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All-D-magainin: chirality, antimicrobial activity and proteolytic 
resistance 
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All-D-magainin-2 was synthesized to corroborate experimentally the notion that the biological function of a surface-active peptide stems primarily 
from its unique amphiphilic a-helical structure. Indeed, the peptide exhibited antibacterial potency nearly identical to that of the all-L-enantiomer. 

Being highly resistant to proteolysis and non-hemolytic all-D-magainin might have considerable therapeutic importance. 
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1. INTRODUCTION 

Surface-active peptides, i.e. peptides that bind to and 
affect amphiphilic surfaces, such as membranes, recep- 
tors, etc., have been extensively studied in recent years 
[1,4]. A common feature of  many of  these compounds 
is their characteristic helical amphiphilic secondary 
structure, which is often induced by the respective 
target. Affinity of  such peptides to the surface is 
enhanced in parallel to the increase complementarity 
between the two counterparts [5]. Some of  these pep- 
tides, like hormones, which exert their biological activi- 
ty through specific cellular receptors require, for 
manifestation of  optimal function, meticulous confor- 
mation. The action of  others, however, which do not 
seem to be mediated via such loci, is far less dependent 
upon strict structural requirements. Representatives of  
the latter family of  compounds are cationic wide-range 
cytolytic peptides isolated from mammalian 
phagocytes, e.g. defensins [6], insects, e.g. melilittins 
[7], cecropins [8], sarcotoxins [9], and amphibians, e.g. 
magainins [10]. The target of  these surface-active pep- 
tides appears to be the cellular lipid bilayer membrane. 
They have been reported to act almost exclusively by 
virtue of  their unique structural features, which allow 
them to associate with respective cells and thereby to 
modulate membranal potential, permeability and func- 
tion [6,11]. Mediation of  these events through genera- 
tion of  voltage-dependent ion channels was also pro- 
posed [12-15]. 

If the overall structure of  the peptide is the most im- 
portant  factor in the manifestation of  the activity, then 
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the all-D-enantiomer might possess biological proper- 
ties similar to those of  the respective natural L- 
enantiomer. This consideration does not hold true for 
receptor-oriented peptides [e.g. 16-18]. Enantiomeric 
conformation,  however, in a non-chiral environment 
may, in principle, generate entirely different 
diastereoisomeric interactions in a chiral environment, 
such as the 'living' milieu of  biological surfaces. 
Absence of  such differences implies that, indeed, 
peptide-cell interactions should be interpreted primarily 
in amphiphilic terms. To examine the above considera- 
tions, we chose, for reasons of relatively simple syn- 
thesis and significant clinical potential, to study all-D- 
magainin. 

The magainins, also known as PGS peptides [19], are 
a family of  cationic 23-amino acid peptides recently 
isolated from the skin of  the clawed African toad 
Xenopus  laevis [10]. They are stored within the 
granular glands of  the toad's skin and released in 
response to challenges with foreign invaders as part of  
the immune-defense mechanism. The peptides exhibit a 
wide range of  potent anti-bacterial activity against a 
variety of Gram-negative and Gram-positive bacteria 
[10,20,21]. They can also inhibit the growth of  fungi 
and viruses [21] and induce osmotic lysis in protozoa 
[10,20,21]. 

2. EX P ERIMEN TA L 

2.1. Synthesis of all-D-magainin 
This was carried out manually on a chloromethylated polystyrene/ 

207o divinylbenzene resin (Chemalog, South Plainfield, N J) [22]. 
Protected amino acid derivatives were purchased from Bachem 
(Bubendorf, Switzerland). a-Amino groups of amino acids were pro- 
tected by t-butyloxycarbonyl. Side chain protecting groups were as 
follows: serine, O-benzyl; glutamic acid, ~-benzyl; lysine, 
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N~-2-chloro-benzyloxycarbonyl; histidine, Nim-benzyloxycarbonyl. 
All coupling stages were performed with a 3-fold excess of protected 
amino acid derivatives with an equimolar mixture of 
N,N' -dicyclohexylcarbodiimide and l-hydroxybenzotriazole as 
reagents. Deprotection and cleavage from resin was achieved by treat- 
ment with anhydrous HF [23]. The product was purified to 
homogeneity by initial chromatography on Sephadex G-15, using 
0.1 N acetic acid as an eluent, followed by preparative HPLC 
(Lichrosorb RP-8; 7 #m; 240-10 mm) employing a linear gradient of 
acetonitrile (10-60070) in 0.1070 aqueous trifluoroacetic acid. Amino 
acid analysis was performed on a Dionex Automatic Amino Acid 
Analyzer. Sequence determination was accomplished using an Ap- 
plied Biosystems 470A Gas-Phase Microsequencer, coupled to Ap- 
plied Biosystems 120A PTH Analyzer. 

2.2. Circular dichroism studies 
All-D- and all-L-magainin-2 (2.5-5 x 10 - 5 M) were dissolved each 

in either 50 mM potassium phosphate buffer, pH 7.0, or 50070 (v/v) 
trifluoroethanol (Merck, Darmstadt, FRG) in the same buffer. A 
quartz cell of 1.0 cm path length was employed. Scans were perform- 
ed on a Jasco model J-500C spectrophotometer with Jasco NP-500 
data processor at 24°C, over a wavelength range of 240-200 nm. 
Calculation of a-helix and/3-sheet contents was performed according 
to S.W. Provencher [24]. 

2.3. Proteolytic studies 
The two enantiomeric peptides (20 #g each) were dissolved in PBS 

(pH 7.4; 90 #1) and the solutions incubated at 37°C. To each enan- 
tiomer a solution (10 #1) containing either a mixture of trypsin (EC 
3.4.2.4., Merck; 2 #g) and chymotrypsin (EC 3.4.21.1., Merck; 2 #g) 
or pronase (EC 3.4.24.4., Merck; 2 #g) in 0.001 N HCI was added. 
Aliquots (25 #1) were taken from each mixture after incubation at 5 
min, 30 min and 60 min, and monitored by HPLC at 220 nm. 

HPLC analyses were performed on a Merck, Lichrospher 100 RP-8 
(5 /zm) column (125 x 4 mm). Elution gradient started (T=0) with 
90°70 solvent A (water - 0.1 070 TFA)/10070 solvent B (75 070 acetonitrile 
in water/0.1% TFA) and continued: T= 10 min, 80070 A/20%B; 
T=25 min, 55070A/45%B; T=40 min, 40%A/60070B. 

2.4. Antibacterial activity 
The antimicrobial activity of all-D- and all-L-magainin-2 

(designated D and L, respectively) was determined by in vitro tests 
performed according to standard techniques. The in vitro MIC and 
MBC determinations were performed by the microbroth dilution 
method, at pH 7.0, in Tryptose Broth (Difco Laboratories, U.S.A.) 
as a growth medium. 

2.5. Hemolysis 
Three ml of packed human erythrocytes were washed 3 times with 

isotonic phosphate buffered saline (PBS, pH 7.4) and diluted to a 
final volume of 20 ml in the same buffer. Aliquots (190/~1) of cell 
suspension were placed in Eppendorf tubes and solutions (10 p.l) of 
different concentrations of the tested peptides, in PBS, were added. 
Following gentle mixing, while incubated for 30 min at 37°C, the 
tubes were centrifuged at 4000 × g for 5 min. Aliquots (I00/~1) of 
supernatants were taken, diluted to 1 ml with PBS and absorptions at 
576 nm were measured. Hemolysis effected by 0.1070 Triton X-100 was 
considered as 100%. All experiments were performed in duplicates. 
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H-Gly-Ile-Gly-Lys-Phe-Leu-His-Ser-Ala-Lys-Lys-Phe- 

-Gly-Lys-Ala-Phe-VaI-Gly-Glu-Ile-Met-Asn-Ser-OH 

Fig. 1. Amino acid sequence of all-D-magainin-2. 

that the all-D-peptide can exhibit a conformation that is 
the mirror image of that of the all-L-enantiomeric pep- 
tide was confirmed by CD measurements (Fig. 2). Thus, 
it is apparent that both the D- and L-enantiomers 
displayed random conformation in aqueous buffer, but 
adopted, in the range of 200-240 nm, a positive and 
negative ellipticity, respectively, in the presence of 50°/o 
trifluoroethanol. Identical o~-helices (32°7o) were 
calculated from the CD spectra [24]. 

The antimicrobial activity of all-D-magainin was 
compared to that of all-L-magainin, against a wide 
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3. RESULTS AND DISCUSSION 

All-D-magainin (Fig. 1) was synthesized, employing 
the solid-phase strategy [22]. The peptide was purified 
to homogeneity using high performance liquid 
chromatography (HPLC) and its correct composition 
and primary structure were ascertained by amino acid 
and sequence analyses, respectively. The anticipation 
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Fig. 2. Far-ultraviolet circular dichroism of all-D- and all-L- 
magainin-2. (1) and (3) refer to D- and L-magainin-2 in 50070 TFE, 
respectively. (2) and (4) refer to D- and L-magainin-2 in phosphate 

buffer, respectively. 
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Table I 

Antimicrobal activity of all-D- and all-L-magainin-2 

November 1990 

Microorganism* Minimal inhibitory Minimal bactericidal 
concentration concentration 
0zg/ml) ~g/ml) 

Escherichia coli L 12.5 12.5 
D 12.5 12.5 

Enterobacter cloacae L 25 50 
D 50 100 

Proteus mirabilis L > 400 > 400 
D >400 >400 

Shigella flexineri L 3.12 3.12 
D 3.12 3.12 

Salmonella anatum L 50 > 50 
D 50 > 50 

Pseudomonas aeruginosa L 100 200 
D 100 400 

Klebsiella oxytoca L 50 > 50 
D 50 50 

Streptococcus fecalis L 400 400 
(ATCC 29212) D > 400 > 400 

Staphylococcus aureus L 25 50 
(ATCC 29213) D 50 50 

Escherichia coli L 12.5 25 
(ATCC 25922) D 12.5 25 

Pseudomonas aeruginosa L 6.25 6.25 
(ATCC 27953) D 3.12 12.5 

*Non-ATCC strains are recent clinical isolates from a tertiary-care hospital. 

spectrum of Gram-negative and Gram-positive bacteria 
(Table I). As is evident from the table, minimal in- 
hibitory concentration (MIC) and minimal bactericidal 
concentration (MBC) values are rather similar for both 
peptides with all tested microorganisms. As shown in 
Table II, all-D-magainin was as non-hemolytic as all-L- 
magainin towards human erythrocytes. 

Considering the antimicrobial potency of magainin, 
coupled with its antifungal, antiprotozal and antivirus 
activities, as well as low hemolyticy, the peptide has a 
rather significant therapeutic potential. It would be 
beneficial to have an analog with enhanced stability 
towards proteolyis and thus, presumably, long active 
duration. As a model to examine the susceptibility of 
all-D-magainin towards proteolysis, its resistance to the 
digestive action of pronase, trypsin and chymotrypsin 
was studied in parallel to that of all-L-magainin (Fig. 
3). As shown, the all-D-enantiomer remained intact 
even after 1 h of incubation with the enzymes, while the 

Table II 

% Hemolysis of Human Red Blood Cells 

Peptide Concentration Ozg/ml) 

25 80 100 200 

all-L-magainin-2 0 1 2 2 
all-D-magainin-2 0 0 1 2 

Mellitin (Sigma Chemical Co., St. Louis, MO, USA) at concentra- 
tions of 2.5, 5, 10 and 20/zg/ml effected 1, 5, 20 and 70°70 hemolysis, 
respectively. 

all-L-enantiomer was extensively degraded rather rapid- 
ly (5 min). These results suggest that all-D-magainin or 
a relevant derivative may be of significant therapeutic 
potential. Indeed in vitro experiments with magainin-2 
showed that the biological activity decreased due to the 
presence of proteases in the medium [11,25,26]. 

Based on theoretical considerations, i.e. Chou- 
Fasman principles and the 'helical-wheel' projection of 
Schiffer-Edmundson, it was proposed that the 
magainins might have an amphiphilic a-helical struc- 
ture [27]. This assumption was corroborated by two- 
dimensional NMR spectroscopy, which demonstrated 
that, in fact, magainin assumes such a characteristic 
while dissolved in a mixture of trifluoroethanol and 
water [28]. It was further postulated that this structural 
feature, which can be enhanced by sequence alterations 
with a consequent augmentation of bioactivity, is im- 
portant for the expression of antimicrobial activity [27]. 

It may be assumed that the initial interaction between 
the positively charged magainin and the bacterial sur- 
faces is of an electrostatic nature through the multitude 
of negatively charged groups on the surfaces of cells, 
notably among them those contained in lipopolysac- 
charides (LPS) and teichoic acids in Gram-negative and 
Gram-positive bacteria, respectively [29]. Following 
this encounter the microbial membrane is perturbed, in 
a manner which is not yet clearly understood, with 
eventual cell death [30-31]. 

Our present data show that, as postulated, the unique 
architectural feature of magainin, i.e. amphiphilic a- 
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Fig. 3. HPLC analysis of the susceptibility of all-D-magainin-2 towards enzymatic degradation. 

Fig. 4. Projection in two-dimension of the c~-helical wheel conformation of magainin-2 according to Macromodel computer modelling program 
(Clark Still, Columbia University, USA). 
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helical structure (Fig. 4) is crucial in the manifestations 
of antimicrobial activity. It is possible that initial 
peptide-bacterial cell surface association is somewhat 
distinct for the L- and D-enantiomers due to different 
chiralic-related interactions. However, further adapta- 
tion of the peptide within the amphipathic bacterial 
membrane has eventually led to similar cellular activa- 
tion. Finally, we suggest that the consequences of our 
studies with all-D-magainin may hold true for other 
surface-active peptides. 

While the present study was being summarized for 
publication, the synthesis of the amide of all-D- 
magainin-2 was described by Wade et al. [32]. This 
analog was essentially identical in its antibacterial 
specificity to that of the carboxy-free all-L-magainin-2 
which occurs naturally and was resistant towards pro- 
teolytic digest. 
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