in Section 2.

If h0 is as given then there is an operatorA in the commutant of the rep-
resentation such that〈

ϕ
∣∣π(g)Aϕ′〉= ∫

T

gh0 dµ
(
g ∈ L∞(T)

)
.

But after the Fourier transform, we saw thatÂ has the formÂ = Mf wheref ∈
L∞(R) with f (Nx) = f (x) a.e. Therefore

1

2π

〈
ϕ̂
∣∣gf ϕ̂′〉= ∫

T

gh0 dµ
(
g ∈ L∞(T)

)
,

and after periodization we obtain that

h0 = Per
(
f ¯̂ϕϕ̂′).

Conversely, it is easy to see that, whenf is given,

1

2π

〈
ϕ̂
∣∣gMf ϕ̂

′〉= ∫
T

gh0 dµ
(
g ∈ L∞(T)

)
,

and asMf is in the commutant, the rest follows.✷
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Example 4.3. In the sequel we considerN = 2,m0(z) = (1/
√

2)(1+zp), p being
an odd integer. This example appears also in [1]. We try to find out the solutions
for Rm0,m0h = h.

It is easy to see that

Rm0,m01 = 1.

Also if ϕ = (1/p)χ(0,p) then

Uϕ = π(m0)ϕ.

Then the wavelet representation(U,π,L2(T), ϕ,m0) is the cyclic representation
corresponding tohϕ = Per(|ϕ̂|2),

ϕ̂(x) = e−ipx/2sin(px/2)

px/2
.

Using the identity∑
n∈Z

1

(t + 2πn)2
= 1

4 sin2(t/2)
(t ∈ R) (4.2)

we obtain

hϕ(t) = 1

p2

sin2(pt/2)

sin2(t/2)
(t ∈ R).

We try to construct the cyclic representation corresponding to1. Let ρ =
ei2π/p and forη ∈ T defineαη(f )(z) = f (ηz) for all f ∈ L∞(T) and z ∈ T.
The essential observation is that we have the following identity:

p−1∑
k=0

αρk (hϕ) = 1 onT. (4.3)

This identity follows from the following computation:

p−1∑
k=0

αρk (hϕ)(t) =
p−1∑
k=0

hϕ

(
t + 2kπ

p

)

= 4

p2 sin2
(
pt

2

) p−1∑
k=0

∑
n∈Z

1

(t + 2kπ/p + 2nπ)2

= 4 sin2
(
pt

2

)∑
l∈Z

1

(pt + 2πl)2
(l = k + pn)

= 1
(
using (4.2)

)
.

We construct now the cyclic representation that corresponds to1. Let

H1 = L2(R)⊕ L2(R)⊕ · · · ⊕L2(R)︸ ︷︷ ︸
p times

.
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Forf ∈ L∞(T) define

π1(f )(ξ0, . . . , ξp−1)

= (
π
(
αρ0(f )

)
(ξ0),π

(
αρ1(f )

)
(ξ1), . . . , π

(
αρp−1(f ))(ξp−1)

)
,

U1(ξ0, . . . , ξp−1) = (
Uξσ(0),Uξσ(1), . . . ,Uξσ(p−1)

)
,

whereπ andU come from the wavelet representation onL2(R) andσ is the
permutation of the set{0, . . . , p − 1} given byρ2k = ρσ(k), soσ(k) = 2k modp.

π1 is a representation ofL∞(T), U1 is unitary, and a short computation, based
on the fact thatαρk (f (z2)) = (αρσ(k) (f ))(z2), shows that

U1π1(f ) = π1
(
f (z2)

)
U1

(
f ∈ L∞(T)

)
.

Defineϕ1 = (ϕ,ϕ, . . . , ϕ). Sinceαρk (m0) = m0 for all k ∈ {0, . . . , p − 1} and
Uϕ = π(m0)ϕ,

U1ϕ1 = π1(m0)ϕ1.

And, finally, we check that1 is the eigenfunction that induces this representation.
As 〈ϕ|π(f )ϕ〉 = ∫

T
f hϕ dµ, we have

〈
ϕ1
∣∣π1(f )ϕ1

〉= p−1∑
k=0

∫
T

αρk (f )hϕ dµ =
p−1∑
k=0

∫
T

fαρ−k (hϕ) dµ

=
∫
T

f

p−1∑
l=0

αρl (hϕ) dµ =
∫
T

f1dµ
(
by (4.3)

)
.

Now we Fourier transform everything and try to find the commutant of the
representation. After the Fourier transform,π̂1 and Û1 have the same form as
before, only now,̂π(f ) is the multiplication byf (f ∈ L∞(T)), and

Ûψ(x) = √
2ψ(2x)

(
ψ ∈ L2(R)

)
.

So considerA :H1 → H1 that commutes with the representation,A =
(Aij )

p−1
i,j=0.

Considerg ∈ L∞(T) of period 2π/p. Thenαρk (g) = g for all k. Hence

π̂1(g)(ξ0, . . . , ξp−1) = (
π̂ (g)(ξ0), . . . , π̂(g)(ξp−1)

)
.

Also, sinceσ is permutation, there is anM such thatσM(k) = k for all k so

ÛM
1 (ξ0, . . . , ξp−1) = (

ÛMξ0, . . . , Û
Mξp−1

)
.

Note thatPi , the projection on theith component, commutes witĥπ1(g) and
ÛM

1 . Then PiAPj commutes withπ̂1(g) and ÛM
1 , and this implies thatAij

commutes witĥπ(g) andÛM . Repeating the argument in Theorem 4.1, we obtain
thatAij = Mfij for somefij ∈ L∞(R).
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Now takef ∈ L∞(T) arbitrary. The fact that̂π1(f ) andA commute can be
rewritten as

p−1∑
j=0

fij αρj (f )ξj = αρi (f )

p−1∑
j=0

fij ξj
(
i ∈ {0, . . . , p − 1}, (ξj ) ∈ H1

)
.

Fix k and letξj = 0 for j �= k. Then

fikαρk (f )ξk = αρi (f )fikξk,

and this implies thatfik = 0 for i �= k.
Now the fact thatA commutes witĥU1 implies

fii (x) = fσ(i)σ (i)(2x), a.e. onR
(
i ∈ {0, . . . , p − 1}).

A simple check shows that anyA of this form commutes with the representa-
tion, therefore the commutant is given by

π̂ ′
1 = {

A :H1 →H1 | A(ξ0, . . . , ξp−1) = (f0ξ0, . . . , fp−1ξp−1),

fi ∈ L∞(R), fi(x) = fσ(i)(2x) a.e.
}
.

Using this and Section 2 we obtain that theL∞(T)-solutions forRm0,m0h = h

must satisfy the identity

1

2π

p−1∑
k=0

〈
ϕ̂
∣∣αρk (f )fkϕ̂

〉= ∫
T

f hdµ
(
f ∈ L∞(T)

)
for somefk ∈ L∞(R) with fk(x) = fσ(k)(2x) a.e. onR. So

h =
p−1∑
k=0

Per

(
fk

(
x + 2kπ

p

)
|ϕ̂|2

(
x + 2kπ

p

))
.

To conclude our analysis we try to find the continuous eigenfunctions. So let
us takeh continuous, having the form mentioned above. We want to see what
conclusions can be drawn onfi . We prove that they are constants.

Fix k ∈ {0, . . . , p − 1}.

h(x)= fk

(
x + 2kπ

p

)
|ϕ̂|2

(
x + 2kπ

p

)
+

∑
l∈Z\{0}

fk

(
x + 2kπ

p
+ 2lπ

)
|ϕ̂|2

(
x + 2kπ

p
+ 2lπ

)

+
∑

j∈{0,...,p−1}\{k}

∑
l∈Z

fj

(
x + 2jπ

p
+ 2lπ

)
|ϕ̂|2

(
x + 2jπ

p
+ 2lπ

)
.
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Denote the first sum byA(x) and the second one byB(x).

|A(x)| � M
∑

l∈Z\{0}
|ϕ̂|2

(
x + 2kπ

p
+ 2lπ

)
,

whereM = supi supx |fi(x)|. This last sum is a continuous function, as it is the
difference betweenhϕ(x + 2kπ/p) and|ϕ̂|2(x + 2kπ/p), and its value at−2×
kπ/p is 0, since

|ϕ̂|2
(

−2kπ

p
+ 2kπ

p
+ 2lπ

)
= 0, l �= 0.

Similarly,

|B(x)| � M
∑

j∈{0,...,p−1}\{k}
Per|ϕ̂|2

(
x + 2jπ

p

)
and also this function is continuous and 0 atx = −2kπ/p (look athϕ ). Thus

A(x)+ B(x) → 0, asx → −2kπ

p
.

Sinceh is continuous, the following identity holds:

lim
x→−2kπ/p

fk

(
x + 2kπ

p

)
|ϕ̂|2

(
x + 2kπ

p

)
= h

(
−2kπ

p

)
.

But |ϕ̂|2 is also continuous and|ϕ̂|2(0)= 1 so

lim
x→0

fk(x) = h

(
−2kπ

p

)
.

On the other hand, sinceσ is a permutation, there is aK such thatσK(i) = i

for all i ∈ {0, . . . , p−1}. Then by inductionfk(x) = fσK(k)(2
Kx) = fk(2Kx) a.e.

on R. This, coupled with the limit at 0, makesfk constantak. Then

h =
p−1∑
k=0

ak Per|ϕ̂|2
(
x + 2kπ

p

)
so

h =
p−1∑
k=0

akαρk (hϕ)

with ak = aσ(k) for all k ∈ {0, . . . , p − 1}.
We want to give a basis for the space of the continuous eigenfunctionsh. For

this, note thatak is constant fork in a cycle ofσ . So letO1, . . . ,Oc(p) be the
cycles ofσ . Then each continuoush will have the form

h =
c(p)∑
k=1

bk
∑
l∈Ok

αρl (hϕ).
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The functions
∑

l∈Ok
αρl (hϕ) can be seen to be linearly independent if we observe

that the set of zeroes are{ρ−l | l ∈ {0, . . . , p − 1} \Ok}.
Also, it is easy to see that the cyclic representation associated to

hOk =
∑
l∈Ok

αρl (hϕ)

is given byPOkπ1, POkU1, wherePOk is the projection on the components inOk .
Take now, for example,p = 9. Som0(z) = (1/

√
2)(1+ z9), ϕ = (1/9)χ(0,9),

hϕ(t) = 1

92

sin2(9t/2)

sin2(t/2)
.

It induces the wavelet representation onL2(R):

σ =
(

0 1 2 3 4 5 6 7 8
0 2 4 6 8 1 3 5 7

)
.

The cycles areO1 = {0}, O2 = {1,2,4,5,7,8}, O3 = {3,6}. hO1 = hϕ of course.
Observe that

hO1(x)+ hO3(x)= 4

92

2∑
k=0

∑
n∈Z

sin2(9(x+2kπ/3+2nπ)
2

)
(x + 2kπ/3+ 2nπ)2

= 4

32 sin2
(

9x

2

) 2∑
k=0

∑
n∈Z

1

(3x + 2π(k + 3n))2

= 4

32
sin2

(
9x

2

)∑
l∈Z

1

(3x + 2πl)2

= 1

32

sin2(9x/2)

sin2(3x/2)
.

Also

hO1 + hO2 + hO3 = 1.

Therefore a basis for the continuous eigenfunctions is{
1,

1

32

sin2(9x/2)

sin2(3x/2)
,

1

92

sin2(9x/2)

sin2(x/2)

}
.
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