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We study electroweak Sudakov corrections in high energy scattering, and the cancellation between real 
and virtual Sudakov corrections. Numerical results are given for the case of heavy quark production by 
gluon collisions involving the rates gg → tt̄, bb̄, tb̄W , tt̄ Z , bb̄ Z , tt̄ H, bb̄H . Gauge boson virtual corrections 
are related to real transverse gauge boson emission, and Higgs virtual corrections to Higgs and 
longitudinal gauge boson emission. At the LHC, electroweak corrections become important in the TeV 
regime. At the proposed 100 TeV collider, electroweak interactions enter a new regime, where the 
corrections are very large and need to be resummed.
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1. Introduction

Electroweak corrections grow with energy due to the presence 
of Sudakov double logarithms αW ln2 s/M2

W , and are already rel-
evant for LHC analyses with invariant masses in the TeV region. 
The corrections arise because of soft and collinear infrared di-
vergences from the emission of electroweak bosons. The infrared 
singularities are cutoff by the gauge boson mass, and lead to finite 
αW ln2 s/M2

W corrections. Unlike in QCD, the electroweak loga-
rithms do not cancel even for totally inclusive processes, because 
the initial states are not electroweak singlets [1–3].

In this paper, we discuss the cancellation (or lack thereof) be-
tween real and virtual corrections. We will use gg → tt̄, bb̄ as 
an explicit numerical example. In this process, the initial state is
an electroweak singlet, so the total cross section does not con-
tain αW ln2 s/M2

W corrections. This allows us to compare the elec-
troweak corrections in this process to the more familiar case of αs
corrections to the R ratio for e+e− → hadrons. Even though elec-
troweak Sudakov corrections cancel for the total cross section, they 
do not cancel for interesting experimentally measured rates, and 
are around 10% for invariant masses of ∼ 2 TeV. Some earlier work 
related to our paper can be found in Refs. [4–7]. Electroweak cor-
rections to processes involving electroweak-charged initial states, 
such as Drell–Yan production, qq → W W , or qq → tt , are larger 
than for gg → tt .
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At present, omitted electroweak corrections are the largest er-
ror in many LHC cross section calculations, and are more important 
than higher order QCD corrections. Furthermore, the resummed 
electroweak corrections to all hard scattering processes at NLL or-
der are known explicitly [8–10], and have a very simple form, so 
they can be incorporated into LHC cross section calculations. Re-
cently, there has been interest in building a hadron collider with 
an energy of around 100 TeV. For such a machine, electroweak 
corrections are no longer small, and resummed corrections must 
be included to get reliable cross sections. The numerical plots in 
this paper go out to 

√
ŝ = 30 TeV to emphasize the importance of 

electroweak corrections at future machines.
We will make one simplification in this paper, by computing 

electroweak corrections in a pure SU(2)W gauge theory, neglecting 
the U (1) part. The reason is that in the Standard Model (SM), after 
spontaneous symmetry breaking, there is a massless photon. Elec-
tromagnetic corrections produce infrared divergences which are 
not regularized by a gauge boson mass. Instead they have to be 
treated by defining infrared safe observables, as done for QCD. 
Initial state infrared corrections can be absorbed into the parton 
distribution functions (PDFs). To implement this consistently re-
quires electromagnetic corrections to be included in the parton 
evolution equations. These additional complications are separate 
from the main point of the paper, and can be avoided by using the 
SU(2)W theory.

The numerical results will be given for an SU(2)W gauge theory 
with αW equal to the Standard Model value α/ sin2 θW . We will 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. Graphs contributing to the αW correction to the J → qq̄ rate.
treat W 1,2 as the SM W bosons, and W 3 as the SM Z 0, and use 
the notation L ≡ ln s/M2

W .
The structure of electroweak corrections is discussed in Sec-

tion 2, and a summary of the SCETEW results for computing these 
is given in Appendix A. The cancellation of real and virtual elec-
troweak corrections is discussed in Section 3 for an example where 
one can do the full computation analytically, and Section 4 dis-
cusses the cancellation for heavy quark production, where the 
rates have to be computed numerically. Some subtleties for an 
unstable t-quark are discussed in Section 4.3. The implications of 
electroweak corrections for experimental measurements is given in 
Section 5.

2. Electroweak logarithms

Electroweak radiative corrections have a typical size of order 
αW /π ∼ 0.01. However, in some cases, the radiative corrections 
have a Sudakov double logarithm, (αW /π)L2, and become impor-
tant. The regime where this happens is high energy, s � M2

W , 
where one can apply soft-collinear effective theory (SCET) [11–14]. 
The electroweak version of SCET (SCETEW) was developed in a se-
ries of papers Refs. [8–10,15–20], and has important differences 
from the QCD case, namely the presence of a broken gauge sym-
metry, massive gauge bosons, and multiple mass scales M Z , MW , 
MH and mt . The effective theory is a systematic expansion in 
M2

W /s, and at leading order, all (M2
W /s)n power corrections are 

omitted. The neglect of these power corrections greatly simplifies 
the computation, and the electroweak corrections have an elegant 
universal form. We are in the lucky situation where the theory 
simplifies in the regime where the electroweak corrections are 
important. Electroweak corrections have been computed by many 
groups by other methods [1–3,21–39].

It is instructive to compare the SCET result with the vastly 
more difficult conventional fixed order approach to computing 
electroweak corrections. At fixed order one gets an expansion ∑

n,r cn,rα
n
W Lr with r ≤ 2n, which breaks down at high energies. 

Furthermore, one has to do a very difficult multi-scale computation 
(with scales s, M Z , MH , mt ) for each new process being consid-
ered. The fixed order results are available only for a few cases, and 
often with the approximation that MW = M Z = MH . In contrast, 
the SCET result, Eq. (A.2) has a simple form where all the pieces 
are known, so each new process can be computed by multiply-
ing the appropriate factors, which are all known in closed form. 
The reason the fixed order calculation is much harder, of course, 
is that it includes the M2

Z /s power corrections, which then have to 
be expanded out. The M2

Z /s power corrections are negligible in the 
region where electroweak corrections are large and experimentally 
important. We summarize the SCETEW results in Appendix A. More 
details can be found in Refs. [8–10,15–19].

An explicit numerical analysis comparing fixed order and 
SCETEW results is given in Section 3.
Fig. 2. Virtual correction to J → qq.

3. Cancellation of real and virtual corrections

Recall the familiar example of the total cross section for 
e+e− → hadrons, which has an expansion in αs(Q 2), with no large 
logarithms. At one-loop, the virtual correction to e+e− → qq is 
infrared divergent, as is the e+e− → qqg real radiation rate, but 
the sum of the two is infrared finite, and gives the correction to 
the ratio of the e+e− total cross section to its tree-level value, 
R = 1 + αs/π .

The electroweak corrections to gg → qq have a similar can-
cellation. Rather than study this process, we first start with the 
simpler case of J → qq, where Jμ = qγ μ P Lq is an external gauge 
invariant current that produces the doublet qL = (t, b)L , where we 
treat t and b as massless quarks. The main reason for doing this is 
to avoid complicated phase space integrals for real radiation, and 
fermion mass effects, and because it is closely related to the fa-
miliar QCD case of R . The gg → qq case with qL = (t, b)L will be 
studied numerically in Section 4.

The total cross section for J → qq can be written as the imag-
inary part of the vacuum bubbles Π(Q 2) in Fig. 1. Π(Q 2) at 
Euclidean Q 2 is infrared finite. Thus the analytic continuation to 
Minkowski space is also infrared finite, and the sum of the real 
and virtual rates, which is equal to the imaginary part of Π(Q 2), 
is infrared finite.

The virtual correction to J → qq is given by the graph in Fig. 2
and wave-function graphs, which gives the vertex form-factor

F V = 1 + C F αW

4π

{
−7

2
+ 2̃r − (3 − 2̃r) ln r̃ + (1 − r̃)2

×
[

2Li2(̃r) − ln2 r̃ + 2 ln r̃ ln(1 − r̃) − 2π2

3

]}
(1)

at Euclidean momentum transfer q2 = −Q 2 < 0, with

r̃ = M2
W

Q 2
, (2)

where MW is the gauge boson mass.1 Analytically continuing to 
time-like q2 = s > 0,

1 Eq. (12) of Ref. [8] is incorrect near threshold.
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Fig. 3. Real radiation from J → qqW .

r = M2

s
= −̃r, ln r̃ = ln r − iπ, (3)

gives

F V = 1 + C F αW

4π

{
−7

2
− 2r − (3 + 2r) ln r

+ (1 + r)2
[

2Li2(−r) − ln2 r + 2 ln r ln(1 + r) + π2

3

]
+ iπ

[
(3 + 2r) + 2(1 + r)2(ln r − ln(1 + r)

)]}
(4)

which for s → ∞ is

F V = 1 + C F αW

4π

×
{
− ln2 r − 3 ln r + π2

3
− 7

2
+ iπ(2 ln r + 3)

}
(5)

The SCETEW computation gives radiative corrections to the Jqq
operator neglecting M2/s power corrections, and gives precisely 
Eq. (5), when expanded out to order αW [15].

The one-loop virtual correction to the Jqq cross section is (ne-
glecting power corrections)

σV = σ0
[|F V |2 − 1

]
= σ0

C F αW

2π

{
− ln2 r − 3 ln r + π2

3
− 7

2

}
(6)

where σ0 is the tree-level cross section. The − ln2 r and −3 ln r
terms lead to large corrections at high energy.

The real radiation J → qqW arises from the graphs in Fig. 3, 
and is

σR = C F αW

2π
σ0

{
5
(
1 − r2) + (

3 + 4r + 3r2) ln r + (1 + r)2

×
[

ln2 r − 4 ln r ln(1 + r) − 4Li2(−r) − π2

3

]}
. (7)

Expanding in r gives

σR = C F αW

2π
σ0

{
ln2 r + 3 ln r − π2

3
+ 5 + . . .

}
. (8)

The total radiative correction is

σT = σR + σV

= C F αW

2π
σ0

{
3

2
− 2r − 5r2 + (2 + 3r)r ln r

− 2(1 + r)2[ln r ln(1 + r) + Li2(−r)
]}

(9)

and as r → 0 gives
Fig. 4. Plot of the real and virtual corrections to J → qq̄. Plotted are the exact vir-
tual correction (solid blue), the virtual corrections using SCETEW (dashed blue), real 
radiation (red), exact total rate (black) and the total rate using the SCETEW virtual 
correction (dashed black). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

σT = 3C F αW

4π
σ0. (10)

The ln2 r and ln r terms cancel between σR,V . The correction to R
in QCD is given by Eq. (10) with the replacement αW → αs and 
C F → 4/3.

The real and virtual corrections are shown in Fig. 4. Also shown 
is the virtual correction computed using the SCETEW result of 
Eq. (A.2). The SCETEW and exact calculations for the virtual cor-
rection have only very small differences, which are below 1% for 
E > 2MW ∼ 160 GeV, and < 0.5% by 400 GeV, whereas the real 
and virtual corrections each exceed 5% by the time E > 15MW ∼
1.2 TeV. This shows that in the regime where the electroweak 
corrections are relevant at the LHC, the SCETEW computation is 
sufficiently accurate. The figure also shows that the large real and 
virtual electroweak corrections cancel in the total cross section.

The above calculation demonstrates the usual cancellation of 
the L2 and L terms between real and virtual graphs for the to-
tal cross section summed over all final states. This cancellation is 
not guaranteed to hold if the cross section is modified by restric-
tions on the final state. One can impose phase space restrictions 
on the kinematics of the emitted gauge boson. Consequences of 
doing so were studied in detail in Ref. [6], and lead to incomplete 
cancellation of the logarithms if the phase space cuts restrict the 
soft or collinear radiation. One can also investigate the possibility 
that, because electroweak charge is an experimental observable, 
one can separate the total cross section ( J → tt , bb, tt Z , bb Z , 
tbW − , btW +) into sub-processes tagged by the final state par-
ticles, without restricting phase space. This is useful because the 
different channels have different experimental signatures, and are 
often measured separately [40]. The second possibility is studied 
below, and is complementary to the non-cancellation of logarith-
mic terms due to phase space restrictions, and due to electroweak 
non-singlet initial states [1–3].

The real and virtual cross sections are modified if one does not 
sum over all final states. In the simple example we are consider-
ing with degenerate fermions and bosons, the only change is that 
Eqs. (6), (8) are modified by the replacement of the group theory 
factor NC F (N = 2) by G V and G R , which need not be equal, so 
that the total cross section

σT = αW

2π
(G R − G V )σ̂0

{
ln2 r + 3 ln r + . . .

}
(11)

can have large corrections at high energy. The dependence of the 
cross section on ln2 r + 3 ln r is characteristic of the IR structure of 
a vector current [41].
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Table 1
Group theory factors for real and virtual emission for an SU(N) gauge theory. C F =
(N2 − 1)/(2N). The different cases are described in the text.

Case G R G V G R − G V

1 NC F NC F 0

2 0 NC F −NC F

3 C F C F 0

4 0 C F −C F

5 1
2 − 1

2N δi j C F δi j
1
2 − N

2 δi j

6 0 C F δi j −C F δi j

Fig. 5. Tree-level graphs for gg → qq̄. The first and second graphs have singularities 
for forward and backward scattering, respectively.

To study this non-cancellation, we tabulate the group theory 
factors G V ,R in Table 1 for some possible choices of final state, for 
an SU(N) gauge theory. In Eq. (11), σ0 = Nσ̂0 is the total tree-level 
rate, so that σ̂0 is N-independent. The different cases are:

1. Any fermion with or without any gauge bosons, i.e. the full 
inclusive rate.

2. Any fermion but no gauge boson, e.g. tt̄ , bb̄, but not tt̄ Z , bb Z , 
tb̄W − , bt̄W + .

3. Specify one fermion with or without any gauge bosons, e.g. 
t + X , with X = t̄ , t̄ Z , b̄W − .

4. Specify one fermion and no gauge bosons, e.g. t + X , with 
X = t̄ .

5. Specify both fermions (labeled by i, j) with or without any 
gauge bosons, e.g. i = j = 1 is tt X , i = 1, j = 2 is tb X , etc.

6. Specify both fermions and require no gauge bosons. Same as 
the previous case but X cannot contain gauge bosons.

One can see that for cases 1 and 3, the logarithmic terms are 
absent, while for all other cases, the logarithms survive and give 
rise to large corrections at high energies.

4. Heavy quark production

In this section, we study the real and virtual corrections to 
heavy quark production via gluon fusion, gg → qq̄. The tree-level 
graphs are given in Fig. 5. The real radiation is computed by nu-
merical integration using MadGraph5_aMC@NLO [42]. The virtual 
corrections use the SCET results of Ref. [9]. Since the real emission 
rate is a fixed order result, the virtual correction is expanded out 
to order αW to study the real-virtual cancellation.

The gg → qq̄ total cross-section has a t-channel singularity for 
forward scattering, and a u-channel singularity for backward scat-
tering, from the graphs in Fig. 5. To avoid these singularities, we 
impose rapidity cuts. We require the particle with highest trans-
verse momentum to have |η| < 1 or |η| < 3. We will refer to 
these as |η| < 1, 3 cuts, respectively. We also require that the par-
ticle with second highest pT satisfy |η| < 5. These cuts allow for 
collinear and soft W emission from energetic quarks, but avoid the 
forward and backward singularities. They are applied to both the 
gg → qq̄ and gg → qq̄W rates.
The scattering cross section can depend on the collision energy 
s = E2

CM, the rapidity cut η, and the particle masses {M}. If the 
cross section is infrared finite as {M} → 0, then it cannot contain 
ln s/M2 terms. The Sudakov logarithms are a sign that the cross 
section is divergent in the massless limit. In the gg → qq̄ case, the 
real and virtual corrections have Sudakov logarithms which cancel 
in the total rate.

We study the gg → qq̄, qq̄W rates for three cases:

1. q = u, d
2. q = t, b with mb = 100 GeV and mt = 173 GeV
3. q = t, b with mb = 4.7 GeV and mt = 173 GeV.

Case (1) allows us to explain the structure of the gauge correc-
tions without worrying about mass effects and Higgs corrections. 
Case (2) also involves Higgs radiative corrections, but has a stable 
t quark since mt < mb + mW . Finally case (3) is the physical case 
with an unstable t , which can decay via t → bW decay.

The virtual corrections can be computed from the results in 
Ref. [9] (including also the yb terms), and are obtained by averag-
ing the electroweak corrections for left- and right-handed quarks. 
The virtual corrections to the cross sections are

σV (gg → tt) = σ0,t{v W + 3vt + vb}
σV (gg → bb) = σ0,b{v W + vt + 3vb} (12)

where

v W = C F αW

4π

[−L2 + 3L
]
,

vt = − y2
t

32π2
L,

vb = − y2
b

32π2
L (13)

σ0,t = σ(gg → tt̄), and σ0,b = σ(gg → bb̄) are the corresponding 
tree-level rates, C F = 3/4 for SU(2), and yt,b are the quark Yukawa 
couplings. The corrections for u, d quarks are given by yt,b → 0. 
The tree-level cross section σ0 depends on the η cut. The virtual 
rates depend on the η cut in the same way as the tree-level rates. 
The reason is that the virtual electroweak corrections for gg → qq̄
do not depend on the kinematic variables (such as the scatter-
ing angle) in this case, so the radiative correction is an overall 
multiplicative factor. In other cases, such as qq → qq̄, the virtual 
electroweak corrections depend on kinematic variables, and have 
to be integrated over phase space. The gauge radiative corrections 
have both L2 and L terms, whereas the Higgs radiative corrections 
are linear in L.

4.1. u, d quark production

The tree-level processes are gg → uū and gg → dd̄, and the 
real radiation processes are gg → uū Z , gg → dd̄Z , gg → ud̄W −
and gg → dūW + . Since we are working in an SU(2)W theory 
(with Z = W 3), custodial SU(2) implies that the σ(uū) = σ(dd̄), 
and σ(ud̄W −) = σ(dūW +) = 2σ(uū Z) = 2σ(dd̄Z).

Fig. 6 shows the real and virtual corrections to the uū, dd̄ pro-
duction rate, as a function of ECM, for |η| < 1, 3 cuts. All rates have 
been normalized by dividing by the tree-level gg → uū rate for the 
corresponding η cut. This removes the overall 1/s dependence of 
the cross sections. The graph clearly shows that the virtual and 
real cross sections become large at high energy, and the L2 depen-
dence is reflected in the quadratic shape of the curves. The virtual 
correction is independent of the η cut, and as is typical of Sudakov 
effects, is negative. The real correction depends on the η cut. The 
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Fig. 6. Plot of real and virtual corrections to gg → qq̄ for q = u, d. All rates have 
been normalized to the tree-level gg → uū rate. The virtual correction to gg → qq̄
is shown as blue dots. The gg → qq̄W real emission rate as a function of ECM for 
|η| < 1, 3 cuts are shown as red and purple squares, respectively. The αW correc-
tion to the total rate with |η| < 1 and |η| < 3 cuts are shown as red and purple 
diamonds, respectively.

L2, L corrections arise from soft and collinear radiation; the real 
radiation kinematics for the final state quarks in gg → qq̄W is 
similar to that for the tree-level gg → qq̄ process. As a result, the 
L2, L terms do not depend on the η cut, and only the constant L0

term does. This is reflected in the figure by the fact that the differ-
ence in cross sections between the two values of the η cut remains 
constant as ECM is changed.

The L2, L terms cancel in the total cross section, as is evident by 
the curves for the total rate becoming horizontal for large energy, 
and only the constant terms survive. The electroweak corrections 
to the total cross section are at the 10% level. At partonic center-
of-mass energies of about one TeV, the individual corrections from 
the real and virtual corrections are also at the 10% level, but they 
rise quickly as ECM is increased.

For a 100 TeV machine, partonic center-of-mass energies can 
exceed 10 TeV, and the corrections become large (factors of 2). For 
most experimentally relevant processes there is never a complete 
cancellation of the logarithms (since one is typically not measuring 
a totally inclusive rate, and furthermore the initial state is not an 
SU(2) singlet), the resummed expressions are needed.

The cancellation between real and virtual corrections is

3σ(ud̄W ) + 2v W σ(uū) → 0 (14)

using the isospin relations mentioned earlier and Eqs. (12), (13), 
where → 0 means that the L2, L dependence cancels, but there 
can be constant terms left over.

It is important to note that for initial states that are not elec-
troweak singlets, such as for qq̄ → qq̄, the real and virtual cor-
rections have different L2, L dependence, and the large corrections 
persist in the total cross section. This non-cancellation persists 
even at the hadron level. The pp → tt̄ rate has large corrections 
from the qq̄ → qq̄ channel, since the u and d quark distributions 
in the proton are not the same.

4.2. t, b quark production with mb = 100 GeV

We now consider the case of gg → tt̄, bb̄ for mt = 173 GeV
and mb = 100 GeV. An unphysical b mass has been chosen, so 
that the t → bW decay is forbidden. The case of unstable top is 
Fig. 7. Plot of real and virtual corrections to gg → qq̄ for q = t, b for mb = 100 GeV
with an |η| < 1 cut. All rates have been normalized to the tree-level gg → uū rate. 
The points are: virtual correction gauge corrections (blue dots), virtual Higgs correc-
tions (brown dots), tb̄W − (red squares), tt̄ Z (orange squares), bb̄Z (green squares), 
tt̄ H (cyan squares) and bb̄H (purple squares).

discussed in Section 4.3. The virtual corrections for tt̄ and bb̄ pro-
duction are given in Eq. (12). The real rates are computed using
MadGraph5_aMC@NLO. All rates are divided by the correspond-
ing gg → uū rate to remove an overall 1/s normalization factor. 
The tree-level rates gg → tt̄ and gg → bb̄ are essentially equal to 
gg → uū except very close to tt̄ threshold, so each of these tree-
level rates are 1 in the normalization of the plot, and have not 
been shown.

The real and virtual corrections are shown in Fig. 7 for the 
|η| < 1 cut. The |η| < 3 plots are very similar, with a small offset 
from the |η| < 1 curves, as for the u, d case in Fig. 6. The tb̄W −
emission rate is the sum of the rates for transversely and longitu-
dinally polarized gauge bosons. The rate for transversely polarized 
gauge bosons at high energies is the same as that for ud̄W − pro-
duction, since fermion mass effects are power suppressed. The rate 
for longitudinally polarized gauge bosons is the same as for emis-
sion of the unphysical scalar (by the equivalence theorem), and is 
related to the Higgs emission rate. The real and virtual rates can 
be written in terms of the ud̄W − rate and the rate σS to emit a 
scalar with unit Yukawa coupling,

σ
(
tb̄W −) → σ

(
ud̄W −) + 2

(
y2

t + y2
b

)
σS

σ(tt̄ Z) → 1

2
σ

(
ud̄W −) + 2y2

t σS

σ(bb̄ Z) → 1

2
σ

(
ud̄W −) + 2y2

bσS

σ(tt̄ H) → 2y2
t σS

σ(bb̄H) → 2y2
bσS

σV (tt̄) → (v W + 3vt + vb)σ (uū)

σV (bb̄) → (v W + vt + 3vb)σ (uū) (15)

The σ(ud̄W −) terms in σ(tb̄W −), etc., are for transverse W and 
Z emission and the σS terms are for longitudinal W and Z emis-
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Fig. 8. Plot of the real and virtual corrections to gg → qq̄ for q = t, b for mb =
100 GeV with an |η| < 1 cut. The virtual corrections are blue dots, the total real 
emission rate is shown as red squares, and the total radiative correction is shown 
as black diamonds. All rates are normalized to the gg → uū rate. The total rate 
levels off beyond 30 TeV.

sion.2 One can verify that the real emission curves in Fig. 7 satisfy 
Eq. (15), so that five curves are given in terms of two quantities, 
σ(ud̄W −) determined already in Section 4.1, and σS . The Higgs 
emission curves σ(tt̄ H), σ(bb̄H) are linear, which means they con-
tain L terms but no L2 terms.

The sum of all the real radiation rates, as well as the total cross 
section, are shown in Fig. 8. The total cross section levels out at 
high energy (we have verified this by continuing the plot to even 
higher center of mass energies), which shows numerically that the 
L2 and L terms cancel between the real and virtual corrections. 
The total real emission rate is

σR = 2σ
(
tb̄W −) + σ(tt̄ Z) + σ(bb̄ Z) + σ(tt̄ H) + σ(bb̄H)

→ 3σ
(
ud̄W −) + 8

(
y2

t + y2
b

)
σS (16)

and the total virtual rate is

σV = σV (tt̄) + σV (bb̄) = (2v W + 4vt + 4vb)σ (uū) (17)

The cancellation σR + σV → 0 implies that

3σ
(
ud̄W −) + 8

(
y2

t + y2
b

)
σS + (2v W + 4vt + 4vb)σ (uū) → 0.

(18)

The gauge and Higgs parts cancel separately. The gauge part can-
cels using Eq. (14), and

8
(

y2
t + y2

b

)
σS + (4vt + 4vb)σ (uū) → 0. (19)

From Eq. (13), we see that vt,b are linear in L, which explains the 
linearity of the Higgs emission cross section σS .

4.3. t, b quark production with mb = 4.7 GeV

Finally, we study the case of a physical b quark with mb =
4.7 GeV and an unstable t quark. The virtual corrections are still 
given by Eq. (12). There is, however, an important change in the 
tb̄W − decay rate because the process gg → tt̄ followed by t̄ →
b̄W − contributes to this rate. The tb̄W − differential decay rate has 

2 Remember that Z = W 3 since we are in a pure SU(2)W theory. Otherwise, the 
Z rates would have additional factors of 1/ cos2 θW .
Fig. 9. Same as Fig. 7, but for mb = 4.7 GeV.

Fig. 10. Same as Fig. 8, but for mb = 4.7 GeV.

a singularity when (pb̄ + pW − )2 = m2
t , and the cross section di-

verges when integrated over final state phase space. The standard 
way to resolve this singularity is to regulate it by the t-quark width 
using the replacement (the narrow width approximation, which is 
what is used in MadGraph5_aMC@NLO)

1

p2 − m2
t + iε

→ 1

p2 − m2
t + imtΓt

(20)

for the t-quark propagator, where Γt is the t-quark width. This is 
equivalent to summing a class of diagrams, the imaginary parts of 
W corrections to the t-quark propagator, shown in Fig. 11. This 
is not gauge invariant, and also formally mixes different orders in 
the αW expansion, since the t-quark width is O(αW mt). The cut 
in the second graph of Fig. 1 is the same cut as occurs in summing 
the imaginary parts of Fig. 11, and the two cuts cannot be treated 
separately, as is done in the narrow width approximation.

If the t → bW − decay is kinematically forbidden, the tbW −
real emission rate is order αW . When the decay is kinematically 
allowed, the tbW − rate becomes order 1. The reason is that in 
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Fig. 11. Graphs that are summed in the narrow width approximation. In Eq. (20), only the imaginary part of each loop is included.
Fig. 12. Phase space region for tb̄W production for ECM = 500 GeV. The vertical 
band is the region where (mt − 5Γt )

2 ≤ m2
bW ≤ (mt + 5Γt )

2. The axes are in (TeV)2.

the resonance region, the rate is enhanced by a factor of 1/Γt . The 
total tbW − rate includes what, in the kinematically forbidden case, 
is the O(1) tt̄ rate. Once the tbW − decay is kinematically allowed, 
the approximation Eq. (20), while getting the correct O(1) rate, 
does not get the correct O(αW ) piece.

To understand how the infrared divergence cancellation occurs 
for an unstable t quark, consider the simpler case of tt̄ produc-
tion by a current J , as in Section 3. The αW correction to the total 
rate can be computed from the imaginary part of the vacuum po-
larization graphs in Fig. 1. The vacuum polarization Π(q2) has no 
singularities for Euclidean q2 even if mt > mb + mW , so the an-
alytic continuation to timelike q2 does not either. The imaginary 
part for timelike q2 is given by the real emission and virtual cor-
rection cuts shown in Fig. 1, so the two contributions combined 
have no infrared divergence.

The graphs in Fig. 1 are all order αW , and their total gives the 
O(αW ) correction to the total rate. The graphs are computed with 
the t-quark propagator on the l.h.s. of Eq. (20), rather than the 
narrow width approximation on the r.h.s. The real emission graph 
is singular because the t → bW − decay is kinematically allowed. 
A careful calculation shows that the virtual correction is also sin-
gular, and the sum is finite. The cancellation can be checked using 
the l.h.s. of Eq. (20) with the iε term acting as a regulator. The real 
and virtual graphs each have a piece proportional to 1/ε , which 
cancels in the sum.

The tb̄W − rate can be computed by adding the rates for two re-
gions: A, which is a small region around where the t-quark is on-
shell, and A′ , which is the rest of phase space. In terms of the final 
state phase space variables m2

bW = (pb + pW )2, m2
tW = (pt + pW )2

needed for three-body decay, A is the region m2
t − � ≤ m2

bW <

m2
t + �, and A′ is the remaining region. The phase space region 

is shown in Fig. 12, with A the region within the vertical band, 
and A′ outside. For a stable t-quark, the vertical band moves out-
side the allowed phase space region, and there is no singularity in 
the phase space integral. For an unstable t-quark, the rate is non-
singular in region A′ , and can be computed by the propagator on 
the l.h.s. of Eq. (20). To correctly compute the O(αW ) terms, one 
must also use the propagator on the l.h.s. of Eq. (20), rather than 
the narrow width approximation on the r.h.s., for the integral over 
the singular region A.

The region A contribution has a singular 1/ε piece that must 
be subtracted, keeping only the finite O(αW ) part. The 1/ε singu-
lar part of the rate becomes the O(1) contribution in the narrow 
width approximation, and the subleading O(αW ) is, unfortunately, 
not given correctly by the narrow width approximation.

The phase space integral of the decay distribution over A has 
the form

I =
m2

t +�∫
m2

t −�

dm2
bW

f (m2
bW )

(m2
bW − m2

t )2 + ε2
(21)

where the denominator is from the absolute value squared of the 
propagator in Eq. (20), f contains all non-singular factors in the 
decay distribution, and � is the width of the integration region. 
Expanding around m2

t ,

f
(
m2

bW

) = f0 + (
m2

bW − m2
t

)
f1 + (

m2
bW − m2

t

)2
f2 + . . . (22)

gives

I = π

ε
f0 + 2� f2 + . . . (23)

The first term is the singular 1/ε piece that must be subtracted, 
and the remaining terms are the finite O(αW ) terms. Relative to 
the contribution from region A′ , they are smaller by a factor �, 
i.e. the width of the vertical band relative to the width of the full 
phase space region. Since we are only interested in the O(αW )

contribution to the rate, we can get a good estimate of this by 
simply using the contribution from region A′ , and ignoring A. 
The O(αW ) term from A is a small correction, since the size of 
A is much smaller than A′ . A practical way to do this in Mad-

Graph5_aMC@NLO is to use the $t tag, which excludes a region 
of width 15Γt around the on-shell t-quark.

The results of this computation are shown in Figs. 9, 10, and 
are very similar to those for mb = 100 GeV. The main difference 
is the Yukawa correction is smaller, since yb is now almost zero. 
The entire discussion of Section 4.2 holds, and will not be repeated 
again.

5. Discussion and conclusions

We have presented the electroweak radiative corrections to 
gg → tt̄, gg → bb̄ production in Section 4. The individual processes 
that contribute have large electroweak corrections that depend on 
L2 and L, but these cancel in the total rate. The virtual corrections 
are around −10% for ECM ∼ 2 TeV, and grow with energy.

The electroweak corrections to the individual processes are rel-
evant for measurements at the LHC. For example, suppose one is 
interested in measuring the tt̄ production rate. The virtual correc-
tions to tt̄ contribute to this rate. If one has a perfect detector, 
then one can exclude the real emission final states tb̄W , tt̄ Z , bb̄ Z , 
tt̄ H , bb̄H . In this case, the cross section is given by the blue dots 
in Fig. 9, and there are large electroweak radiative corrections. In a 
more realistic case, there will be some leakage from the real radi-
ation processes into the tt̄ channel. For example tt̄ Z with Z → νν̄
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could be mistaken for tt̄ , or tt̄ Z with Z → qq̄, where the Z decay 
products cannot be separated from the t-quark decay jets. If some 
fraction of the real radiation is included, then there will be some 
cancellation with the electroweak corrections to the virtual rate, 
so that the overall electroweak correction is somewhat smaller. 
A realistic calculation of the measured rates is beyond the scope 
of this work. To do such a calculation requires taking the correc-
tions discussed in this paper, integrating over the gluon PDFs, and 
then putting the parton processes through a showering algorithm 
and detector cuts. In addition, one should also include the quark 
production rates qq̄ → tt̄ , which were included in the analysis of 
Ref. [43]. As noted earlier, the electroweak corrections to qq̄ → tt̄
do not cancel even for the totally inclusive rate. It should be clear 
that even in a complete calculation, the electroweak corrections do 
not cancel, and a significant correction remains.

The electroweak radiative corrections start to become measur-
able at LHC energies, and their importance grows with energy. 
We have numerically studied the gg → tt̄ process in this paper. 
Most processes have much larger electroweak corrections than this 
process, because they typically contain more particles with elec-
troweak interactions. (The gluon does not have electroweak inter-
actions at leading order.) The corrections for qq̄ → tt̄ are approxi-
mately twice as large, because the initial and final states both have 
electroweak interactions. Processes such as qq̄ → W W which in-
volve electroweak gauge bosons have even larger corrections, since 
the group theory factor C F = 3/4 is replaced by C A = 2 in the am-
plitude.

The effective theory method breaks the electroweak correction 
into the high-scale matching C , the running γ and the low-scale 
matching D . The L2 term arise from γ , and the L terms from γ
and D . All terms are known to NLL order, as are the most impor-
tant terms at NNLL order (see Appendix A).

In addition to the electroweak corrections, there are of course, 
QCD corrections, which are much larger, and have been included 
in existing calculations and implemented in Monte Carlo code. The 
QCD and electroweak corrections factor in A and D L to two-loop 
order and in B , D0 and C to one-loop order [8,17], so that the to-
tal radiative correction to NLL order can be written as the product 
RQCD REW. RQCD has been included in existing calculations, so the 
electroweak corrections can be included to NLL order simply by 
reweighing the QCD results by REW. This has to be done before in-
tegrating over the final state phase space, since REW can depend 
on kinematic variables such as scattering angles. One complica-
tion is that REW depends on the helicities of the partons, since the 
weak interactions are chiral.

The experimental energy reach at the LHC is high enough that 
electroweak corrections should be included in measurements that 
are approaching 10% accuracy. Recently, there have been studies 
of a possible 100 TeV hadron collider. At these high energies, the 
electroweak corrections are large, and must be resummed to have 
reliable cross sections.
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Appendix A. Summary of SCETEW results

We now summarize the results of Refs. [8–10,15–19] for the 
electroweak corrections.

1. At a high scale μh of order s, the scattering amplitudes are 
matched onto SU(3) × SU(2) × U (1) gauge invariant local op-
erators O i with coefficients Ci which can be computed per-
turbatively in a power series in α(μh). The calculations in 
Refs. [8–10,15–19] include QCD as well as electroweak cor-
rections, so α denotes any of the three gauge coupling con-
stants in the Standard Model (SM). As an example, for g(p1) +
g(p2) → q(p3) + q(p4), the operators are

O 1 = q̄4q3 A A
2 A A

1

O 2 = dABC q̄4T C q3 A A
2 AB

1

O 3 = i f ABC q̄4T C q3 A A
2 AB

1 , (A.1)

which give the possible color structures of the amplitude. The 
subscripts 1, 2, 3, 4 label the different particle momenta.

2. The coefficients Ci are evolved using renormalization group 
equations (RGE) down to a low scale μl of order MW . The 
anomalous dimensions can be computed in the unbroken 
SU(3) × SU(2) × U (1) theory.

3. At the scale μl , the W , Z , H and t are integrated out. This 
calculation must be done in the broken theory. A single gauge 
invariant operator breaks up into different components be-
cause the weak interaction symmetry is broken. For example, 
each of the operators O i in Eq. (A.1) breaks up into an SU(3)

invariant gg → tt and gg → bb operator.
4. The operators in the theory below μl are then used to com-

pute the scattering cross sections.

The final result is that the scattering amplitudes M can be 
written as

M = exp
[

DC (μl,LM, n̄ · p)
]
dS(μl,LM)

× P exp

[ μl∫
μh

dμ

μ
γ (μ, n̄ · p)

]
C(μh,LQ) (A.2)

Eq. (A.2) gives the scattering amplitude in resummed form. Explicit 
formulæ for all the pieces can be found in Ref. [9].

The high-scale matching C(μh, LQ) is an n dimensional column 
vector with a perturbative expansion in αi(μh), with i = 1, 2, 3
being the U (1), SU(2) and SU(3) couplings. It also depends on 
LQ = ln s/μ2

h , which is not a large logarithm if one picks μ2
h ∼ s. 

For Eq. (A.1), n = 3 since there are 3 gauge invariant amplitudes.
The SCET anomalous dimension γ (μ) is an n × n anomalous 

dimension matrix which can be written as the sum of a collinear 
and soft part

γ (μ, n̄ · p) = γC (μ, n̄ · p) + γS(μ) (A.3)

where the collinear part is diagonal

γC (μ, n̄ · p) = 1
∑

r

[
Ar(μ) ln

2Er

μ
+ Br(μ)

]
(A.4)

and linear in log n̄r · pr = Er , the energy of the parton, to all orders 
in perturbation theory [8,41]. The sum on r is over all partons in 
the scattering process, and Ar(μ) and Br(μ) have a perturbative 
expansion in αi(μ). γS at one-loop order is

γS(μ) = −
∑ αi(μ)

π
T (i)

r · T (i)
s ln

−nr · ns + i0+

2
(A.5)
〈rs〉,i
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where the sum is over all parton pairs 〈rs〉, and nr = (1, nr) is a 
null vector in the direction of parton r for each incoming parton, 
and nr = −(1, nr) for each outgoing parton. T (i)

r is the gauge gen-
erator for the ıth gauge group acting on parton r.

The low-scale matching has a collinear part DC and a soft 
part dS . The soft part dS is an m × n matrix, where m is the 
number of amplitudes produced after SU(2) × U (1) breaking. In 
gg → qq, if q is an electroweak doublet of left-handed quarks 
(t, b)L , then starting with the operators in Eq. (A.1) gives m = 6 op-
erators after SU(2) × U (1) breaking, where q4q3 → t4t3, or q4q3 →
b4b3. If q in Eq. (A.1) is an electroweak singlet, such as bR or tR , 
then m = 3. dS (μ, LM) has an expansion in αS,W ,EM(μl), and can 
depend on electroweak scale masses and μl via dimensionless ra-
tios such as MW /M Z and LM = ln M Z /μl . The logarithms are small 
if one chooses μl ∼ M Z .

The collinear matching DC is an m × m diagonal matrix given 
by[

DC (μ, n̄ · p,LM)
]

ii =
∑

r

[
Jr(μ,LM) ln

2Er

μ
+ Hr(μ,LM)

]
(A.6)

and Jr and Hr are functions of αS,W ,EM(μl), and can depend on 
electroweak scale masses and μl via dimensionless ratios such as 
MW /M Z and LM = ln M Z /μl . The sum on r is over all particles in 
operator O i produced after electroweak symmetry breaking, and 
DC is linear in ln n̄ · p to all orders in perturbation theory [8,41].

The exponent contains at most a double-log given by integrat-
ing the Ai terms in the collinear anomalous dimension. The low-
scale matching contains a single-log term. This a new feature of 
SCETEW first pointed out in Ref. [15]. One can show that the low-
scale matching contains at most a single-log to all orders in per-
turbation theory [9,15]. As a consequence, resummed perturbation 
theory remains valid even at high energy, because αn ln s/M2

W 
 1
for large enough n. Ai , γS , and J i are related to the cusp anoma-
lous dimension.

The log term in the matching Eq. (A.6) is needed for proper 
factorization of scales. A typical Sudakov double-log term at one 
loop has the form (dropping the overall α)

ln2 Q 2

M2
= ln2 Q 2

μ2
h

+
[

ln2 Q 2

μ2
l

− ln2 Q 2

μ2
h

]
+

[
ln2 M2

μ2
l

− 2 ln
Q 2

μ2
l

ln
M2

μ2
l

]
(A.7)

The first term is the high-scale matching C , the second term 
arises from integrating the ln Q 2/μ2 anomalous dimension from 
μh to μl , and the third term is the low-scale matching D . The exis-
tence of the log term in the matching also follows from the consis-
tency condition that the theory is independent of μl . Since changes 
in the running between μh and μl contain a single log from the 
anomalous dimension, there must be a single log in the matching. 
What is non-trivial is that Eq. (A.2) only requires a single-log in 
the matching to all orders in perturbation theory [9,15].

The resummed electroweak corrections can be grouped as LL, 
NLL, etc., in the usual way, and the precise definition for SCETEW
can be found in Ref. [8]. All terms needed for a NLL computation 
are known, so all processes can be computed to resummed NLL 
order. Refs. [9,10] computed the one-loop dS and C terms, for all 
2 → 2 processes.

The three-loop cusp anomalous dimension A and two-loop 
non-cusp anomalous B are known, except for the scalar Higgs con-
tributions, which are numerically small. The two-loop contribution 
to DC is not known. The NNLL results are known, with the excep-
tion of these terms.
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