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Abstract

In this paper, we consider any two split Cayley generalized hexagons represented on the parabolic
quadric Q(6, q) and determine their common point reguli. As an application of our results we investigate
which 1-systems of Q(6, 3) that are a derivation of the exceptional spread of H(3), see [A. De Wispelaere,
J. Huizinga, H. Van Maldeghem, Ovoids and spreads of the generalized hexagon H(3), Discrete Math. 305
(1–3) (2005) 299–311], are a spread of some hexagon on this quadric.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

From [5] we know that the intersection of the line sets of two generalized hexagons Γ ∼= H(q)

and Γ ′ ∼= H(q) on the same quadric Q(6, q) is a dual ovoidal subspace in both these hexagons.
These dual ovoidal subspaces were introduced by Brouns and Van Maldeghem in [1] in order

to characterize the finite generalized hexagon H(q) by means of certain regularity conditions.
It follows from [1] that a dual ovoidal subspace, and hence the line intersection of two split
Cayley generalized hexagons naturally embedded in the same Q(6, q), is either the set of lines
at distance at most 3 from a given point, or the set of lines of an ideal non-thick subhexagon, or
a distance-3 spread.

From [5] we know that, given a weak subhexagon of order (1, q), a distance-3 spread, and a
line set at distance at most 3 from a given point, there are respectively q − 1, q + 1 and q split
Cayley generalized hexagons naturally embedded in Q(6, q) that contain this line set as a subset.

E-mail addresses: adw@cage.ugent.be (A. De Wispelaere), hvm@cage.ugent.be (H. Van Maldeghem).
1 The first author is Research Assistant of the Fund for Scientific Research–Flanders (Belgium) (F.W.O.).

0195-6698/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2006.08.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82779129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/ejc
mailto:adw@cage.ugent.be
mailto:hvm@cage.ugent.be
http://dx.doi.org/10.1016/j.ejc.2006.08.005


A. De Wispelaere, H. Van Maldeghem / European Journal of Combinatorics 28 (2007) 1922–1933 1923

In [4] the authors showed that for a given split Cayley generalized hexagon naturally
embedded in Q(6, q), q odd, there exists a suitable choice of a second hexagon such that their
common point reguli define an incidence structure which is either a subdesign of the Hölz design
(q ≡ 2 mod 3) or is isomorphic to the Hölz design (q �≡ 2 mod 3).

In the present paper we study, inspired by the results of [5,4], the common point reguli of two
split Cayley generalized hexagons naturally embedded in the same Q(6, q).

The motivation for this study is twofold. Firstly, the geometric information can be used in
some specific situation to prove other results, for instance on spreads. We demonstrate this in the
present paper by an application to the exceptional spreads of H(3). We determine by hand all
isomorphism classes of 1-systems of Q(6, 3) obtained by a derivation of this exceptional spread.

Secondly, the action of the stabilizer of a dual ovoidal subspace S of some H(q) on Q(6, q)

inside the full group of collineations of Q(6, q) does not always act primitively on the set
of generalized hexagons isomorphic to H(q) naturally embedded in Q(6, q) and containing
S. Indeed, in the case where S is related to a non-thick ideal subhexagon or a distance-3
spread, this stabilizer is roughly a dihedral group in its natural action, and so the generalized
hexagons through S are paired up in a group-theoretical way. This pairing cannot be explained
geometrically by looking at the intersections of line sets, but it can be recovered by considering
the common point reguli. Hence, our geometric study provides a finer subdivision which explains
the action of certain subgroups.

2. Preliminaries

2.1. Generalized hexagons and the split Cayley hexagon

A generalized hexagon Γ (of order (s, t)) is a point-line geometry the incidence graph of
which has diameter 6 and girth 12 (and every line is incident with s+1 points; every point incident
with t + 1 lines). Note that, if P is the point set and L is the line set of Γ , then the incidence
graph is the (bipartite) graph with set of vertices P ∪ L and adjacency given by incidence. The
definition implies that, given any two elements a, b of P∪L, either these elements are at distance
6 from one another in the incidence graph, in which case we call them opposite, or there exists a
unique shortest path from a to b. For two points a and b at distance 4, there exists a unique point
collinear with both, denoted by a �� b. Finally, if two elements a and b are at distance k < 6, we
denote the unique element at distance 1 from a and at distance k − 1 from b by projab, and call
this the projection of b onto a.

In this paper we are mostly interested in the split Cayley hexagons H(q). The standard model
H of this hexagon, the construction of which is due to Tits [7], can be defined as follows (see [7];
also [8]). Choose coordinates in the projective space PG(6, q) in such a way that the points
of Q(6, q) satisfy the equation X0 X4 + X1 X5 + X2 X6 = X2

3, and let the points of H be all
points of Q(6, q). The lines of H are the lines on Q(6, q) whose Grassmannian coordinates
(p01, p02, . . . , p56) satisfy the six relations p12 = p34, p56 = p03, p45 = p23, p01 =
p36, p02 = −p35 and p46 = −p13. A natural embedding of H(q) arises from the standard
model by an automorphism of the full automorphism group of Q(6, q).

If q is even, the polar space Q(6, q) is isomorphic to the symplectic polar space W(5, q)

(obtained by projection from the nucleus n of Q(6, q) – that is the intersection of all tangent
hyperplanes of Q(6, q) – onto some hyperplane not containing n). This substantiality results in
an embedding of H(q) in PG(5, q), where all lines of H(q) are totally isotropic with respect
to a certain symplectic polarity in PG(5, q) (here n = (0, 0, 0, 1, 0, 0, 0) and choosing the
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hyperplane with equation X3 = 0, the associated symplectic form is X0Y4 + X4Y0 + X1Y5 +
X5Y1 + X2Y6 + X6Y2).

The generalized hexagon H(q) has the following property (see [8], 1.9.17 and 2.4.15). Let
x, y be two opposite points and let L, M be two opposite lines at distance 3 from both x, y. All
points at distance 3 from both L, M are at distance 3 from all lines at distance 3 from both x, y.
Hence we obtain a set R(x, y) of q + 1 points every member of which is at distance 3 from any
member of a set R(L, M) of q + 1 lines. We call R(x, y) a point regulus, and R(L, M) a line
regulus. Any regulus is determined by two of its elements. The two above reguli are said to be
complementary, i.e. every element of one regulus is at distance 3 from every element of the other
regulus. Every regulus has a unique complementary regulus.

Now consider again our model H. We will call a line of the quadric Q(6, q) which does
not belong to the hexagon H an ideal line. If L is an ideal line, then there is a unique point x
collinear to every point of L. This point will be called the focus of L. On the quadric Q(6, q),
every line regulus constitutes a hyperbolic quadric isomorphic to Q+(3, q). Hence there is a
unique opposite regulus, which is a set of q + 1 ideal lines that intersect every line of the given
regulus in a unique point. If q is odd, the quadric Q(6, q) is associated with a unique non-
degenerate polarity ρ of PG(6, q) and the image under the polarity of the 3-space generated by
a line regulus is a plane which meets Q(6, q) exactly in the complementary point regulus. Point
reguli of H are thus simply (some) conics on Q(6, q). The plane in which all points of a point
regulus R are contained will be referred to as the regulus plane αR.

We now introduce some more notation and terminology.
Let H be a hyperplane in PG(6, q). Then exactly one of the following cases occurs.

(Tan) The points of H(q) in H are the points not opposite to a given point x of H(q); in fact, H
is the tangent hyperplane of Q(6, q) at x . We shall denote this hyperplane as TxQ(6, q)

(Sub) The lines of H(q) in H are the lines of a subhexagon of H(q) of order (1, q), the points
of which are those points of H(q) that are incident with exactly q + 1 lines of H(q) lying
in H. This subhexagon is uniquely determined by any two opposite points x, y it contains
and will be denoted by Γ (x, y). It contains exactly 2(q2 + q + 1) points and if collinearity
is called adjacency, then it can be viewed as the incidence graph of the Desarguesian
projective plane PG(2, q) of order q . The lines of Γ (x, y) can be identified with the
incident point-line pairs of that projective plane. We denote Γ (x, y) by 2PG(2, q) and call
it the double of PG(2, q). The q2 + q + 1 points of Γ (x, y) belonging to the same type
of elements of PG(2, q), points or lines, are the points of a projective plane in PG(6, q).
Hence H ∩ Q(6, q) contains two projective planes Π + and Π −, the points of which are
precisely the points of Γ (x, y), and which we call the hexagon twin planes of H. In this
case, we call H a hyperbolic hyperplane. In fact, a hyperbolic hyperplane is a hyperplane
that intersects Q(6, q) in a non-degenerate hyperbolic quadric.

(Spr) The lines of H(q) in H are the lines of a distance-3 spread, called a Hermitian or classical
distance-3 spread of H(q). In this case, we call H an elliptic hyperplane (as it intersects
Q(6, q) in an elliptic quadric).

An ovoidal subspace in a generalized hexagon is a set of points O with the property that every
point of that hexagon outside O is collinear with exactly one point of O. Dually, one defines a
dual ovoidal subspace.

An ovoid, short for distance-3 ovoid, of H(q) is a set of q3 + 1 opposite points (Proposition
7.2.3 in [8]). Dually one defines a spread.
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2.2. m-systems

The notion of an m-systems on finite quadrics (and, more generally, on finite polar spaces)
has been introduced by Shult and Thas [6]. The theory of m-systems has a lot of applications.
Here, we only need the notion of a 1-system of Q(6, q). For the general definition, motivation
and applications, we refer the reader to [6].

A 1-system M of Q(6, q) is a set of q3 + 1 lines such that any plane of Q(6, q) containing an
element of M does not intersect any other element of M.

It is well known and easy to verify that, if a 1-system M contains a regulus R of lines (a
set of q + 1 lines of a hyperbolic quadric Q+(3, q) entirely contained in Q(6, q)), then we can
derive M at that regulus – namely, we replace all elements of R by the elements of the opposite
regulus (the other set of q + 1 generators of Q+(3, q)) – and obtain a 1-system. If we do so at a
number of disjoint reguli, then we call the 1-system obtained a derivation of the original one.

2.3. Main result

In this paper we shall prove the following theorem:

Main Result. Let H1 and H2 be two models of H(q) isomorphic to the model H as defined
above. Denote by S and Ω the set of common lines and point reguli, respectively, of H1 and H2.
For q odd, we have one of following situations:

(i) S is the set of lines at distance at most 3 from a given point and |Ω | = q3.
(ii) S is the set of lines of an ideal subhexagon and |Ω | = q2(q2+q+1) or |Ω | = q3(q2+q+1).

(iii) S is a distance-3 spread and |Ω | = q2(q2 − q + 1) or |Ω | = q2(q2 − q + 1)(q + 2).

Furthermore, in both situations (ii) and (iii) there exists, given H1 and S, a unique hexagon
H2 such that Ω contains the maximal number of point reguli.

If, on the other hand, q is even then H1 and H2 share all their point reguli.

In the next section we determine the common point reguli of two distinct split Cayley
hexagons embedded into the parabolic quadric Q(6, q) and prove the main result. In Section 4
we give an application of this result.

3. Proof of the main result

Let us start by proving that for even q any two hexagons embedded in the parabolic quadric
Q(6, q) share all point reguli. This is equivalent to saying that in W(5, q) all point reguli are the
same. In this representation of H(q) in PG(5, q) a point regulus is the perp of a non-degenerate
3-space determined by the associated line regulus. Hence point reguli are lines only dependent
on W(5, q).

From now on we shall be working with odd q .
Let H1 and H2 be two models of H(q) as described in Section 2.1 and choose coordinates

of Q(6, q) such that H1 is given in exactly the coordinates as in Section 2.1. Denote by S the
intersection of the line sets and by Ω the set of all common point reguli of these two hexagons.
From [5] we know that the subspace generated by S, say ΠS , is a hyperplane of PG(6, q).

Remember from the introduction that S has one of three types, say 0, + or −, corresponding
to S being a set of lines at distance at most 3 from a given point, of an ideal non-thick subhexagon
or of a distance-3 spread, respectively.
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Lemma 1. If R is an element of Ω , then either

(a) the complement of R belongs to S or
(b) the complement of R in H1 is opposite to the one in H2. Furthermore, every point of R is

incident with a unique line of S.

Hence Ω is the union of two sets Ω1 and Ω2, which correspond to the sets of respective
type (a) and type (b) point reguli.

Proof. Consider αR the regulus plane of R. The polar image of αR, say Υ , is a 3-space which
has to contain the complementary line regulus of R both in H1 and in H2. Hence these either
coincide or are opposite, proving the first part of the lemma. Suppose they are opposite and Mi

and Li , i ∈ {0, . . . , q}, denote the lines of Υ in H1 and H2 respectively.
Take a point p of R. Inside H1, p is collinear with all points of a certain ideal line Li ,

i ∈ {0, . . . , q}. In the same way, p is collinear with all points of say M j , j ∈ {0, . . . , q},
this time inside H2. Hence pri j , with Li I ri j I M j , is the unique line on p belonging to S. �

Note. Lemma 2(b) in fact states that if R is of type (b) then all of its points belong to ΠS , the
hyperplane generated by all lines of S.

Lemma 2. If S has type 0 then situation (b) of Lemma 1 does not occur.

Proof. Let x be the unique point that is at distance at most 3 from every line of S. Suppose by
way of contradiction that R is a point regulus which is completely contained in Tx Q(6, q). As R
belongs to TxQ(6, q), which is the perp of x , we immediately find that x belongs to the 3-space
generated by Rc. Hence x is incident with one of the lines, say L, of Rc. By definition of S we
know that L belongs to both hexagons. However, the complement of R in H1 should be opposite
to the one determined by H2, a contradiction as L ∈ Rc. �

To prove part (i) of the main result it now suffices to show that for given H1 and S (the lines of
H1 in TxQ(6, q) for some point x ∈ Q(6, q)) the q other hexagons intersecting H1 in S share q3

point reguli with H1. Say R belongs to Ω1 and denote its complement by Rc. Since all lines of
Rc belong to S it is easy to see that R has to have x as one of its points (as Rc does not contain
an element of Γ1(x), it belongs to Γ3(x), so x ∈ R). Conversely, every point regulus on x has
a complement which, by definition, consists of q + 1 lines at distance 3 from x . In other words,
these q + 1 lines belong to S and Ω1 is the set of all point reguli on x . Conclusion: if S is the line
set at distance at most 3 from a point then |Ω | = q3.

In order to prove part (ii) of the main result we suppose that S has type +. Denote by Ω the
set of point reguli of H1 that are also point reguli of H2. Clearly, Ω contains the subset Ω1 of all
point reguli complementary to the q2(q2 + q + 1) line reguli in S.

Without loss of generality, we may assume ΠS : X3 = 0 to be the hyperplane which
determines all lines of S and denote the hexagon twin planes inside ΠS by Π + and Π −. With this
hyperplane we shall now determine a unique H2 through S in the exact same way as described
in [4].

Consider the point p = Π ρ
S with coordinates (0, 0, 0, 1, 0, 0, 0) in PG(6, q). Every line

through p and a point x of ΠS ∩ Q(6, q) intersects Q(6, q) only in x , as x is the radical of
that tangent line. Any other line through p and a point y on the quadric intersects Q(6, q)

in a second point y ′. The involution g interchanging y and y ′ and fixing all points of ΠS

extends to an involutive collineation of PG(6, q), which we also denote by g. It is actually
easy to see that g does not preserve H1. Indeed, the set of lines of H1 through a point x of
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(ΠS ∩ Q(6, q)) \ (Π + ∪ Π −) fill up a plane of Q(6, q), and this plane is fixed under g only if it
contains p or is contained in ΠS , clearly a contradiction.

Let H2 be the image of H1 under g, and note that H1 �= H2. Henceforth, we shall use the
convention of writing a point regulus of Hi with a subindex i , i = 1, 2. So the point regulus
determined by two points a, b in Hi is denoted by Ri (a, b). Since line reguli are determined by
Q(6, q), such notation for line reguli is superfluous.

We define the following set Ω3 of point reguli common to H1 and H2. Consider two arbitrary
but opposite lines L and M of S, let a be any point on L \ (Π + ∪ Π −), and denote by Θ the
3-space generated by L and M . Let b be the point on M collinear with a on Q(6, q). Then b is
at distance 4 from a in the incidence graph of both H1 and H2. Put r = a �� b (inside H1) and
denote r g by r ′. Obviously r ′a and r ′b are lines of H2, implying r ′ belongs to Θρ . Hence both r
and r ′ belong to the point regulus in both H1 and H2 complementary to R(L, M). Therefore r ′
is collinear in H1 with two points a′ and b′ (obviously distinct from a and b, respectively) on L
and M respectively. Since g is an involution, the lines ra′ and rb′ of PG(6, q) are lines of H2.
The point regulus R1(a, b′) is complementary to R(rb, r ′a′) and the point regulus R2(a, b′) is
complementary to R(ra′, r ′b). Since rb and r ′a′ generate the same 3-space Υ in PG(6, q) as
ra′ and r ′b, we conclude that R1(a, b′) = R2(a, b′). Moreover, it is clear that Υ is invariant
under g, and hence p ∈ Υ . This implies now that R1(a, b′), which belongs to Υρ ⊆ pρ , is
entirely contained in ΠS .

The set Ω3 consists of all point reguli R1(a, b′), for all such choices of L, M and a (but a and
b′ determine L and M uniquely, so there is no need to include L and M in the notation). Remark
that one can easily count the number of elements of Ω3 to be (q2 + q + 1)q2(q − 1).

Lemma 3. With the above notation, we have Ω3 = Ω2 and |Ω | = (q2 + q + 1)q3.

Proof. From our discussion above we already have Ω3 ⊆ Ω2. Now suppose that Ω3 �= Ω2 and let
R be a point regulus of Ω2 \Ω3. Let a and b be two points of R. By Lemma 2 we know that both
these points are incident with a unique line of S, say La and Lb respectively. Denote projLa

b
and projLb

a by a′ and b′ respectively and let x and x ′ denote a �� b′ and a′
�� b respectively.

We shall show that x ′ has to be the image of x under g. Indeed, since R belongs to the set of
common point reguli of the two hexagons we immediately find that xa′ and x ′b′ are lines of H2.
Suppose xg is a point x ′′ distinct from x ′; then also xa′′ (with a′′ = projLa

x ′′) belongs to the line
set of H2, a contradiction.

The lemma is proved. �

Lemma 4. Every other model of H(q) (not H2) which also contains S as a subset of lines
intersects H1 in a set of q2(q2 + q + 1) point reguli. In other words, here Ω equals Ω1.

Proof. Take a model H3 �= H2 of H(q) through S. Obviously Ω , in the same way as before,
contains Ω1 as a subset. Suppose by way of contradiction that R(a, b) is a type (b) point regulus
of both hexagons. As an immediate consequence of Lemma 1 we know that αR, the regulus
plane of R, is a subspace of ΠS , the hyperplane containing all lines of S. By polarity we thus
find p = Π ρ

S to be a point of Υ = α
ρ

R. On Q(6, q) this 3-space constitutes a hyperbolic quadric
isomorphic to Q+(3, q) which we shall denote by Q+

Υ .
Put La and Lb as the unique elements of S incident with a and b, respectively. Inside H1 we

denote projLb
a, projLa

b by b′, a′ and a �� b′, a′
�� b by x , x ′ respectively.

From our discussion above we know that there exists a unique point regulus R′, on a, and a
point b′′ I Lb, which belongs to both H1 and H2. The point b′′ is the unique point of Lb which
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is collinear (within H1) with x g = px ∩ Q(6, q) \ {x}. However, since p ∈ Υ and x ∈ Υ we
have that x g ∈ Υ ∩ (La Lb)

ρ and see that x g should belong to a line of Q+
Υ and hence equals x ′.

Furthermore, this implies that H2 and H3, apart from having all lines of S in common, share the
complementary line regulus of R (i.e. R is of type (a) with respect to these two hexagons). In
other words, we find that H3 equals H2 and we are done. �

The proof of part (iii) is similar. Here we just point out the main difference.
First of all, the subset Ω1 contains q2(q2 −q +1) point reguli which are complementary to the

line reguli of S. There is, however, a crucial distinction between situations (ii) and (iii) when it
comes down to defining the set Ω3. Before, we considered L and M two lines of S and a a point
on L \ (Π + ∪ Π −). In the current situation, with S a distance-3 spread, we lay no restriction on
the choice of a on L and hence end up with

|S|(|S| − 1)

(q + 1)q
(q + 1)

elements of Ω3 instead of

|S|(|S| − 1)

(q + 1)q
(q − 1)

as we did before.
In order to complete the proof we may carefully copy the above. Indeed, in the same way one

can show that Ω3 consists of all elements of type (b) and hence find |Ω | = q2(q2 −q +1)(q +2).
Finally by Lemma 4 we may conclude the main result to be proven.

Remark. If H1 and H2 share point reguli of type (b), meaning Ω2 is a non-empty set, then (while
the set Ω1 determines all lines of S) the set Ω2 determines all lines of H1 \ S (and consequently
also all lines of H2), as we shall show.

Denote the set of lines that are in a complementary regulus of some element of Ω2 by L and
suppose L has cardinality A. First of all, we determine, given a line L of L, the number n1 of
point reguli ω2 ∈ Ω2 such that L ∈ ωc

2. Since L belongs to H1 \ S, it is concurrent with a unique
line L1 of S (as ΠS is a hyperplane). A point x on L and a line M through x then completely fix
an element ω2 ∈ Ω2, such that L ∈ ωc

2 (this is true because M is concurrent with a unique line L2
of S and because x and xg determine two points a and b, on L1 and L2, of ω2). Hence by an easy
counting argument one obtains that n1 = q (consider the triple (x, M,R), with L1 � I x I L,
L1 �= M I x , L ∈ R and Rc ∈ Ω2).

We are now ready to apply a double counting on the couples (ω2, L), ω2 ∈ Ω2 and L ∈ ω2
c.

Here we treat the case where S has type − and omit the counting for S of type +, which is
similar. Since |Ω2| = (q3 + 1)q2 we find

(q3 + 1)q2(q + 1) = Aq

and hence

A = (q3 + 1)q(q + 1).

This number of lines together with all spread lines adds up to

A + (q3 + 1) = q6 − 1

q − 1

the total amount of lines in H1.
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4. A transitive 1-system of Q(6, 3)

In this section we will be working with the exceptional spread SE of H(3) as constructed in [3].
However, to clarify further reading we provide a short introduction to spreads of this particular
type.

Let H be an elliptic hyperplane in PG(6, 3) and let SH be the corresponding spread of H(3).
We extend PG(6, 3), Q(6, 3) and H(3) to PG(6, 9), Q(6, 9) and H(9), respectively, as projective
varieties. By [9], the hyperplane H viewed as a hyperplane of PG(6, 9), defines in H(9) the
subhexagon Γ ′ of H(9) and Γ ∩ H(3) = SH. If Π + and Π − are the two hexagon twin planes
of Γ ′ then according to [9] the lines of SH meet Π ± in points of a Hermitian curve, which we
will call U±. Put Φ± as the corresponding isomorphism between the lines of SH and the points
of U±. The image of R0, a fixed line regulus of SH, under Φ± is then the intersection of U± with
a line L±

0 .
Roughly, the construction of SE goes as follows. There are three Hermitian spreads containing

R0. In each of these, we choose appropriately two additional reguli in such a way that, together
with R0, these three reguli form, viewed as blocks of U±, a polar triangle.

Apart from this definition of SE, we shall also be using the observation that when considering
the set of all line reguli of SE (seven in total) as a point set and the sets of three reguli contained in
a common elliptic hyperplane as the line set, one obtains a geometry isomorphic to the projective
plane of order 2.

Let Γ be the geometry, isomorphic to PG(2, 2), with as point set the reguli of SE and
where three points are on a line if they – as line reguli of SE – belong to the same Hermitian
spread (see [3]). From now on we shall denote the line reguli of SE by R0, . . . ,R6 and use the
standard description of Γ as a difference set. Namely, for each i ∈ Z mod 7, there is a line
{Ri ,Ri+1,Ri+3}.

Note that it now makes sense to talk about switching points of Γ when meaning to switch the
corresponding line reguli.

By [2] we know that switching any number of line reguli of SE yields a 1-system of Q(6, 3). It
is now straightforward to see that the 1-system obtained by a “full” derivation of SE (i.e. switch
all seven reguli) admits 23.SL3(2) acting transitively.

We start by determining when a derivation belongs to some H2 �= H1.
Take H1 and H2, a model of H(3) on Q(6, 3), and let SE be an exceptional spread of this

hexagon. Denote a derivation of SE by S ′
E, the common line set of those two hexagons by S and

the set of switched line reguli by χ . Since S ′
E is a proper derivation of SE, the set Ω2 will be non-

empty. By Lemma 4 we may thus conclude that H2 = Hg
1, where g is the involutive collineation

of the previous section linked to ΠS , the hyperplane generated by S. Furthermore we know that
p, the polar point of ΠS , belongs to every 3-space generated by any one of the switched reguli.
In other words, if the lines of Ri determine the 3-space Υi then p belongs to Υi when Ri is one
of the line reguli that we switch.

Lemma 5. As soon as χ contains the points of a line of Γ as a subset, the thus obtained
derivation of SE can never be a spread of any other hexagon H2.

Proof. Suppose R0, R1 and R3 are three such line reguli. These three determine, by definition
of the exceptional spread, a polar triangle Δ+ in Π +. In the exact same way they also determine
a polar triangle Δ− in Π −. Denote a point of these respective polar triangles by r±

i j if it is the

intersection point of L±
i and L±

j , where L±
i is the line containing all points of RΦ±

i ∩ U±.
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With this notation at hand it easy to see that Υ0 ∩Υ1 = r+
01r−

01. However, these two points (r+
01

and r−
01) belong to Υρ

3 which is a plane disjoint from Υ3. Hence Υ0, Υ1 and Υ3 have an empty
intersection, which is contradictory to the fact that p belongs to this intersection. �

Lemma 6. If there is a line of Γ on which exactly one point is switched, then S ′
E can never be a

spread of any other hexagon.

Proof. Suppose by way of contradiction that there exists a line L on which we switch a single
point t and suppose that the hexagon H2 contains S ′

E. The two remaining points on L correspond
to two reguli of SE that are not switched and are hence entirely contained in ΠS , as defined above.
Since these two reguli generate ΠS , the lines of t belong to S and to H2, a contradiction. �

As an immediate consequence of Lemmas 5 and 6 we see that the only possibility for a
derivation of SE to be a spread of H2 is obtained by not switching all points on a line of Γ
and switching the rest.

Proposition 7. The 1-system obtained by not switching all points on a line of Γ and switching
the rest is a spread of H2.

Proof. Before starting the actual proof of this theorem, we shall give some more information
concerning the construction of SE. As stated above, we start with a fixed line regulus R0. A
crucial property shall be that this regulus is contained in three distinct Hermitian spreads. This
phenomenon can be explained by looking at the extension of PG(6, 3) to PG(6, 9). Indeed, take
any two lines M and N of R0 and consider these lines in H(9). On those lines we have three
pairs of conjugate points and each of these pairs determines a hyperbolic hyperplane of Q(6, 9)

(the focus of each transversal to M and N at these two points, together with R0, completely
determines this hyperplane), which is an elliptic hyperplane of Q(6, 3).

For instance, if R0, R1 and R3 are the three reguli contained in SH, the Hermitian spread we
started from, then the intersection of L±

0 , where L±
0 = RΦ±

0 ∩ U±, with M and N gives us the
corresponding conjugate pair of points. Furthermore r−

13 and r+
13 are the points of H(9) collinear

with both intersection points of L+
0 and L−

0 , respectively, with M and N .
Let α be the polar image of Υ0 and put α as the extension of α over GF(9). The intersection

of α with Q(6, 3) is a conic, say C . The extension of C over GF(9), denoted by C , contains
six additional points of which r+

13 and r−
13 are a conjugate pair. As this first pair corresponds to

SH = S0
H we shall, from now on, denote them by r+

0 and r−
0 . In general we put (r+

i , r−
i ) as the

conjugate pair of points corresponding to the Hermitian spread S i
H, with i = 0, 1,−1, on R0.

We are now ready to start the actual proof of this theorem.
Suppose χ = {R0,R1,R3} and switch all other points of Γ . Without loss of generality we

may suppose R2, R6 and R4, R5 together with R0 to be reguli of the Hermitian spreads S1
H and

S−1
H , respectively. If p = Π ρ

S , with ΠS = 〈Υ0,Υ1,Υ3〉, is a point of every one of the 3-spaces
Υ2,Υ4,Υ5,Υ6, then the 1-system obtained is a spread of H2(= Hg

1).
First of all, one can easily see that Υ2 ∩ Υ6 = r+

1 r−
1 while Υ4 ∩ Υ5 = r+

−1r−
−1. As both these

lines contain two conjugate points they are lines which belong to α and hence intersect at a point,
say t ∈ α. It now suffices to show that t equals p to complete the proof.

As we already know two lines of α on t and as every line on t and a point of C is either a
tangent or an intersection line, the two remaining lines of α through t are intersection lines of C .

Since r+
0 r−

0 is a line of α, it does not pass through t . Hence tr+
0 and tr−

0 are tangent lines of
C , meaning r+

0 r−
0 belongs to tρ . On the other hand, a simple application of the polarity gives us,
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as t belongs to Υρ
0 (= α), that also Υ0 is a subspace of tρ . Hence the span of this 3-space and

the line r+
0 r−

0 belongs to the polar hyperplane of t . As both Υ0 and r+
0 r−

0 are disjoint subspace
of ΠS , they in fact span this particular hyperplane. In other words, we have that tρ = pρ or that
t equals p and we are done. �

A nice consequence of this theorem is that there are only four equivalence classes of derived
1-systems of SE on Q(6, q), as we shall show. We can also determine the automorphism groups
in each case. Suppose SE is an exceptional spread of H1.

Corollary 8. If S ′
E is a derivation of SE, then – up to isomorphism – either

(i) the set χ is empty;
(ii) the set χ contains a unique point;

(iii) the set χ contains two points;
(iv) the set χ contains three points on a line of Γ .

In cases (i) and (iv), the automorphism group of S ′
E has the structure 23 · SL3(2); in the other

two cases we have 23.S4, where S4 is a maximal subgroup of SL3(2) corresponding to a point
stabilizer in PG(2, 2).

Proof. The first three equivalence classes are obtained trivially (the automorphism group acts
2-transitively on the set of line reguli).

Now suppose χ contains three points which are not on a line. Without loss of generality
we may assume R0,R3,R6 to be these three points (with the labelling of Γ as described
above). By additionally switching R5, we obtain (as a result of Proposition 7) a derivation of
SE which is contained in another hexagon H2. Mapping H1 to H2 and switching only R5 shows
the equivalence between this situation and situation (ii).

When χ contains three points on a line, a similar technique always results in the switching
of three points on a line in the new hexagon. Hence this is an isomorphism class which is non-
equivalent with the classes (i) up to (iii).

For the remaining situations, the cardinality of χ will be greater than or equal to 4 and it will
be advisable to look at the complement of this set of points, denoted by χ .

Suppose χ contains three points in a triangle. Again without loss of generality we may assume
this triangle to contain the points R0,R3,R6. This situation is equivalent to situation (iii), as
switching R2 and R3 gives us a derivation contained in some H2.

Not switching the points on a line and switching the rest is just how we obtain a derivation
which yields a spread of H2, and hence this is equivalent to situation (i).

Switching the unique third point on the line containing both non-switched points of χ shows
the equivalence between |χ | = 5 and situation (ii).

However, switching two points on any line through the unique element of χ demonstrates the
equivalence between |χ | = 6 and situation (iii).

Finally, suppose we have switched all points of Γ . Switching back three points on a line results
in the spread of Proposition 7. Hence switching all points of Γ can be reduced to situation (iv)
and we are done.

Regarding the automorphism groups, that of case (i) follows from [3]. It is clear that, if all
reguli are switched, then we obtain again the same automorphism group; whence case (iv). In
case (ii), the regulus that can be switched in order to obtain a spread in a hexagon is unique;
clearly the automorphisms of the bottom group 23 also act on every derivation. This proves case
(ii). Case (iii) is similar enough for us to remark that the third point on the line joining the
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two points that are switched is unique with respect to the following geometric property: if it is
switched, then we obtain a spread of type (iv).

This completes the proof of the corollary. �
The following theorem states a general result concerning similar questions starting from a

Hermitian spread SH of H1, a model of H(q).

Proposition 9. If we switch disjoint blocks of the Hermitian spread SH of H1, then the following
statements are equivalent:

(i) The set of lines obtained is a spread of some hexagon H2 �= H1.
(ii) The set of lines obtained is isomorphic to H2(q2) on Q−(5, q).

(iii) All blocks conjugate to some given block B are switched.

Proof. We start by proving the equivalence between (i) and (ii). Suppose S ′
H, the derived set of

lines, is a spread of H2. This fact, together with the knowledge that switching lines does not alter
the space they are in, easily implies that S ′

H is a Hermitian spread. Thus situation (i) implies
situation (ii).

If S ′
H is isomorphic to H2(q2) on Q−(5, q), then there are q + 1 hexagons – hence at least

one – containing this set of lines as a subset. Hence the equivalence between the first two cases
is shown.

In order to prove the equivalence of (ii) and (iii), we dualize the situation and consider ovoids
of the Hermitian generalized quadrangle H(3, q2). Note that an ovoid of H(3, q2) is Hermitian
if and only if all points of it are contained in a plane of the ambient projective space PG(3, q2).
Also, a regulus is here a set of points on a secant line, and “switching a regulus” corresponds to
“substituting a secant line all of whose points are contained in the ovoid by the conjugate line
with respect to the (unitary) polarity of PG(3, q2) defined by H(3, q2)”; we will briefly say that
we “replace a block (by its conjugate)”. It is now clear that, in a Hermitian ovoid O generating
the plane π , replacing one block by its conjugate does not produce a Hermitian ovoid because the
unchanged points still span π . Also, if we replace two blocks B1 and B2 by their conjugates B ′

1
and B ′

2, respectively, then clearly all conjugates of lines in the plane π ′ spanned by B ′
1 and B ′

2 are
incident with the intersection point z of the lines defined by the blocks B1 and B2. Hence, in order
to obtain an ovoid contained in π ′, we have to get rid of every point x not in the intersection of π

and π ′ by replacing the unique block on the line xz. The block B defined by π ∩ π ′ must remain
unchanged, and that is exactly the block all of whose points are conjugate to z with respect to
the polarity in π corresponding to the Hermitian curve O. The equivalence between (ii) and (iii)
now follows. �
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