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Abstract

Motivated by wavelet analysis, we prove that there is a one-to-one correspondence
between the following data:

(i) Solutions toR(h) = h whereRr is a certain non-positive Ruelle transfer operator;
(i) Operators that intertwine a certain class of representations af thalgebra? ; on
two unitary generator&, V subject to the relation

vvul=vV,

This correspondence enables us to give a criterion for the biorthogonality of a pair of
scaling functions and calculate all solutions of the equakgh) = h in some concrete
cases.

0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The multiresolution wavelet theory establishes a close interconnection between
two operatorsM—the cascade refinement operator ®&idthe transfer operator,
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also called Ruelle operator (see [6,7]). Our present approach stresses representa-
tion theory and intertwining operators.

In this paper we show how to get wavelets from representations and we
compare representations which yield different wavelets. Examples are given in
Section 4.

We recall thatM operates oi.2(R) by

My(x)=vNY axy(Nx —k) (xeR),

keZ
or, equivalently, in Fourier space
— _ mo(x/N) ~ [ x
My (x)= N I//(N) (x eR),

whereN > 2 is an integer—the scaleio(z) =) ;.7 arzF for z € T, T being the
unit circle, andyr denotes the Fourier transform

¥ (x) = / V(e " dt.
R

The Ruelle transfer operator is defined 6HT) by

1 2
Rf@ == Y Imo)Pf(w) (ze.
wN=z
OnT, we considey, the normalized Haar measure.
Itis the equation
Mgo =0, (11)
or, equivalently,
9(x)=VNY ap(Nx —k) (x€eR),
keZ

which generates the wavelets. It is called the refinement (or scaling) equation.

The orthogonality properties of the integer translates of the scaling function
¢ € L>(R), My = ¢ are closely connected to the problem of finding a positive
eigenvector foR

heLXT), h>0, Rh=h (1.2)

(see [2—-4] where a correspondence is established between the nobéz@je
solutionsg to (1.1) and the non-zero solutionsto (1.2). In general, solutions
need not exist.) A necessary condition for the orthogonality of the translates of
the scaling function is the quadrature mirror filter restriction:

% > Imow)P=1 (zeT)

wN=z
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which, in terms of the Ruelle operator, can be rewritten as
R1=1.

Lawton [8] gave a necessary and sufficient condition formulated also in terms
of the Ruelle operator: the translates of the scaling function are orthogonal if and
only if the constant functior is the only continuous solution of (1.2) (up to a
multiplicative constant).

The scaling equation (1.1) can be reformulated @Vaalgebra setting.

Consider2ly, the C*-algebra generated by two unitary operatbrsand V,
satisfying the relatio/ VU1 = V. It has a representation dif(R) given by

U:¢+—>\/—1N¢<%), Vivs ¥(x—1) (xeR)

V = n(z) wherer is the representation @f*°(T) given by

(T(NHY) = fi (feL™D).
The scaling equation (1.1) becomes

Up =m(mo)e.

The system(U, r, L2(R), ¢, mo) is called the wavelet representation with
scaling functionp (see [7]).

If a wavelet representation is given with scaling functipthen it produces a
solution for (1.2):

1 .
hw(z)=ZZ"(n(z”)¢|¢)=ZZ|¢(0)+2/<JT)|2 (z=e"'").
nez keZ

In [7] it is proved that a converse also holds. Any solutiop: 0 to Rh = h
arises in this way, ak = h,, for some representation of 2.

Thus, the analysis of orthogonal wavelets is closely related to the study of the
positive Ruelle operataR and this operator is linked to the representations of the
algebrall .

For an analysis of biorthogonal wavelets, it turns out that we have to consider
non-positive Ruelle operators. They correspond to a pair of fileysn €
L*°(T) and are defined by

1 -
Ry () =% > mowympw) f(w) (f € LYT), z€T).

wh =7

The condition corresponding to the quadrature mirror filter condition, and
necessary for the biorthogonality of wavelets, is

% > mowympw)=1 (z€T)

wN=z
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which rewrites as
Ry myl=1.

A If two scaling functionsp, ¢’ are given, withU g = (mo)p, Ug' = m(my)¢’,
then

1 N i
hyy(2) = Zz"(n(z”)w\w/) =5 Z P9 (w+2km) (z=e"'")
nez keZ

satisfies

Rmo,m’ohw,w’ =hyy.

For more background on wavelets we refer the reader to [6].

We will see in this paper that solutions &y, ,,» » = h correspond to operators
that intertwine the representations 2fy introduced in [7] arising frommg
and my, respectively. In Section 2 we establish this correspondence and in
Section 3 we give a criterion for the biorthogonality of two given scaling functions
in terms of the eigenspace of the non-positive Ruelle transfer opeRatoy,
associated to the eigenvalue 1. In Section 4 we consider some concrete examples
of filters and give complete solutions for the equatiin= h.

2. Main results

In this section we prove our main theorems on wavelets and representations:
Theorem 2.4 and Theorem 2.7. These results prove the bijective correspondence
between two sets: operators that intertwine the cyclic representations presented
in [7] and solutions tQR g myh = h.

We begin with some properties of the Ruelle operator. We will denote by
R= Rmo,m6' mo, my € L*(T).

Lemma 2.1. For f € LY(T)

(i) /Rf(z)du=/mo(Z)ME)(Z)f(Z)dM.

T T

(ii) /g(z)Rf(z)dM=/g(zN)mo(z)m6(z)f(z)dM.

T T

(iii) R(gMf(@))=g@Rf (),  R"(g(z"")f(@)=g@R"f(2).
(iv) / R f(z)du= / my” @mp™ f(@)dp.

T T

wherem{” (z) = mo(2)mo(zY) .. .mo(zN" ).
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Proof. (i)

21
/Rf()d_l’Vle/ 6 +2kn\ ,(6+2kn
Z“_Nkozyr MO\TN )M\ Ty
= 0

T

2(k+1)7 /N
=Yoo [ m@meers@do
k=0 2km /N

= / mo(2)mgy(z) f (2) d .
T

(iii) Clear.
(ii) Follows from (i) and (iii).
(iv) Proof by induction. For =1 it is (i).

[ R dn= [ R an= [moGmy@ R @ du

T T T
:/ R" (mo(zN")mp(z") £ (2)) de
T
:/ mg” @mo" @moNImo(N") £ () du
T
:/mén+l)(z)m6(n+l)(z)f(z) d,u. O
T

From[7, Theorem 2.4] we know that, givery € L°°(T) which is non-singular
(i.e., does not vanish on a subset of positive measure), there is a 1-1 correspon-
dence between

(@)h € LY(T), h >0, R(h) =h (hereR = Riug.mp)
and

(b)# € Rep2y. H), ¢ € H,
with the unitaryU from 7 satisfying

Up =m(mo)p.
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Rep®y, H) is the set of normal representations of the algelxa These rep-
resentations are in fact generated by a unitargn H and a representation of
L*(T) onH, with the property that

Un(f@) U ==(f") (feL®D).
Here is again Theorem 2.4 from [7]:

Theorem 2.2.

(i) Let mg € L*°(T), and supposeng does not vanish on a subset Bf of
positive measure. Let

1 2 1
(RN@ ==Y Imo)?f(w), feLXD). (2.1)
wN=z
Then there is a one-to-one correspondence between the(dptand (b)
below, wherdb) is understood as equivalence classes under unitary equiv-

alence
(@) he LXT),h >0, and
R(h) =h. (2.2)
(b) 7 € RepRAy, H), ¢ € H, and the unitaryU from 7 satisfying
Up =m(mo)e. (2.3)
(i) From(a)—(b), the correspondence is given by
(0|7 (o) /fh du, (2.4)

wherep denotes the normalized Haar measureTan
From (a)— (b), the correspondence is given by

h(z)=hy ()= _"(m(en)p|p)y, (2.5)

nez

(i) When(a) is given to hold for somé, and 7 € Rep®y, H) is the cor-
responding cyclic representation wittip = 7 (mg)e, then the represen-
tation is unique fromh and (2.4) up to unitary equivalencethat is, if
7' e Rep®ly, H), ¢’ € H also cyclic and satisfying

07 (f)¢) = / Fhdu
T

and

U'y' =n'(mo)y,
then there is a unitary isomorphis#ii of H onto /' such thatWx(f) =
7' (fYW, for f € L®°(T), WU =U'W andWgp =¢'.
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Definition 2.3. Given 4 as in Theorem 2.2, callz, U, H, ¢) the cyclic rep-
resentation ofly associated té.

The next theorem shows how solutiongi),fo,msho = ho induce operators that
intertwine these cyclic representations.

Theorem 2.4. Let mo, my € L°(T) be non-singular and:, ' € LY(T), h, '
>0, Ryg,mo(h) =h, Rmé,mé)(h’) =h'. Let(w,U, H,9), (x/, U, H, ¢) be the
cyclic representations corresponding toand /', respectively. Ifig € L1(T),
Rmo,m6(h0) = ho and |ho|? < chh’ for somec > 0 then there exists a unique

operatorS : H' — ‘H such that
SU' =US, ST'(f)=n(f)S (f eL=(D)),

(@|m(f)Se") = / fhodp (f € L®(D)).
T

Moreover,||S|| < 4/c.

Proof. To simplify the notation leRg := Rigm)y- Look at the construction of
andH in the proof of Theorem 2.4 in [7]. We reproduce here the main steps of
this construction. First, one considers

Vii={& n) & €L}
and
((g,n)|(r,,n))H:/R"(énh)du forn=1,2,....
T

Let H,, be the completion o¥, in this scalar product.
Whenn, k are givenp > 0,k > 1, one constructs the isomet¥y < V, 1 by
iteration of the one frony, to V, 41, i.e.,

Vi = Vi1 = Vg2 = - = Vi,
whereJ :V, — V,+1 is defined by
T(E )= (EE").n+1).
Then H is defined as the inductive limit of the Hilbert spacks. The set
U0 Va is dense irft.
The representation is defined as follows:
U(€,0) := (o€, 0) = (mo(2)€(z"), 0),
U n+1):=(mo("")&().n),
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and

T (f)E.n) = (f(z"")E@).n).

The scaling functiory is (1, 0). Recall also the main property of this rep-
resentation

Un(f)=n(fE")U (f eL™D).
Having these, we return to our proof. Define

B[&.m|E )] = f REEE hoydp, for (€,n) € V. (€'.n) €V
T
Then

IB[E.n)|&.m)]| = / RAEE'ho)

T

< /!mé")(z)mb(")(z)gé’ho\du
T

(by (iv) of Lemma 2.1)
< ﬁ/\mé”)(z)!\mb(")(z)!I&’Iléllhll/zlh/ll/zdu
T

1/2
< ﬁ(/!mé")(z)lzlélzhdu>
T

1/2
T

= Vel E mllrlE -
Therefore

|B[¢E.m)|E ]| < VellE mlxllE n)llr- (2.6)

Equation (2.6) implies also tha can be extended from, x V) to H, x H,,
such that (2.6) remains valid.

Next we prove thatB is compatible with the inductive limit structure that
defines the Hilbert spacé¢ and#’.

B[JE m|J'E . .m)]=B[(C").n+1)[(&').n+1)]
= [ RFHEE o) dn

T
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Z/RS(RO(f(ZN)é’(zN)ho(z)))du

T

- / RG (€(2)&' (2) Ro(ho)) d

T

= / Ry (E(@E (@ho) du = B[ (5, m)| (€, m)].
T

The compatibility with the inductive limit entails the existence of a sesquilinear
extension ofB to H x H’ with

|BIEIE']] < VellENlmNE 14 2.7)

There are some commuting properties betwBeand (7, ') as follows:
B[UE.n+D|UE n+D] = B[(mo("")§ (). n) | (mo(z"" )& ). n)]
- / Ry (oG ymy (2N )EDE (DDho(2)) die

T

=/mo(z)MB(z)RS(f‘E(—Z)S/(Z)ho(Z))dM
T

- / Ro(R3(E@E (ho(2))) diw = B[, n + D[ € .n + D]
T

So, by density
BIUE|U'E1=BI£IE'] (EeH. & eH). (2.8)
For f € L*°(T),
B[z ()& m|E . .n)]=B[(f(z"")&@).n)|E . n)]
= / Ry (F(zV")E@E (ho(2)) du

T
= B[ m|(F(2V")E @.n)] = B[E m|x' (HE n)]
and, again by density,
B[n(f)|&'] = B[E|x"(N)E] (EeH, & eH). (2.9)
As ¢ = (1, 0) = ¢’ we obtain also

Blo|7'(f)¢'] = B[, 0)|7"(H (X, 0)] = / f@ho(x)dp. (2.10)
T
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SinceB is sesquilinear and bounded, there exist${’ — H, a bounded linear
operator with||S|| < +/c such that
BIE|E"] = (€ISE") (EeH, & eM).
Rewriting (2.8) in terms of, one obtains
SU' =US,
(2.9) gives
n(f)S=Sx'(f) (feL>()),
and (2.10) yields

(ol ()S¢) = / Fhodp.
T

For the unigueness part we will use a lemma which will be useful outside this
context too.

Lemma 2.5. If nq, np are integers andf, f> € L°°(T) then

(U7 (f0e|SU ™7 (f2)0)
| AN Mg () f22)ho(x)dp  forna > na,
N fo @™ (2) 2N Y ho(z) e for ng = na.

Proof. Forny > ny
(U7 (fOe|SU "7 (f2)0)
=(U"2U""r(fOe|U"2SU" 7' (f2))
— (Unzinlﬂ(fl)(ﬂ‘Sﬂ/(fz)(ﬂ) — (JT(f]_(Zaninl))Unzinl(ﬂ‘Sﬂ/(fZ)(ﬂ/)
and usingU" ¢ = n(m(n))fp
= (w (AE"F")) 7 (m§Z ™)l S7 (f2)0)
=(p|s7' (AN )y @) f2)9)
= / AETN @S (@) f22)ho(z) d.
T

Forni > np the computation is completely analogous

The set
{U™n (e neN, feL®T)}
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is dense irH and similarly forH’, therefore Lemma 2.5 implies the uniqueness
of S. O

Even more uniqueness holds. In Theorem 2.4 in [7] it is proved th{at ifU1,
‘H1, ¢1) and (2, Uz, Ha, @2) are two cyclic representations@fy corresponding
to the samé: then there exists a unique unitary isomorphigm? 1 — Hz such
that

Wri(f) =m2(HW, feL®(), WU = U2W, We1 = ¢2.
Theorem 2.6. Letmo, mg, h, h', ho be as in Theorerd.4. Supposérn;, U;, H;,
@), i =1,2, are cyclic representations correspondingito(r;, U/, H}, ¢}), i =

1,2, are cyclic representations correspondingitoand S; : H; — H;, i = 1,2,
are bounded operators such that

Siwl(f)=mi(N)Si (feL®), SU =US (i=1,2),

(%Mﬂuwﬁ=/fmwta=La.
T

Then there exists unique unitary isomorphisisHy — Hz and W' : H} — H,
such that

Wri(f) =m2(/IW (feL®T), WUi=UW,  Wer=go,
W/ni(f):rré(f)W/ (fELOO(T)), W/UizUéW/,
Wel =5, SoW' = WSy.

Proof. Let W, W’ be given by Theorem 2.4 in [7]. Considgr = W1, W' : H)

— H1; we prove thatS; satisfies the same conditionsfsso it must be equal to
S1 (see Theorem 2.4). Let € L*°(T).

Sy (f) =W ESaW'mi (f) = WL Somp(/)W'
=W tna(f)S2W = ma(H)W LW = m1(f)S1.
Similarly §1U; = U151. Also
(@1|S171 (o) = a|ma(HHW LS./ 9) = (1| (/)WL S200%)
= (1| W tm2( ) S205) = (W |ma( ) Soih)

=<€02\n2(f)52§0§>=/fhodu. O
T

Next we approach the converse problem: that is, given non-singulan, €
L%(T) andh, k' € LX(T), h, ' >0, Ringmoh = h, Rméambh/ = h’, consider the
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cyclic representationgr, U, H, ¢) and (z’, U’, H', ¢’). We want to see if an
intertwining operatoss : ' — H induces an eigenvectap € L1(T) with

Rmo’msho =ho

and

(olsz'(He')= f fhodp (f € L=(D).
T
The answer is positive and is given in the next theorem.

Theorem 2.7. Let mo,my, h, W', (m, U, H,¢),(x',U', H',¢') be as in Theo-
rem2.4. Suppose : H' — H is a bounded operator that satisfies

St'(f)=n(fH)S (feL™T), SU =US.
Then there exists a uniqug € L1(T) such that

Ring,my o = ho

and
(o]s7'()He')= / fhodp  (f € L%(D)).
T
Moreover,
lhol? < ||S|I?hk’  almost everywhere ofi.
Proof. We will need the following result:

Lemma28.If f; e L*°(T), i € N, f; converges pointwise t¢ € L>*(T) u-a.e.
and| fillco < M < oo fori € N then

n(f)E) —>n(fHE) InH (EeH).

Proof. Consider first&, n) € V, so& € L*°(T),
" 2
(£ m = (e ml5 = [((HE) - £E))e@.n)|
=/R’n20 mo (15 = FIREV)EP (@R () dpe
/Iﬁ FIP@ R mo(1E1PR) djp — 0

by Lebesgue’s dominated convergence theorem.
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The set
V={(.,n)|£eL®T), neN}
is dense inH. Fix e > 0 and leta € H. There exists & € V with |la — by <
€/(3M),
|7 (fi)(@) — 7w ()@, < |7 (fid@) —x(fi))|y
+ |7 () =7 (D) |44
+ |7 (HB) =7 (@]
<lm(fllla = blln + |7 (fi) ) — 7 ()B4
+ 7 (Hlllla = bllx.

There is am, such that foti > ne one hag|z (f;)(b) — z(f)(b)|n < €/3. Then
for such indices,

€ € €
| (fiy(@) = (HH@ ], < Iilloozr + 3+ 1/ leogpr S €

This concludes the proof of the lemmar

Returning to the proof of the theorem, construct the continuous linear func-
tional onL*°(T) by

A f e gl (H)SP).

Its restriction to the continuous functions @his continuous so there is a finite
regular Borel measuneonT such that

(‘P|7T(f)5§0/>=/fdv, fec.
T

Now take f € L°°(T). Lusin’s theorem provides a sequence of continuous
functions f; on T that converges tg’ pointwiseu + |v|-a.e. and with| f; ||co <
|l flloo forall i € N. Using our lemma

(¢|ﬂ(f)S<0’)zﬂmoo(wln(ﬁ)Sw/)zl_@;o/ﬁdv=/fdv,
T T

the last equality following from Lebesgue’s dominated convergence theorem.
Hence

(|7 (f)Se") = / fdv (feL®).
T
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The measure in absolutely continuous, becausegifis a Borel set ofu meas-
ure zero, thent(xg) = 0 SOV(E) = fT xedv = 0. Consequently, there is an
ho € L1(T) such thadv = hodu and we rewrite the previous equation:

(¢|ﬂ(f)S<0’)=/fhodu, f e L®(T).
T

Next we prove thaRohg = ho. Take an arbitrary’ € L*°(T),
| rodi=lolx(1)50) = (velumse)
T

=(r(mo)e|7 (f))SU'¢’)

= (w(mo)e| S’ (f (™))’ (mp)¢’)
= (r(mo)p|r (f")my(2))Se')
=(p|m (£ " )my2)mo(2)) S¢')

- / £ ymly@mo@ho(:) diu = / £ @) Rohod.
T T

As f is arbitrary inL°°(T) this implies thatRoho = ho.
Uniqueness ofig is clear and we concentrate on last inequality stated in the
theorem. For allf, g € L°°(T) we have

/ Tghodp|=|(m(fe|m(@)Se)| < |7 (Nl IS ()¢5
T

1/2
< </|f|2hdu> ||S||</|g|2h/du>
T T

Sinceho, h, k' are inL1(T), almost every pointis a Lebesgue density point for
all of them. Take; a Lebesgue point anfl = g = x; wherel is a small segment
centered at. The inequality above implies

172 172
/hodu <||S||</hdu> (/h/du) ,
1

1 1

1 1/2 1 1/2
<Isil == [ na — | KWa .
| ”(uu)/ “) (uu)/ “)

1

1/2

and, dividing by (1),

L/hd
k(@ J oakt

Then let! shrink to{z},
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lho(2)| < ISIIRY2 ()R Y2 (2),

and the proof is complete.O

3. Applicationsto wavelets

We have wavelet representations 9fy: (U, w, L2(R), ¢, mg). Then, by
Theorem 2.2, it is the cyclic representation associated to some paositiith
Rio,moh = h. Let us see what the correspondings. We must have

(o7 (He)= / fhdp  (f e L>(D),
T
and by the unitarity of the Fourier transform

1 -
— | ofpdu= hdu,
o / pfedu / fhdu
R T
and after periodization

/ £ Pegl?) du = f fhdp.
T T

which implies Pe|¢|?) = h. Here, for f € L1(R),

Pef) (@)=Y flw+2kr), wel0,27].
keZ
Hence the wavelet representation is the cyclic representation corresponding to
Pex|¢[).
Next, we try to give a hecessary and sufficient condition for the biorthogonality
of wavelets. In the case of biorthogonal wavelets we have the following identity
for the filtersmo, my:

1 -
¥ > mowympw) =1, zeT,

wN =z
which can be rewritten as

R 1 =1.
0

mo,m

If ¢, ¢" are scaling functions correspondingr, mg, respectively, then we
see that P&€p¢’) is also an eigenvector fd{’mo,mg,-
Indeed, one has the corresponding scaling equations

Ugp =r(mo)e, Ug' =m(my)y/,
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or the Fourier transform versions
. mo(w/N) , (® n my(@/N) ., (@
P(w) = T‘P(ﬁ), ¢ () = TQD (ﬁ)
Then
N-1

Pe39) @)= 9@ @ +2km) =Y Y §¢ (@ + 2kNx + 2I7)
keZ =0 keZ

N-1 — (w2 1 (et2n
:szo( 5 )¢<w+21ﬂ +2kn>m0( 21
=iz VN N VN

w+2r\ ,(o+2x
Mo
N N
+

= Rmo,m’o (Pe'((ﬁ@/))(w)
Thus, if we know thalRmO,m& has only one eigenvector (up to a multiplicative

constant) in some subspace containirand Pe¢g¢’), then we get that
Pel(¢@) =1
which is the Fourier transform version of the biorthogonalitypainde’.

We shall see that, under some mild regularity assumptiong and¢’, the
converse also holds so the biorthogonality implies ®Raf ,,, has a 1-dimen-
sional eigenspace corresponding to the eigenvalue 1.

We set up the framework for this converse. Suppose we have cyclic vectors

@, ¢’ for the wavelet representatich of 2y on L2(R), satisfying the scaling
equations

Up=n(mo)p. Ug =m(mpye’
with mo, mg non-singular inL>°(T).
The wavelet representatiai/, 7, L2(R), ¢, mg) is the cyclic representation

corresponding té = Pe(|¢|2). Similarly, for¢’, the wavelet representation cor-
responds td’ = Per(|¢’|?).
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Theorem 3.1. Letmo, my, ¢, ¢’ as above. Suppose the following conditions are
satisfied

(i) $(0) #0#¢'(0).

(i) The integer translates @f and ¢’ form Riesz bases for their corresponding
linear spans.
(iii) ¢ andg’ are continuous af and

Z 1912(x + 2km) - 0 asx — 0,
k0

Z 1¢/1?(x +2kn) — 0 asx — 0.
k0

(iv) ¢ and¢’ are biorthogonal or equivalently

Zé(x +2km)@ (x + 2k7) =1, a.e.onR.
keZ

Then there exist exactly offep to a constant multip)esolution for

rho="ho, hoe L>(T),

mo my

which is continuous at = 1. (The solution igig = 1.)

Proof. Employing Schwarz’ inequality we have
2

= |Pe$¢') (@) = | > $¢' (@ + 2kr)
keZ
< (Z |¢7|2(w + 2kn)> (Z |g5/|2(a) + 2kn)>
keZ keZ

= (Per@|?) (Per¢'|?) (w) = h(w)h' (w).

Supposéhg is a solution inL>(T) of R, m/ho = ho which is continuous at
z=1.Sincehg € L°(T), thereisa < oo such that/o|2 < ¢ almost everywhere
on T and the previous inequality implies

lhol2 < chh'.
Therefore, by Theorem 2.4¢ induces an operatdt: L2(R) — L2(R) such that

US=5SU, n(f)S=Sx(f) (feL>),

(oS (f)¢')= / Jhodp.
T
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Fourier transform the last equation and then periodize to obtaiyi tor.*°(T)

1., .= ~ ’
/fhoduzg(¢|f(5¢/))=/Per(¢(S<0 ) fdu.
T T
So
ho = Pel¢(S¢))). (3.1)

Also the commuting properties ¢f imply that S¢’ is a solution for the scaling
equation

US¢' =m(mg)S¢’.

AssumeS¢y’ # cp’ wherec is some constant. We want to prove t@ can
not be continuous at 0. Otherwise, consider the Fourier version of the scaling
equation

and by induction
— omh(w/N) | —/( o
So@ =[]+ [S¢| — ).
¢ (@) []1 v |5 (N>
A similar equation can be constructed gt If §-¢7 is continuous at 0 then
SP@) _ o S¢'G/NY) _ S¢'(0)
¢'(x) — n=oo @'(x/N™) — ¢'(0)
S0 Sy’ = cg with ¢ = S¢/(0)/¢'(0), a contradiction.
On the other hand, from (3.1) we get

P(X)S¢ (x) = ho(x) — Y §(x + 2km)S¢/ (x + 2krr). (3.2)
k=0

¢ andhg are continuous at = 0. We prove that the sum in (3.2) converges to 0
asx — 0. By the Schwarz inequality

< <Z 1612 0x + 2kn)> <Z|S’¢?|2(x + 2kn)>.

k#0 k#0
(3.3)

We try to bound the second factor. Sinfeommutes withr andU, the same is
true forS* andS*S By Theorem 2.75*S induces somé, with Ry m ho = hy,
|hpl? < ch'? for somee > 0 and

(¢'|7(f)S*S¢") = / fhodp (f € L=(TD).
T

> 95¢'(x + 2km)
ks£0
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Then

(5S¢ |7 (f)S¢) = / Fhydp.
T

Using again the Fourier transform and periodization we obtain
PelS¢/|” = hy < /ch'.
Sinceg’ generates a Riesz basis (see [6]), therefs<aco such that
n =Per¢'|>< B.

Thus Pet§-<p7|2 is bounded and, using the hypothesis (iii), in (3.3) we obtain that

lim =0.
-0

Z $S¢’ (x + 2k)
k0

Now apply this to (3.2) and use the fact tigaits continuous at 0 witip(0) # 0 to
conclude thaS¢’ is continuous 0, again a contradiction which leadS¢6= c¢’.
Without loss of generality, take the constarib be 1.

/ Fhodu = (ol (£)S¢') = lp|m()¢) = / fdu,
T T

the last equality follows from (iv) using the usual Fourier-periodization technique.
The equality holds for alf € L*°(T) sohg=1. O

Corallary 3.2. If ¢ and¢’ are compactly supported, biorthogonal,
mo(0) = VN = mp(0),

2km 2km
mo(T>=O=m6(T>, ke{l,...,N—l},

then1 is the only solution ORmO,m6ho = ho which is continuous at = 1 (up to
a multiplicative constant

Proof. We have to check the conditions of Theorem 3.1. The Fourier coefficients
of Per|¢|? are given by

/ek Perlg2du = (| (er)e) = (oo — b))
T

wheree;, = e~%, Therefore the coefficients are zero except for a finite number
of them, so Pel|2 is a trigonometric polynomial. The same is true for &P

Also the fact thaty and ¢’ are compactly supported implies th@t¢’ are
continuous. From the scaling equation we obtain @) = 1= ¢’ (0).
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Fork € Z, k #0, we can writesk = NPl with [ = Ng +r,r € {1,...,N — 1}.
Then
@(2km) = @(2NPlm)
_ mo@NP~Ym)  mo(2NIm) mo(2m) mo(2w /N) (217[)
a VN VN VN VN N

=0

because

(2[71) <2(Nq+r)n) (2rn>

mo( = ) =mo| =—————) =mo| — ) =0.

N N N

Thus@(2ksr) = 0 for k # 0. This shows that Pép|2(0) = 1. Then

D 167 (x + 2km) = Perlg|*(x) — ¢(x) — Per|g|*(0) — $(0) =0
k0
asx — 0.

The same argument appliesdb
Condition (ii) is obtained as follows: look at the first inequality in the proof of
Theorem 3.1. We have

1< (Per¢l?) (Per¢’'|?) ().

As both factors are trigonometric polynomials they are bounded by a common
constant O< A < co. Hence

1/A < (Perlg) < A

which implies that the translates ¢f form a Riesz basis for their linear span
(see [6]). Similarly forp’. O

4. Some examples

We know that in the case of a quadrature mirror filtgrfor which the transfer
operatorR,,,,m, has 1 as a simple eigenvaluedi(T), the cyclic representation
that corresponds to the constant functibis in fact the wavelet representation
on L2(R). Then the commutant of this representation is in one-to-one correspon-
dence withL*>°(T)-solutions forRy,, .,k = h. We will describe this commutant
and give the form of all correspondirg® (T)-solutions.

We recall that the wavelet representatior®igf is generated by

1

U:Wr—)ﬁ

w(%) Vi yix — 1),
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V =m(z) wherer is the representation d@f*° (T) given by

(r(HY) =i (f L), ¥ € LAR)).

It will be useful to consider the representation in Fourier space and in thidtase
has the form

U (x) = VN (Nx). (4.1)

Thus we have another representatiofiaf on L2(R), which is generated bg?
givenin (4.1) and the representatigrof L°°(T) given by

ROV = (feL™D), ¢ € LAR)).

This representation is equivalent to the wavelet representation via the Fourier
transform.

Theorem 4.1. The commutant aft, U, L2(T)) is
{Ms] feL®®), f(Nx)= f(x)a.e. onR},
whereM ¢ () = fy forall ¥ € L2(R), f € L¥(R).

Proof. (The theorem is valid even in a more general case, see [9])4 & an
operator that commutes witlh andz (f) for all f € L°°(T). We prove first that
A commutes withM,, whereg e L>(R) is periodic of period /.

Indeed, letf (x) = g(Nx) for x e R. Thenf is 2r-periodic and bounded, so
#(f) commutes withd. ThenA commutes also witl/ ~17 (£)U. But

(U7 (HUY)(x) =T Hf )V Ny (Nx))
=f<%>w<x> = g ()Y ().

So U4 (f)U = M,. It follows by induction thatA commutes with any
multiplication by a 2 N*-periodic function in L>(R). Now, considerf e
L*R). We claim thatA commutes withM ;. Define f,,(x) = f(x) on[—z N",
7 N"] and extended it orR by 27w N”-periodicity. First we prove thai/y,
converges td/ s in the strong operator topology. For this, take= L?(R). Then

||an1”—Mf1/f||2=/|fn—f|2|1/f|2dx: / o — 1012 dx
R

[x|Zm N"

2
< (21 fllso) /X{|x|>nN"}|1//|2dx—>0 asn — oo.
R

Thus M is the limit of My, in the strong operator topology and, conse-
quently, A will commute with ¢ also. Using then Theorem IX.6.6 in [5] we
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obtain thatd = My for somef € L>(R). Then, the fact thatt andU commute
implies

f(Nx)= f(x) a.e.onR.

This proves one inclusion, the other one is a straightforward verification.

Using this theorem we can find all solutionsRg,, ,,, i = h as follows:

Corollary 4.2. Suppose we have the wavelet representaiiing, L2(R), ¢, ng)
and (U, 7, L%(R), ¢, my). Let h = Pex|@|?) and h’ = Pex(|¢’|?). Then each
solution hg € LY(R) for Rypgmyho = ho with |ho|? < chh’ for some positive
constant has the form

ho = Per(f¢¢')
for somef € L°(R) with f(Nx) = f(x) a.e.
Conversely, any sudhy is an L1(R)-solution for Ryu,myho = ho and |hol? <
chh’ for somec > 0.

Proof. The cyclic representations correspondingitand 4’ are the wavelet
representations given in the hypothesis. Hence the intertwining operators are in
fact the ones in the commutant of the wavelet representation. We will transfer
everything into the Fourier space by applying the Fourier transform and then use
Theorem 4.1 and the results in Section 2.

If ho is as given then there is an operatbrin the commutant of the rep-
resentation such that

(p|m(9)A¢’)= / ghodp (g€ L®(D)).
T

But after the Fourier transform, we saw ththas the formA = M where f €
L>®(R) with f(Nx) = f(x) a.e. Therefore

1

5(¢|gf¢’)=/ghodu (g € L=(D)),

T
and after periodization we obtain that

ho =Pel(f¢¢').
Conversely, it is easy to see that, whgis given,
1, .
> (0leMs¢') = / ghodu (g€ L=(D)),

T
and asMy is in the commutant, the rest follows
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Example4.3. In the sequel we considar = 2, mo(z) = (1/+/2)(1+zP), p being
an odd integer. This example appears also in [1]. We try to find out the solutions
for Ryg moh = h.
Itis easy to see that

Rig,mol = 1.
Also if ¢ = (1/p) x(0,p) then

Up =m(mo)p.
Then the wavelet representaticii, 7, L2(T), ¢, mo) is the cyclic representation
corresponding té,, = Per($|?),

p(x) = e ire/22MPY/D)

px/2

Using the identity

1 1
z:0+2mﬂz4wﬁﬁa ek (4.2)

nez
we obtain
1 sir(pt/2)
he(t) = 2 5|n2(t/2) (t e R).

_We try to construct the cyclic representation corresponding.tbet p =
¢!?7/P and forn e T definea, (f)(z) = f(nz) for all f € L>(T) andz € T.
The essential observation is that we have the following identity:

p—1
> a(hy)=1 onT. (4.3)
k=0

This identity follows from the following computation:
p—1

E:cxk(hw)a)——jzzh <t+—g§z)

p—1

pt 1
mZ( )ZZ (t +2km/p + 2nm)?

. 1

=1 (using (4.2).
We construct now the cyclic representation that correspontisitet
Hi=L*R) S L*R) & --- & LA(R).

p times
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For f € L°°(T) define

71(f)Eov - Ep-1)
= (7 (o0 (1)) G0) 7 (@1 () ED, - v 7 (epp 1 () Ep-1)),s

Uio, - ... 6p-1) = (U (0), Ubo (1), - - -, Uko(p—1))
whererr andU come from the wavelet representation bA(R) and o is the
permutation of the s€D, ..., p — 1} given byp% = p°® soo (k) = 2k mod p.
71 is a representation df*°(T), U1 is unitary, and a short computation, based
on the fact tha .« (f(z%)) = (at,0m ())(z?), shows that
Urmi(f) =ma(f@®)Ur (f € L¥(D)).
Defineg1 = (¢, ¢, ..., ¢). Sincea x (mo) =mo forall k € {0, ..., p — 1} and
Up =m(mo)e,
U1 = m1(mo)e1.

And, finally, we check that is the eigenfunction that induces this representation.
As (p|m()¢) = [1 fhydu, we have

p—1 p—1
(erlrarren) = 3 [ap(gdn=3" [ sa i) d

k=01 k=07

p—1
=/f2ap1(h<p)dy,=/f]1du (by (4.3).
T =0 T

Now we Fourier transform everything and try to find the commutant of the
representation. After the Fourier transforfn, and U; have the same form as
before, only nowst ( f) is the multiplication byf (f € L®(T)), and

Uy (x) =v2y(2x) (¢ € L*(R)).

So considerA:H1 — Hi that commutes with the representatiof,=
Aip! 2o

Considerg € L*(T) of period 2t/ p. Thena «(g) = g for all k. Hence

#1(8) (o, - ... §p-1) = (R (@) G0). . ... (&) (5p-1)).

Also, sinces is permutation, there is aif such that ™ (k) = k for all k so

0 (o.....&p-1) = (UM&0,..., UM, 1),
__Note thatP;, the projection on théth component, commutes witt () and
UM. Then P;AP; commutes with71(g) and U}, and this implies that4;;
commutes witht (g) andU™ . Repeating the argumentin Theorem 4.1, we obtain
thatA;; = My, for somef;; € L (R).
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Now take f € L>®°(T) arbitrary. The fact thafr1(f) and A commute can be
rewritten as

p—1 p—1
DS (D& =au ()Y fijgj ((€{0.....p—1), (&) € Ha).

j=0 j=0
Fix k and let§; =0 for j # k. Then
Jiket pk ()6 = a i (f) fikkk,
and this implies thafjx =0 fori #k.
Now the fact thatd commutes withl/; implies
fii(X) = fo@om(2x), a.e.onR (ie{0,...,p—1}).

A simple check shows that any of this form commutes with the representa-
tion, therefore the commutant is given by

a1 ={A:H1— Hi| Ao, ....Ep-1) = (foko. ..., fr-1Ep-1).
fi e L°R), fi(x) = foi)(2x) a.e}.

Using this and Section 2 we obtain that the (T)-solutions forR,,, moh = h
must satisfy the identity
1 p—1
or S0l (115i9)= [ fhau (1 er=m)
k=0 T

for somefi € L*(R) with fi(x) = fox)(2x) a.e. onR. So

p—1
=3 Pev(fk <x + 2k—”)|¢a|2(x + @»
P P P

To conclude our analysis we try to find the continuous eigenfunctions. So let
us takeh continuous, having the form mentioned above. We want to see what
conclusions can be drawn gh. We prove that they are constants.

Fixke{O,...,p— 1}

2k .o 2k
h(x) = fk(x + —)I(pl <x + —)
p p

2k o 2%
+ ) fk(x +== +21n>|<p|2<x +=- +21n)

1eZ\{0}

2j 2j
+ > D x+ T pan )igR(x + 2E 2 ).
p p

JE{0,....,p—1\{k} I€Z
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Denote the first sum by (x) and the second one B(x).

. 2k
A<M Y |¢|2<x + 7” + zzn),

1€Z)\ {0}

whereM = sup sup, | fi (x)|. This last sum is a continuous function, as it is the
difference between, (x + 2k /p) and|¢|%(x + 2kx/p), and its value at-2 x
km/pis 0, since
|¢>|2(_@ i 2171) —0, [#£0.
p p
Similarly,

Y
Bul<M > Per|¢|2(x + J—”)
JEl0 e P~ 1\ [K) P
and also this function is continuous and &cat —2kx /p (look ath,). Thus
2k
A(x)+ B(kx)—0, asx— ——ﬂ.
p

Sinceh is continuous, the following identity holds:

. 2km\ . 2k 2k
lim fk<x+—)|(p|2(x+—> =h<——>.
x——2km/p p p p

But |¢|2 is also continuous an@|2(0) = 1 so
. 2k
lim fi(x) :h(——ﬂ).
x—0 p

On the other hand, sineeis a permutation, there is & such that X (i) = i
foralli € {0, ..., p—1}. Then by inductiory (x) = f, & ), (25x) = fi(2Xx) a.e.
onR. This, coupled with the limit at 0, make constanti;. Then

p—1

2k
h=Y a Per|¢|2<x + —”)
k=0 p
SO
p—1
h=Y"ara(hy)
k=0

with ax = as ) forallk € {0, ..., p —1}.

We want to give a basis for the space of the continuous eigenfuncétidfar
this, note thaty, is constant fork in a cycle ofo. So letOxy, ..., O, be the
cycles ofa. Then each continuouswill have the form

c(p)

h=Y b Y ay(hy).

k=1 €O
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The functions) ., @, (hy) can be seen to be linearly independentif we observe

that the set of zeroes afe ' |1 € {0, ..., p — 1} \ O}.
Also, it is easy to see that the cyclic representation associated to

hoy =Y a,(hy)
leOy
is given byPo, 1, Po, U1, WherePy, is the projection on the componentsin.
Take now, for exampley = 9. Somo(z) = (1/v/2)(1+2%), ¢ = /9 x0,9),
1 sir?(9t/2
() = _ZM_
9 sirt(1/2)

It induces the wavelet representationof(R):
(0 1 2 3 45 6 7
°=\o 2 468135 7"
The cycles ar@; = {0}, 02 ={1,2,4,5,7, 8}, O3 = {3, 6}. hp, = h,, Of course.
Observe that

S.@(W)

hoy(x) + hoy(x) = ZZ
. 3 2k — Z(x—i—2kyr/3—i-2nyr)2

Ox 1
_Sm2< ) ZZ (3x + 27 (k + 3n))2

k=0neZ

4 Ox 1
-3 S'n2<?> EZ: G 1 271)?
1 Sinf(9x/2)

- 32sik(3x/2)

Also
ho, +ho, +ho, =1.
Therefore a basis for the continuous eigenfunctions is

{1 1 Sinf(9x/2) 1 sin2(9x/2)}
"3 sirt(8x/2)" 9 sirt(x/2) |
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