
Science of Computer Programming 76 (2011) 891–914

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A semantics for Behavior Trees using CSP with specification commands
Robert J. Colvin a,b,∗, Ian J. Hayes a

a The University of Queensland, Australia
b The Queensland Brain Institute, Australia

a r t i c l e i n f o

Article history:
Available online 9 December 2010

Keywords:
Structural operational semantics
Communicating Sequential Processes (CSP)
Hierarchical state
Specification commands
Process algebras
Behavior Trees
Requirements modelling

a b s t r a c t

In this paper we give a formal definition of the requirements translation language Behavior
Trees. This language has been used with success in industry to systematically translate
large, complex, and often erroneous requirements documents into a structured model of
the system. It contains a mixture of state-based manipulations, synchronisation, message
passing, and parallel, conditional, and iterative control structures. The formal semantics of a
Behavior Tree is given via a translation to a version of Hoare’s process algebra CSP, extended
with state-based constructs such as guards and updates, and a message passing facility
similar to that used in publish/subscribe protocols. We first provide the extension of CSP
and its operational semantics, which preserves the meaning of the original CSP operators,
and then the Behavior Tree notation and its translation into the extended version of CSP.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A system developer is often faced with a system requirements document containing hundreds, or even thousands, of
requirements, written in a natural language, and by a varied group of people, each with specialised domain knowledge.
Unsurprisingly, such documents may be filled with problems, such as ambiguity, inconsistency, redundancy, and
incompleteness. The process of transforming such documents into a working system must therefore be able to identify
issues with the natural language requirements in a way that is easy for the client to understand, and the model must be
structured such that it can be cross referenced with the original document.

The Behavior Tree notationwas developed byDromey to address this problem [1–3]. Because it is designed for use by both
client and expertmodeller, it is a graphical notation, and contains a range of constructs that cover state-basedmanipulations,
as well as more abstract concepts such as synchronisation and message passing, along with typical concurrency, choice and
iteration control structures familiar to specification and programming languages. The notation is designed to be easy for a
non-expert to understand in a relatively short amount of time.

Each requirement is translated into its own, small Behavior Tree, and each node in the tree is tagged with the number
of the requirement from which it was translated, allowing traceability back to the original informal requirements. The
requirements may then be progressively integrated into a whole-system tree, by finding syntactically matching constructs.
This processwill reveal inconsistencies, redundancies, incompleteness, and ambiguities. The constructed tree can then serve
as the basis for discussion between developer and client for validation purposes, using the traceability tags on each node
to cross reference to the original document. Once a validated tree is defined, the developer has a systematically structured
representation of the system, which can serve as the basis for further development work.

Experience with industrial trials indicate that the modelling process is better at detecting errors in requirements than
other techniques [4,5]. The Behavior Tree process has been adopted for industrial use, in particular by Raytheon Australia [6],

∗ Corresponding author at: The University of Queensland, Australia.
E-mail address: robert@itee.uq.edu.au (R.J. Colvin).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.11.007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82778974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2010.11.007
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:robert@itee.uq.edu.au
http://dx.doi.org/10.1016/j.scico.2010.11.007

892 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

who have invested resources to developing a Behavior Tree editor [7]. Existing tools [8,9] include facilities for ensuring
well-formedness and model checking; due to its syntax-driven nature, another aspect that may be suitable for tool support
includes the integration of Behavior Trees, and as a result the identification of errors in the requirements.

In this paper we present a formal semantics for the Behavior Tree notation. As its base we use Hoare’s process algebra
Communication Sequential Processes (CSP) [10,11], a well established and elegant formal notation for describing interac-
tions between concurrent processes. We extend this language to include state-based constructs such as tests and updates,
which are common within requirements documents, and a message passing facility similar to publish/subscribe models of
communication [12]. We call this new language CSPσ . The extensions and operational semantics of CSPσ are defined so that
the original laws of CSP are preserved.

The most immediate motivation for providing a formal semantics for the Behavior Tree notation is to add precision to
Behavior Tree models. As a result, the consequences of modelling decisions are easier to understand, and ambiguities and
inconsistencies are removed from the models themselves. In the longer term, the semantics may be used as the basis for
developing automated analysis of systembehaviour, in particular, simulation andmodel checking. It is for these longer-term
goals that the semantics is defined as an extension of CSP, with the intention that tools and techniques for Behavior Trees
may extend existing tools and techniques for CSP [13,14].

The paper is structured as follows. In Section 2 we present CSP extended with state. In Section 3 we present a further
extension which includes message passing. In Section 4 we present the Behavior Tree notation, and in Section 5 we describe
how to translate Behavior Trees into the extended version of CSP. For the remainder of this sectionwe consider relatedwork.

1.1. Related work: requirements modelling

The Behavior Tree notation shares much in common with other formal (and informal) specification languages, but is
targeted at mapping typical requirements in a straightforward manner, rather than as a vehicle for abstract specification.
That is, the notation is designed so that a client can understand the models, and the models can be mapped back to their
original statement of requirements.

The Unified Modelling Language (UML) [15] is also used for constructing a model from requirements. The main point
of difference with Behavior Trees is that a UML model is formed from several different diagram types, many of which
do not easily support traceability back to the original requirements. In comparison, the Behavior Engineering development
framework comprises only two diagram types, Behavior Trees and Composition Trees, both of which support traceability.1
Furthermore, the semantics of UML has not been fully formalised [15, Section 8].

1.2. Related work: Behavior Tree semantics

There are several previous definitions of the semantics of Behavior Trees. In particular a technical report by the
authors of this paper [16], which defined a process algebra for capturing the constructs of Behavior Trees directly. While
comprehensive, the operational semantics were overly complicated, and did not exhibit desirable properties such as
compositionality of parallel Behavior Trees. In contrast, in this paper we use an existing process algebra, CSP, for the
underlying definitions, and this provides a more elegant specification of interactions between processes, and is inherently
compositional.

Earlier definitions of the semantics of Behavior Trees include a translation into CSP butwithout the extension of state [17],
and translations to automata-based languages such as action systems [8] and timed/probabilistic automata [18,19]. The
translation in [17] is complicated when complex state is involved, as CSP does not naturally handle mutable state (this
is explored in more detail in [20]). The work in this paper uses a similar translation technique, but with a version of CSP
extended with state, which makes many of the translations simpler. The translations to state-based notations [8,18,19]
resulted in complex configurations required to represent concurrency and the control structures of Behavior Trees. They
were also targeted specifically at model checking, and hence were written more for efficiency than elegance. In this paper,
we present the semantics using an established and elegant process algebra as its core, with a straightforward translation
process, which preserves the structure of the original Behavior Tree. Compared with the semantics mentioned above, this
gives further confidence in validating the formal semantics that we present here against the informal semantics described
for Behavior Trees by Dromey [1–3].

1.3. Related work: process algebras with state

CSP has been integrated with state-based languages, for instance, with Z by Woodcock and Cavalcanti (Circus) [21],
with Object-Z by Smith [22] and Fischer and Wehrheim (CSP-OZ) [23], with Action Systems by Butler [24], and with B by
Butler and Leuschel [25] and by Schneider and Treharne [26]. In comparison with these approaches to combining state-
based specification with CSP, we have taken a ‘‘lightweight’’ approach, introducing only a single construct for defining state

1 Composition Trees give the static declarations of the system, such as the components, states and eventswhich occurwithin the system, in a hierarchical
manner similar to the static declarations of other languages. We do not consider them in detail in this paper.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 893

manipulation, and with little change to the underlying syntax and semantics of CSP. In the languages mentioned above,
there is a notational and informational overhead associated with combining two pairs of syntax and semantics. Of course,
the addition of state tests and updates does not provide the same richness of specification as afforded by a full combination
of CSP with, for example, B, but does provide a useful stepping stone between event-based and state-based specifications.
We have taken this approach for defining the semantics of Behavior Trees in an attempt to keep the translation as simple as
possible and to preserve the structure of the original Behavior Tree in the resulting CSPσ process.

Baeten and Bergstra [27,28] define a process algebra with state, which can be tested and updated through propositional
signals. In their framework the state is anonymous, and each action is defined to test ormodify the state in someway. The use
of local state by Baeten and Bergstra, as with local state in CSPσ , are examples of contexts as explored generically by Larsen
and Xinxin [29]. A recent extension of CSP by Sun et al., CSP# [30], introduces shared variables and sequential programs, and
is supported by themodel checker PAT [31]. That language is roughly equivalent in expressiveness to CSPσ , except that CSPσ

includes a general specification command, which abstractly represents any atomic update of the state, whereas CSP# allows
sequential code blocks using typical imperative constructs. This difference is because we define a specification language,
while CSP# is designed for efficient model checking. The main point of difference with CSPσ is in the style of operational
semantics and handling of variables. Our transition rules define a relation on Processes, while the transition rules of [30]
define a relation on Process × State pairs. This means that our rules collapse to the standard CSP rules when state is not
involved, and that the majority of rules are relatively concise. This style also admits concurrent processes to use the same
variable name without conflict, whereas this must be explicitly disallowed in CSP#, as with any language in which the State
is kept globally rather than hierarchically. Future work is to reconcile the differences between CSPσ and CSP#, with the
intention of using the PAT tool for model checking and animating CSPσ processes, and therefore Behavior Trees.

2. CSPσ

In this section we describe the language CSPσ , which is CSP extended with state-based constructs. CSPσ was originally
introduced in [20], although the presentation given here differs in that it includes definitions for interrupts, restarts, explicit
recursion, and sending expressions on channels. We also use an interface parallel composition operator rather than Hoare’s
original alphabetised parallel composition operator [10], as interface parallel is more flexible and corresponds with more
recent presentations of CSP [11,32].

The language CSPσ is a process algebra which allows concurrent processes to communicate synchronously via shared
events, and to manipulate and check the value of state variables. Synchronisation and variable manipulations may be
combined atomically, subject to certain restrictions described below.

2.1. Syntax

Basic types. The basic unit for synchronisation are events, given by the setΣ . Elements of the setΣ are either an event name
or the pairing of a channel name with an associated value in the set Val. The set Στ ,X is Σ extended to include the special
events τ , representing a (hidden) internal event, and X, representing termination.

We assume a set of variable names Var , and define a State (also sometimes called a valuation or store) as a finite partial
mapping from variables to values.

State = Var → Val

We assume Val contains the booleans and integers, and whatever other values that are required for a particular application.
A state in which the variable i has value 0 and j has value 1 is represented by the mapping {i → 0, j → 1}.

Expressions and predicates. Single-state expressions are given by the type Expr1, and are terms whichmay contain elements
of Var . We assume an expression syntax which contains the standard operators of logic, arithmetic and set theory. An
expression, E, may be instantiated with a state, σ , to form a new expression, E[σ]; it is the expression obtained by replacing
all of the free variables in E that are also in the domain of σ with their value in σ . This may return a ‘‘ground’’ expression
(containing no free variables) that can be evaluated to an element of Val, or another expression which has fewer free
variables. For instance, an instantiation (i > 0)[{i → 1}] is (1 > 0) which evaluates to the true. Similarly, an instantiation
(i > j)[{i → 1}] is the (boolean) expression 1 > j. We refer to boolean-valued expressions as predicates.

Two-state expressions are given by the type Expr2, and contain free variables in Var as with Expr1, but may also contain
primed versions of Var . The primed versions indicate the post-state, while the unprimed versions indicate the pre-state.
An instantiation of E ∈ Expr2 requires two states, i.e., E[σ , σ ′

], where the variables in the domain of σ are replaced
in E by their values in σ , and the primed variables in the domain of σ ′ are replaced by their values in σ ′. For instance,
(i′ = i + 1)[{i → 0}, {i → 1}] is 1 = 0 + 1, which evaluates to true. When an expression may be either one or two state,
we just use the type Expr . We say a predicate E is satisfiable, written sat(E), when there exist pre- and post-states σ and σ ′,
defined for all free variables in E, such that E[σ , σ ′

] evaluates to true.

894 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

State-based constructs. FollowingMorgan [33], we introduce specification commands (SCmd) as the basic state-manipulation
construct in the language. A specification command x1, . . . , xn: [R] contains a two-state predicate R and a frame x1, . . . , xn,
which is the (possibly empty) set of variableswhich the commandmay alter. Therefore, the primed variables in the predicate
must be a subset of the frame. An example is i: [i′ = i + 1], which modifies the frame variable i so that in the post-state it
has a value one greater than in the pre-state. When the frame of a specification command is empty (and hence its predicate
does not refer to any post-state (primed) variables), we call it a guard, and write it as [g]. We also allow an update, x := E,
where x ∈ Var and E is a single-state expression, to abbreviate the specification command x: [x′

= E].
A specification command x: [R] may be interpreted as a relation, SR, on total states, that satisfies R and modifies only

variables in x. That is, given total states S, S ′
∈ (Var → Val), the relation corresponding to x: [R], given by [[x: [R]]], contains

(S, S ′) if S and S ′ make R true and only variables in xmay differ.

(S, S ′) ∈ [[x: [R]]] ⇔ (R[S, S ′
] ∧ x −▹ S = x −▹ S ′)

(The function x −▹ S is the function S with its domain restricted to elements not in x.) We define equivalence of specification
commands as follows.

c1 ≡ c2 = [[c1]] = [[c2]]

A special specification command is id, which we define as [true]. It does not depend on nor change any variables. Note that
there are many other commands which are equivalent to id by the definition above, such as [5 > 1], [x = x], x: [x′

= x].

Events and processes. The syntax of Events and Processes are given below, where A ⊆ Σ is a set of events, and ch and rec are
identifiers.

Event : := Στ
| ch!E | ch?Var

P : := (SCmd, Event) → P
| P ; P
| P [] P
| P ⊓ P
| P‖

A
P

| (µ rec • P)
| P\A
| (state State • P)
| P △ P
| P restart(Σ) P
| SKIP
| STOP

An event is either an identifier (the event name), or ch!E, indicating output of the value of expression E on channel ch, or
ch?y, indicating receiving a value on channel ch and storing it in variable y.2

An action prefix process (c, e) → P , where c is a specification command and e is an Event , is a process that tests and/or
updates the state such that c is satisfied and simultaneously performs event e, before behaving as process P . In the casewhere
a state test or update only is specified, the event e is τ . A sequential composition P ; Q behaves as P until P terminates, after
which it behaves as Q . An external choice between processes P and Q is given by P [] Q . The choice is external because
the environment selects P or Q through synchronisation. In contrast, an internal choice between P and Q , written P ⊓ Q ,
nondeterministically chooses between P andQ , without reference to the environment. Concurrency iswritten as P‖

A
Q , which

states that the two processes operate in parallel, synchronising on events in the interface A, and interleaving other events. A
recursive process is defined using the fix-point operator µ as (µ rec • P). Free occurrences of rec within P represent a new
instance of (µ rec • P). A set of events, A, may be ‘‘hidden’’ within a process P , written P\A, so that any events in A are not
visible externally to P (these become internal steps of P\A). A state σ ∈ State may be declared local to P via (state σ • P).
An interrupt P △ Q behaves as P until process Q takes some externally observable action, at which point it ‘‘interrupts’’ P
and becomes the active process. A restart process P restart(a) Q behaves as P until the restart event a is generated by P , at
which point it behaves as Q restart(a) Q . The restart operator is similar to the exception operator of Roscoe [34]. The process
SKIP has only one possible behaviour, which is to terminate successfully and take no further action. The process STOP has
no behaviour—it may never synchronise or take any other action. In general, CSP processes may also be parameterised by
values, but we do not consider parameters in this paper: a comparison of parameterised values and mutable state is given
in [20].

As an example, consider the following specification of a queue process, whichmakes use of a state, q, which is a sequence
of values, where ⟨⟩ represents the empty sequence, ⟨v⟩ represents the singleton sequence containing v, and a represents

2 In [20] channels could include expressions, but the rules covered only the casewhere the value of E could be determined locally to the sending process.
This paper contains a full treatment.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 895

P,Q : Process a:Σ y: Var v: Val
c: SCmd e:Στ ,X x, x1, x2: P Var E, R: Expr
σ : Var → Val id = [true] A ⊆ Σ g: Expr1

Fig. 1. Naming conventions.

Rule 1 (Prefix).

((c, e) → P)
c,e
−→ P

Rule 2 (Channel output).

sat(R ∧ v = E)

((x: [R], ch!E) → P)
x:[R∧v=E],ch.v
−−−−−−−→ P

Rule 3 (Channel input).

sat(R ∧ y′
= v)

((x: [R], ch?y) → P)
x,y:[R∧y′=v],ch.v
−−−−−−−−−→ P

Rule 4 (External choice).

(a) P
τ

−→ P ′

P [] Q
τ

−→ P ′
[] Q

(b) P
c,e
−→ P ′ (c ≢ id ∨ e ≠ τ)

P [] Q
c,e
−→ P ′

and similarly for Q .

Rule 5 (Internal choice).

P ⊓ Q
τ

−→ P

and similarly for Q .

Rule 6 (Sequential composition).

(a) P
c,e

−→ P ′ e ≠ X

P ; Q
c,e

−→ P ′ ; Q
(b) P

X
−→ P ′

P ; Q
τ

−→ Q

Rule 7 (Skip).

SKIP
X

−→ STOP

Rule 8 (Recursion).

(µ rec • P)
τ

−→

P

[
(µ rec • P)

rec

] Rule 9 (Hiding).

(a) P
c,a
−→ P ′ a ∈ A

P\A
c

−→ P ′
\A

(b) P
c,e
−→ P ′ e ∉ A

P\A
c,e
−→ P ′

\A

Rule 10 (Interrupt).

(a) P
c,e
−→ P ′

P △ Q
c,e

−→ P ′
△ Q

(b) Q
τ

−→ Q ′

P △ Q
τ

−→ P △ Q ′

(c) Q
c,e
−→ Q ′ (c ≢ id ∨ e ≠ τ)

P △ Q
c,e

−→ Q ′

Rule 11 (Restart).

(a) P
c,e
−→ P ′ e ≠ a

(P restart(a) Q)
c,e
−→ (P ′ restart(a) Q)

(b)
P

c,a
−→ P ′

(P restart(a) Q)
c

−→ (Q restart(a) Q)

Fig. 2. Rules’ summary for CSPσ .

sequence concatenation. When the event in an action pair is τ , we omit it, and write just the specification command;
similarly, when the command is equivalent to id, we omit it.

Queue = (state {q → ⟨⟩} • Qrec)

Qrec = µQ •
(enq?x → (q := q a ⟨x⟩) → Q)

[] (([q ≠ ⟨⟩], deq!head(q)) → (q := tail(q)) → Q)

(1)

After an enq?x event, q is extended by x and the process repeats. If q is nonempty, Queue may participate in a deq event,
which returns the head of the queue, and then removes it from q.

2.2. Semantics

We formally define the meaning of CSPσ in a structural operational semantics style [35] in Fig. 2, using the variable
naming conventions in Fig. 1. The label on each step is a pair containing a command and an event.

896 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

2.2.1. Prefixing
A prefix is the basic building block of a process. A process may be prefixed by the pairing of a specification command

with an event. Rule 1 is straightforward—the process transitions to P , and the command and event (if any) are shown in the
transition label. We abbreviate a label in which the command is equivalent to id as just the event, and if the event is τ we
abbreviate the label to just the command. This means, for instance, that the rules for a guard and an update with no event
are as follows.

([g] → P)
[g]

−→ P (x := s → P)
x := s
−−→ P

It is also the case that the usual CSP event prefix rule holds, i.e.,

(a → P)
a

−→ P

2.2.2. Channels
Rules 2 and 3 for channels are more complex, because of the possible interplay of variables in the channel expression

with the command. An output ch!E must choose some value for E, say v, and output that value on the channel (within labels,
channels must be paired only with values, not expressions). That E does indeed have the value v in context is established
by adding a (satisfiable) guard to the command. In the simple case, where a value u is sent on the channel and there is no
associated command, we have the rule

(ch!u → P)
ch.u
−−→ P

If an expression is sent with no associated command, we have

ch!(x + 1) → P
[v=x+1],ch.v
−−−−−−−→ P

for all possible values v. When the context of a particular state is added (see Section 2.3) this will define the value of x and
hence restrict the choice of v to the value of x + 1 in that state.

The expression E is of type Expr2, and hence itmay reference primed variables (for instance, this allows a commandwhich
updates x and outputs its new value on ch). To be consistent, we restrict E to reference primed variables in the frame of the
associated command only.

Now consider inputting a value from a channel and storing it in a variable. We do not constrain the input variable to be
in or out of the frame of the associated command—either is possible. This allows behaviour such as receiving a new value
for a variable only when that value is in a desired set.

When there is no associated command, the effect of a channel input is an update of the receiver variable.

(ch?y → P)
y := v,ch.v
−−−−−→ P

Below we demonstrate communication via channels using a simple example.

(ch!(x + 1) → P) ‖ (ch?x → Q)

This command has the effect of incrementing x, with the new value of x sent along channel ch.
For the sending process we have the following possible transition (amongst many).

(ch!(x + 1) → P)
[1=x+1],ch.1
−−−−−−−→ P

The specification command in the label simplifies to [x = 0]. This indicates that a visible behaviour of this process is to
output the value 1 on channel ch, provided x = 0.

For the receiving process we have the following possible transition (amongst many).

(ch?x → Q)
x:[x′=1],ch.1
−−−−−−→ Q

Combining these transitions with Rule 18 (described later), we have the full transition:

(ch!(x + 1) → P) ‖ (ch?x → Q)
c,ch.1
−−−→ P ‖ Q

where c = x: [x = 0 ∧ x′
= 1].

More generally, we have the following possible transition for any v ∈ Val,

(ch!(x + 1) → P) ‖ (ch?x → Q)
c,ch.(v+1)
−−−−−→ P ‖ Q

where c = x: [x = v ∧ x′
= v + 1]. The context will determine the initial value for x, as described in Section 2.3.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 897

Rule 12 (State).

P
x,y:[R],e
−−−−→ P ′ x = dom(σx) ⊆ dom(σ) y ∩ dom(σ) = ∅ σ ′

= σ ⊕ σx sat(R[σ , σ ′
])

(state σ • P)
y:[R[σ ,σ ′]],e
−−−−−−→ (state σ ′

• P ′)

Rule 13 (Event in state).

P
e

−→ P ′

(state σ • P)
e

−→ (state σ • P ′)

Rule 14 (Guard).

P
[g]

−→ P ′ sat(g[σ])

(state σ • P)
[g[σ]]

−−−→ (state σ • P ′)

Rule 15 (Update - nonlocal).

P x := E
−−−→ P ′ x ∉ dom(σ)

(state σ • P)
x := E[σ]
−−−−→ (state σ • P ′)

Rule 16 (Update - local).

P x := E
−−−→ P ′ x ∈ dom(σ)

σ ′
= σ ⊕ {x → v} sat(v = E[σ])

(state σ • P)
[v=E[σ]]
−−−−→ (state σ ′

• P ′)

Fig. 3. Rules for local state.

2.2.3. External and internal choice
An external choice between two processes is resolved when one of them makes an observable step, that is, engaging in

an event and/or accessing a nonlocal variable. Rule 4(a) allows either process to take an internal step without resolving the
choice, while in Rule 4(b) an observable step of either process resolves the choice in that process’ favour.

In contrast, an internal choice (Rule 5) is resolved nondeterministically at any time, regardless of the environment.

2.2.4. Sequential composition
The transitions for sequential composition in CSPσ (Rule 6) are similar to those of CSP. The first process executes its steps

(Rule 6(a)), until it terminates (Rule 6(b)), atwhich point the second process becomes active. The SKIP process can do nothing
but generate the termination event X and then take no further action (Rule 7).

2.2.5. Recursion
The transition for a recursive process is to simply unfold the recursion (Rule 8). For instance, recall the definition of Qrec

(1). An unfolding of Qrec results in eliminating the outerµ operator and replacing the recursion variables Q with Qrec itself.

Qrec
τ

−→
(enq?x → (q := q a ⟨x⟩) → Qrec)

[] (([q ≠ ⟨⟩], deq!head(q)) → (q := tail(q)) → Qrec)

2.2.6. Hiding
Rule 9(a) removes the event a from the label, that is, it is hidden from the environment. The command c remains

observable. If the event part of the label is not hidden, the label does not change (Rule 9(b)).

2.2.7. Interrupt
Rule 10(a) is a typical step of the main process P , while Rule 10(b) is the case where the interrupting process makes an

internal step; it may evolve separately to P . Rule 10(c) handles the case where Q makes an externally observable transition
to Q ′: the execution of P is halted, and Q ′ becomes the active process.

2.2.8. Restart
A restart process, (P restart(a) Q), acts similarly to an interrupt process P △ Q , except that the interrupt event, a, is

generated internally by P . That is, a restart process (P restart(a) Q) behaves has P until it generates the (restart) event a,
at which time it will halt execution and restart, behaving as (Q restart(a) Q). Rule 11(a) states that P may behave normally
as long as it does not generate the event a, while Rule 11(b) states that P terminates and restarts as Q restart(a) Q when the
event a is generated. The restart operator is similar to the exception operator given by Roscoe [34], except that rather than
terminating the process we restart it. For brevity, we make the following definition.

restart(a,Q) = Q restart(a) Q (2)

2.3. State-based rules

The rules involving the local state construct are given in Fig. 3. Rule 12 covers the general case where, for a process
(state σ • P), process P transitions with a pair (x, y: [R], e), where x and y partition the frame into those variables local

898 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

to σ and nonlocal to σ , respectively. A new mapping of values in x, σx, is nondeterministically chosen so that R[σ , σ ′
] is

satisfiable, where σ ′
= σ ⊕ σx is the updated local state containing the new values for x.3 The visible label on the transition

is (y: [R[σ , σ ′
]], e), that is, since x is now local, x has been removed from the frame, and references to x and x′ in R have been

replaced by their values in σ and σ ′, respectively. The event e is unaffected by the local state.
For example, consider a process P that transitionswith a label containing a specification command that updates variables

i and j to 0.

P
i,j:[i′=0∧j′=0]
−−−−−−−→ P ′

Inside a local state that maps i to the initial value 5, in Rule 12 we instantiate x to {i}, y to {j}, σx to {i → 0} (which gives
σ ′

= σx), and hence

R[σ , σ ′
]

= (i′ = 0 ∧ j′ = 0)[{i → 5}, {i → 0}]
= (0 = 0 ∧ j′ = 0)
= j′ = 0

The substitution serves to eliminate the parts of R that refer to the local state, while the sat(..) constraint restricts the post-
state σ ′ to only valid choices of new values. Since sat(j′ = 0) holds, we may derive the following transition.

(state {i → 5} • P)
j:[j′=0]
−−−→ (state {i → 0} • P ′)

Note that any choice for the post-state σ ′ other than {i → 0} will result in an unsatisfiable predicate, and hence prevent the
rule from being applied.

In the case where the local state contains mapping for both i and j, e.g., σ = {i → 5, j → 5}, in Rule 12 we instantiate x
to {i, j}, y to ∅, σx(= σ ′) to {i → 0, j → 0}, and hence R[σ , σ ′

] simplifies to true and the resulting label is, as expected, id.
In a prefixed process, if the command is equivalent to id, Rule 12 reduces to the simple case of an event, as given in

Rule 13.
We now consider specialisations of Rule 12 for guards and updates with no associated events. Rule 14 states that if P

transitions with guard g , the observable transition of (state σ • P) is the guard g[σ], i.e., the guard g with variables local to
σ instantiated with their local values. Below are some examples:

(state {i → 1} • [i ⩽ 5] → P)
id

−→ (state {i → 1} • P) (3)

(state {i → 1} • [i ⩽ x] → P)
[1⩽x]
−−→ (state {i → 1} • P) (4)

(state {i → 1} • [y ⩽ x] → P)
[y⩽x]
−−→ (state {i → 1} • P) (5)

In (3) the transition label is id, which plays a similar role to τ . The guard trivially evaluates to true in the local state, so
to an external observer some internal step is taken. In (4) the guard accesses nonlocal variable x. The externally observable
behaviour of this process is that it can evolve to P if x ≥ 1. The predicate has been partially instantiated according to the local
state. In (5) the local state has no effect on the guard: its progress is independent of local variables and hence is externally
visible (via the transition label). A process (state {i → 1} • [i > 5] → P) cannot transition at all since the guard does not
hold in the local context.

Rule 15 states that, for a process (state σ • P), if P makes a transition which updates a nonlocal variable x to E, then
the observable transition is an update of x to E[σ], that is, the local variables in E are instantiated with their value in σ . For
example:

(state {i → 1} • s := 0 → P)
s := 0
−−→ (state {i → 1} • P) (6)

(state {i → 1} • s := i → P)
s := 1
−−→ (state {i → 1} • P) (7)

Transition (6) describes an update to a nonlocal variable, in which the update expression is independent of the local state.
In (7) the local state does not include s, but does include a variable in the update expression. Since i is mapped to 1 locally,
to an external observer the process appears as an update of s to 1.

Rule 16 states that, for a process (state σ • P), if P makes a transition which updates local variable x, then x is locally
updated to a new value v, and the observable transition is a guard that ensures v is the value of expression E in context.
As such, there are many possible transitions for each local update, one for each value v. However, once placed in a context

3 The operator ‘⊕’ is function override, that is, given functions f and g , the function f ⊕ g maps inputs according to g for elements in the domain of g ,
and all others according to f , that is, (f ⊕ g)(x) = g(x) if x ∈ dom(g), and f (x) otherwise.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 899

Rule 17 (Parallel independent).

P
c,e
−→ P ′ e ∉ A ∪ {X}

P‖
A
Q

c,e
−→ P ′

‖
A
Q

and similarly for Q .

Rule 18 (Parallel synchronise).

P
x1:[R1],a
−−−−→ P ′ Q

x2:[R2],a
−−−−→ Q ′

sat(R1 ∧ R2) a ∈ A

P‖
A
Q

x1,x2:[R1∧R2],a
−−−−−−−−→ P ′

‖
A
Q ′

Rule 19 (Parallel – terminate one).

P
X

−→ P ′

P‖
A
Q

τ
−→ STOP‖

A
Q and similarly for Q .

Rule 20 (Parallel – terminate both).

STOP‖
A
STOP

X
−→ STOP

Fig. 4. Rules for parallel composition.

which defines all the free variables in E, only the transition in which v has the value for E in that state will be valid. For
example:

(state {s → 1} • s := 0 → P)
id

−→ (state {s → 0} • P) (8)

(state {s → 1} • s := s + i → P)
[i=0]
−−→ (state {s → 1} • P) (9)

(state {s → 1} • s := s + i → P)
[i=1]
−−→ (state {s → 2} • P) (10)

(state {s → 1} • s := s + i → P)
[i=2]
−−→ (state {s → 3} • P) (11)

Transition (8) is a simple example of the application of Rule 16 where we make the obvious choice of 0 for v, since E[σ]

evaluates to 0, and therefore [E[σ] = v] = [0 = 0] ≡ id. The remaining transitions deal with the more complex case where
the updated variable is local but the expression E is not. In these cases we cannot locally determine the value to which s
must be updated, since the update expression accesses the nonlocal variable i. Locally, therefore, there are many possible
transitions, one for each v ∈ Val to which s can be updated (we have shown only the transitions for v = 1, v = 2, v = 3).
However, in practice, only one transition will be possible for a given context. In this case, that will be the transition in which
v has the value of 1 + i in that context.

2.4. Interface parallel

The parallel operator used in this paper is based on the interface parallel operator described by Roscoe [11], rather than
Hoare’s original alphabetised parallel [10] (which was used in [20]). The rules for interface parallel are given in Fig. 4. For
interface parallel, the interface A defines the set of events on which the two processes must synchronise. Note that A cannot
include the special events τ or X.

Rule 17 states that process P may evolve to P ′ independently of Q provided that the event that P is engaging in is not a
member of the interface A, and that P is not terminating.

Rule 18 handles the more interesting case where both P and Q are ready to engage in a shared event a which is in the
interface A. In this case the associated specification commands are conjoined, provided that the conjunction is satisfiable.
Note that this rule allows x1 and x2 to overlap, and hence finds a mapping for variables in the intersection that satisfies both
R1 and R2, should such a mapping exist. However, this admits rather subtle behaviour and semantics; generally, it is safer
to prevent synchronised specification commands from modifying the same variable, and this constraint may be enforced
statically.

Termination of a parallel composition of processes requires all processes to have terminated, i.e., distributed termination.
Rule 19 handles the case where one of the processes terminates: the terminated process is replaced by STOP , but this
appears as an internal step of the parallel composition. In Rule 20 both processes have terminated, in which case the parallel
composition itself visibly terminates.

2.5. Examples

In Fig. 5 we present two executions side-by-side. For space reasons we abbreviate the state keyword to st, and use l
=⇒

to indicate a sequence of two or more transitions that contain exactly one non-internal step, l. Often, the omitted τ steps
include the initial unfolding of a recursion.

900 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

Queue= from (1)
(state {q → ⟨⟩} • Qrec)

enq.v
===⇒ Rule 8, Rule 1, Rule 4, Rule 13

(state {q → ⟨⟩} • q := q a ⟨v⟩ → Qrec)
id

−→ Rule 1, Rule 16
(state {q → ⟨v⟩} • Qrec)

enq.w
===⇒ Rule 8, Rule 1, Rule 4, Rule 13

(state {q → ⟨v⟩} • q := q a ⟨w⟩ → Qrec)
id

−→ Rule 1, Rule 16
(state {q → ⟨v,w⟩} • Qrec)

deq.v
===⇒ Rule 8, Rule 1, Rule 4, Rule 12 (q ≠ ⟨⟩)

(state {q → ⟨v,w⟩} • q := tail(q) → Qrec)
id

−→ Rule 1, Rule 16
(state {q → ⟨w⟩} • Qrec)

deq.w
===⇒ Rule 8, Rule 1, Rule 4, Rule 12 (q ≠ ⟨⟩)

(state {q → ⟨w⟩} • q := tail(q) → Qrec)
id

−→ Rule 1, Rule 16
(state {q → ⟨⟩} • Qrec)

(a) Execution of Queue

Sum= from (12)
(state {i → 1, s → 0} • S)

[1⩽N]
===⇒ Rule 8, Rule 1, Rule 4, Rule 14

(state {i → 1, s → 0} •

(s := s + i) → (i := i + 1) → S)
id

−→ Rule 1, Rule 16
(state {i → 1, s → 1} • (i := i + 1) → S)

id
−→ Rule 1, Rule 16

(state {i → 2, s → 1} • S)
[2⩽N]
===⇒ Rule 8, Rule 1, Rule 4, Rule 14 (as above)

(state {i → 2, s → 1} •

(s := s + i) → (i := i + 1) → S)
id
=⇒ Rule 1, Rule 16 (×2 as above)

(state {i → 3, s → 3} • S)
[3>N]
===⇒ Rule 8, Rule 1, Rule 4, Rule 14

(state {i → 3, s → 3} • x := s → SKIP)

x := 3
−−−→ Rule 1, Rule 15

(state {i → 3, s → 3} • SKIP)
X

−→ Rule 7, Rule 13
(state {i → 3, s → 3} • STOP)

(b) Execution of Sumwhere N = 2 in context

Fig. 5. Example executions.

Fig. 5(a) contains an execution of the process Q from (1) when q is initially empty. Fig. 5(b) contains the execution of
program Sum, which is an example of how computation sequences may be specified in CSPσ .

Sum = (state {i → 1, s → 0} • S)

S = µ sum •
[i ⩽ N] → (s := s + i) → (i := i + 1) → sum

[] [i > N] → (x := s) → SKIP
(12)

Sum calculates the sum to the value of (nonlocal) variable N , and writes the final value to (nonlocal) variable x. Variable N is
set prior to the invocation of Sum, and x is read after Sum terminates to retrieve the result. An alternative specificationwould
be to parameterise Sum by N , and to output the result on a channel, however, for illustrative purposes we have chosen the
former approach. The relative merits of shared-variable communication and channel-based communication are explored in
more detail in [20]. The definition of Sum uses local variables s and i to accumulate progressive values.

The trace of the execution of Sum is an interleaving of internal steps (id) with accesses of nonlocal variable N , which in
the figure is assumed to have the value 2 in context, until the final observable transition which updates x to 3. No more
transitions are possible.

3. Message passing

In this section we introduce a new message passing construct for CSP in which the sender does not need to block until
there is a receiver. Such a construct more naturally represents some communications in certain systems; for example, a taxi
company headquarters sending notification of a new job. In addition, it allows the number of potential listeners to change
dynamically, as is common in systems of many interacting autonomous agents. It follows the publish/subscribe model of
communication [12]. Another strength of the new construct is that it is easy to specify multiple sending processes, which
do not interact (need to synchronise) with each other.

We are interested in the semantics of this construct because, as outlined above, some systems more naturally use this
form of communication over themore abstract, and harder to implement, synchronisation construct of CSP. Therefore when
translating fromnatural language requirements this type of communicationmodelwill be easier to apply in some situations.

The syntax for sending and receiving is given below.

sendm.E recvm.y

Messages, as with channels, may send expressions and be paired with specification commands. The send action commu-
nicates message m, with optional expression E, while the recv action receives message m, storing any associated value in
variable y.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 901

Rule 21 (Message send).

sat(R ∧ v = E)

((x: [R], sendm.E) → P)
x:[R∧v=E],sendm.v
−−−−−−−−−−→ P

Rule 22 (Message receive).

sat(R ∧ y′
= v)

((x: [R], recvm.y) → P)
x,y:[R∧y′=v],recvm.v
−−−−−−−−−−−→ P

Rule 23 (Message sent).

P
x1:[R1],sendm.v
−−−−−−−−→ P ′ Q

x2:[R2],recvm.v
−−−−−−−−→ Q ′

sat(R1 ∧ R2)

P‖
A
Q

x1,x2:[R1∧R2],sendm.v
−−−−−−−−−−−−→ P ′

‖
A
Q ′

and similarly with P and Q swapped.

Rule 24 (Message ignored).

P
c,sendm.v
−−−−−→ P ′ Q recvm.v

−−−−→/

P‖
A
Q

c,sendm.v
−−−−−→ P ′

‖
A
Q

and similarly for Q .

Rule 25 (Multiple listeners).

P
x1:[R1],recvm.v
−−−−−−−−→ P ′ Q

x2:[R2],recvm.v
−−−−−−−−→ Q ′

sat(R1 ∧ R2)

P‖
A
Q

x1,x2:[R1∧R2],recvm.v
−−−−−−−−−−−−→ P ′

‖
A
Q ′

Rule 26 (Single listener).

P
c,recvm.v
−−−−−→ P ′ Q recvm.v

−−−−→/

P‖
A
Q

c,recvm.v
−−−−−→ P ′

‖
A
Q

and similarly for Q .

Rule 27 (Hide messages).

(a) P
c,a
−→ P ′ a ∈ A (∀m, v • a ≠ recvm.v)

P\A
c

−→ P ′
\A

(b) P
c,e
−→ P ′ e ∉ A

P\A
c,e

−→ P ′
\A

Fig. 6. Rules for messages.

The rules for messages and parallel composition are given in Fig. 6; they follow a similar pattern to the synchronisation
event rules.Wewritemessages asmessage/value,message/variable, ormessage/expression pairs (m.v,m.y orm.E), although
the rules equally apply to basic messages (m).

Rules 21 and 22 correspond to sending the value of an expression via a channel in Rules 2 and 3. Rule 23 captures P
sending a message to Q . The visible behaviour is the conjunction of their respective specification commands, and that m.v
is sent. Rule 24 states that P can still send m even if Q is not waiting: this is the nonblocking nature of sending a message.

We use the notation P
ℓ

−→/ to indicate that there exists no process P ′ such that P
ℓ

−→ P ′. Rule 25 states that two receiving
processes can receive the same message, while Rule 26 allows a single process to receive a message if the other is not
listening.

Note that a listening process can respond directly to a send, acting as process Q in Rule 23, or ignore the send and
propagate its recv, acting as process P in Rule 26. This nondeterminism arises because theremay bemore than one producer
sending amessage, and a listener is free to react to either of them. To prevent traceswhere a receiver responds to an ‘external’
message, the scope over which the message is listened for must be limited (hidden) in the usual way. For instance, the
smallest common ancestor of both sender and receiver will typically hide the receive message.

The rules in Fig. 6 apply only to messages, while the rules in Fig. 4 apply only to events and channels.4 However, the
majority of rules from Figs. 2 and 3 hold for both events and messages, where we allow e to range over messages as well as
events. The only exception is Rule 9 for hiding, which requires special treatment for receivingmessages, and is now replaced
by Rule 27. Rule 27(a) is similar to Rule 9(a), except that it applies to synchronisation events and sent messages, but not to
receiving messages. To allow receive actions to become internal events through hiding would be to allow them to transition
without a corresponding send action. Hence, instead of becoming an internal step, a hidden receive message is prevented
from transitioning at all. Rule 27(b) is identical to Rule 9(b) (it applies to synchronisation, send, and recv actions).

3.1. Example 1

Consider the following simple process S that sends message m, and process L that contains two concurrent processes
listening for that same message.

4 Note that we do not examine the interface of the parallel composition for messages, that is, we assume that all messages of the same name within a
system are designed to interact. The rules may be rewritten so that the interfaces are consulted.

902 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

S = (sendm → P) L = (recvm → Q ‖ recvm → R)

Before progressing we first note the following specialisations of Rules 21 and 22 if there is no associated specification
command or expression.

Rule 28 (Message-only Send/Receive).

(sendm → P)
sendm
−−−→ P (recvm → P)

recvm
−−−→ P

Through Rules 28 and 25 we have the following transitions

S sendm
−−−→ P L recvm

−−−→ (Q ‖ R)

Then through Rule 23 we have

S ‖ L sendm
−−−→ P ‖ (Q ‖ R)

Now consider two competing senders, S1 and S2, operating in parallel.

S1 = sendm → P1 S2 = sendm → P2
Through Rule 24 only one of these process will send a message—they do not synchronise. Either of the following two
transitions are allowed by the rules.

(S1 ‖ S2) ‖ L sendm
−−−→ (P1 ‖ S2) ‖ (Q ‖ R)

(S1 ‖ S2) ‖ L sendm
−−−→ (S1 ‖ P2) ‖ (Q ‖ R)

As a final example, consider a variant of L in which one of the processes, T , is not yet ready to receive the message.

L = (recvm → Q) ‖ T where T recvm
−−−→/

We have the following transition.

S ‖ L sendm
−−−→ P ‖ (Q ‖ T)

Although T is a process that may eventually listen for message m, the fact it is not yet ready does not block S from sending
the message to process Q .

3.2. Example 2

We now give a more complex example that combines state tests and updates with message passing. Consider a network
which consists of producers and consumers. Producers periodically send information, which is conditionally received by
all ready consumers. We treat the sent information abstractly, although it may be, for instance, (cumulative) security or
database updates, etc. The conditions under which consumers receive the information are also treated abstractly, as are
their general tasks. Consumers may also be turned on and off at any time.

For simplicity we write a recursive procedure

P = (µ c • .. → c) as P = .. → P

We use this abbreviation as it simplifies the syntax and hides the unfolding steps (Rule 8) in the executions. However, the
derivations we give may be easily transformed to use the least-fixpoint syntax.

Pi = ini?d → send update.f (d) → Pi
Ci = (state {y → 0} • Wki ‖ Updi) △ Rbti

Wki = ..
Updi = (y: [Test], recv update.y) → Updi
Rbti = offi → oni → Ci

A producer Pi receives input data d from the environment along input channel ini, then sends some calculated value, f (d),
to every consumer on the network. This is done repeatedly.

A consumer Ci has a local state, which is treated abstractly as variable y. Consumers are assumed to be initially active, and
performing somework tasks given by the process,Wki, whichwe leave unspecified. In parallel, the consumer is always ready
to receive updates to y, given by the recursive process Updi, which receives updates from the producers provided two-state
predicate Test holds (defined below), and stores the received value in y. At any time the consumer may be switched off by
the event offi, which interrupts the working behaviour of the consumer. When the consumer is switched back on (oni), the
consumer restarts. This ‘‘rebooting’’ behaviour is given by Rbti.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 903

The relevant point is that this specification would be cumbersome to define using CSP-like synchronisation only. The
sending of updates by the producers is not held up by the transient consumers, which may come online and offline at any
time. Note also that Ci only conditionally receives messages, i.e., those that satisfy Test . Since Test may refer to both pre- and
post-values of y, complex relationships between the current value of y and the value received via update messages may be
specified. For instance, for the purposes of the example, let us assume that there are three possible values for y, u1, u2 and
u3, and define Test such that if y = u1 it may be updated to u2 only, if y = u2 it may be updated to u1 or u3, and if y = u3 it
may be updated arbitrarily.

(y = u1 ∧ y′
= u2) ∨ (y = u2 ∧ y′

≠ u2) ∨ y = u3 (13)

In general there may beM producers and N consumers, but for presentation purposes we demonstrate the execution of
the send/receive behaviour assuming that there is a single producer, P1, and three consumers, C1, C2 and C3. Let us assume
that C1 and C2 are active, and that C3 has been switched off, and let C ′

i represent Ci after an unspecified number of steps.

C ′

1 = (state {y → u1} • Wk′

1 ‖ Upd1) △ Rbt1
C ′

2 = (state {y → u2} • Wk′

2 ‖ Upd2) △ Rbt2
C ′

3 = on3 → C3

The values ui are the local values of y, and the processesWk′

1 andWk′

2 represent the current stage of execution of theworking
tasks for C1 and C2. Process C3 is suspended until the event on3 occurs.

Let P ′

1 be the producer process after it has received the event in1.v and as a result is about to send the value u2 (= f (v)).
Then we have the following transition by Rule 21.

P ′

1
send update.u2
−−−−−−−→ P1 (14)

The system process Sys is defined as the parallel composition of the producer and the three consumers.

Sys = P ′

1 ‖ ((C ′

1 ‖ C ′

2) ‖ C ′

3)

We leave the alphabets on the parallel composition implicit: they do not directly affect the messages.
The consumers C1 and C2 are actively listening for update messages through the Updi process. For instance, for Upd1, we

have the following transition by Rule 22.

Upd1
y:[Test∧y′=u2],recv update.u2
−−−−−−−−−−−−−−−→ Upd1

By Rule 12 we have

C ′

1
update.u2
−−−−−→ state {y → u2} • ..

provided sat(Test ∧ y′
= u2). By (13) this is implied by y = u1, which holds in this case. However, for process C ′

2, where
y = u2, the satisfiability test does not hold, and hence the transition is not possible. Also note that C ′

3 is not ready to receive
the update message as it is switched off. Then we have:

C ′

1
recv update.u2
−−−−−−−→ C ′′

1 (15)

C ′

2
recv update.u2
−−−−−−−→/ (16)

C ′

3
recv update.u2
−−−−−−−→/ (17)

By (15), (16) and Rule 24 we have

C ′

1 ‖ C ′

2
recv update.u2
−−−−−−−→ C ′′

1 ‖ C ′

2

Hence by this, (17) and Rule 24,

(C ′

1 ‖ C ′

2) ‖ C ′

3
recv update.u2
−−−−−−−→ (C ′′

1 ‖ C ′

2) ‖ C ′

3

Finally, by this, (14) and Rule 23, we have

Sys
send update.u2
−−−−−−−→ P1 ‖ (C ′′

1 ‖ C ′

2) ‖ C ′

3

The net transition is that the producer P1 has sent the message to C1, while C2 and C3 have ignored the message, for
different reasons. This type of selective communication is more difficult to specify using only CSP-like synchronisation.

904 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

Fig. 7. Behavior Tree nodes.

Fig. 8. Behavior Tree constructors.

3.3. Related work: message passing

The motivation for the message passing scheme defined in this section is in modelling networks with transient agents,
where other communication schemes such as shared variable and synchronisation are also required. The main point of
technical difference with CSP synchronisation is that the sender is never blocked waiting for a receiver.

A related communication mechanism is the barrier synchronisation of Occam [36], where processes can dynamically
register an interest in a barrier, and all such processes are blocked until every other registered process is ready. In that
scheme there is no explicit sender, and as such is closer to CSP synchronisation. Other situations in which message passing
frameworksmust be combinedwith state-based constructs include security protocols, as explored, for instance, by Chevalier
et al. [37,38]. Cardelli and Gordon explore the concept of ambient processes more abstractly in [39].

4. Behavior Trees

In this sectionwe provide a brief and informal description of Behavior Trees and themethod for developing specifications
from requirements; more detail on Behavior Trees, and the motivation for them, is available elsewhere [1–3]. The Behavior
Tree notation as presented in [1] also includes other constructs, which may be mapped into the basic primitives we give
here.

4.1. Notation and informal description

Nodes. The Behavior Tree node types are given in Fig. 7. Each node refers to a specific component (C), and describes some
operation involving that component. A state update node updates the state of C to some expression S, while a guard node
blocks until predicate P is satisfied by C ’s state. The full Behavior Tree notation includes many types of nodes and node
combinators for expressing predicates on the state and for updates, but in this paper we have used generalised ‘‘state
updates’’ and ‘‘guard’’ nodes. It is straightforward to map the original Behavior Tree nodes and node combinators into our
more general node.

In addition to these state-based nodes, the notation includes message-based communication. An output event node
indicates that C generates messagem (possibly with a list of values). The reciprocal input event node blocks until C receives
messagem (storing the passed values (if any) into a list of variables).

The bottom line of Fig. 7 gives four node modifiers, which operate on some node N: a well-formed tree will therefore
contain a node N at some other place.5 A goto node indicates that the subsequent behaviour should be that of the subtree
rooted at node N . Any such tree must appear in an alternative branch. Typically goto nodes (and reversion nodes, see below)
are leaf nodes. Goto nodes are used as a shorthand if the same behaviour occurs in different parts of the tree. A process kill
node terminates any behaviour associated with the tree rooted at node N . The target node must appear in a concurrent
branch. A reversion node allows iteration. A well-formed Behavior Tree will have a node N as an ancestor of the reversion

5 This well-formedness condition, and others described later, can be checked syntactically [8].

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 905

node, and any behaviour associated with the tree rooted at N is restarted from that point. A synchronisation node indicates
participation in a synchronisation event. Each process synchronising on N blocks until all other such processes are also at
the synchronisation node, at which time they may all progress and N is executed.

Each node has an associated tag, which is used for traceability. The tag records from which of the original informal
requirement(s) the node originates. This allows tracking of requirements and facilitates requirements change. In addition,
nodes can be colour coded, to indicate where the developer has introduced assumptions/behaviour, or modified/removed
behaviour with respect to the original requirements.

Constructors. A Behavior Tree has one of the four forms in Fig. 8: sequential flow, alternative flow, concurrent flow or atomic
composition. A sequential flow of a node N with a tree T indicates simple ordering on node execution: node N is executed,
after which T is ready for execution. Because several trees may be executing in parallel, it is possible that the behaviour of
other nodes will be interleaved before and after N .

Alternative flow indicates that one of T1, . . . , Tn will be executed after N , depending on which are enabled. If exactly one
is enabled, that tree is executed, and if none are enabled, execution blocks until at least one of them is ready to execute (e.g.,
by the reception of a message). If more than one are enabled, a nondeterministic choice is made as to which is executed.

A concurrent flow from node N to a set of trees, T1, . . . , Tn, indicates that after N is executed, all of the trees are ready
for execution.

An atomic composition of nodes N1, . . . ,Nn indicates that there is no opportunity for processes operating in parallel to
interleave their actions during the execution of the Nis. Therefore the nodes operate together in a single atomic action, with
the order of execution being sequentially from N1 to Nn. Atomic composition is distinguished graphically from sequential
flow by omitting the arrowhead on the connecting line. To be well-formed, an atomic composition of nodes must contain
at most one node with a non-internal event, i.e., at most one node of type input/output event, process kill, reversion, and
synchronisation. An atomic composition of nodes may take the place of a single node in the other three constructors.

4.2. Application

The Behavior Treemethod is designed for translating a requirements document, inwhich each requirement is numbered,
into a structured model. The first step is to systematically translate each individual requirement into a Behavior Tree and
record the requirement number in the tag. In addition, nodes are coloured if the developer believes them to contain some sort
of defect, e.g., redundancy, incompleteness, ambiguity. Problems commonly arisewith the use of an inconsistent vocabulary,
as can be introduced in documents where multiple authors use different terms to represent the same concept, or, more
insidious, use the same term to refer to different concepts.

The process of developing a Behavior Tree can be divided amongst a group of people who work in parallel. The trees are
then integrated by identifying syntactically matching nodes, and joining them appropriately. The tags are also merged in
the joining nodes, serving to highlight the overlapping nature of the requirements. The resulting structure helps to identify
errors in the requirements, and the result is a single Behavior Tree which describes the system as a whole.

The process has the benefit that it can be initially split amongst developers working largely independently. The
combination of tagging and colour codingmeans that clients can use the Behavior Tree model to quickly find problems with
the requirements and compare them to the original document. We demonstrate the approach more fully with an example.

4.3. Example

In this section we show an example of how the Behavior Tree notation is used to construct a specification from natural
language requirements. For presentation purposes we give a partial specification of a controller system, with the intention
of showing the type of systems and requirements for which the Behavior Tree notation is designed.

4.3.1. The system and its requirements
Consider an abstract system, which is comprised of a Control component with two buttons, and a Sensor component. The

behaviour of the system is given by the following requirements:

R1.After performing tasks required for initialisation, the Control component becomes ready and the Sensor can detect errors.
R2.When the Sensor detects an error, it tells the Control to halt.
R3.After telling the Control to halt, the Sensor waits until the Control is ready before trying to detect further errors.
R4.After the Control component is ready, if button 1 is pressed the Control component becomes active.
R5.While the Control component is active, if button 1 is pressed it enters mode A, or if button 2 is pressed it enters mode B.
R6.At any time after the Control component has become ready, if a halt message is received, the Control goes into shutdown

mode before returning to the ready state.

906 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

Fig. 9. Individual requirements.

4.3.2. Individual requirements translation
The translation of the individual requirements are given in Fig. 9. The translation process serves to compile a vocabulary

of component names, component states, messages, and events, which are collected in the Composition Tree.6 In translating
Requirement R1, we have abstracted the initialisation tasks as the state init , and used ready for the subsequent state. The
Sensor and Control are given as parallel subtrees, as it appears they are intended to operate concurrently. We use error as the
message name for detecting error events from the environment. Requirement R2 is translated as a sequential flow, such that
after the error event is detected, the sensor sends the halt message, which is a message used exclusively for communication
between the Sensor and the Control. Requirement R3 is also translated using sequential flow, making use of a guard node
to test the state of Control. An alternative to using a guard node to model the ‘‘wait’’ is to synchronise with the Control
process on its readiness, and thus move from shared-variable communication to synchronised communication. We explore
this alternative further in Section 5.4.2. Once the Control is known to be in the ready state, the Sensor returns to its earlier
behaviour of waiting for an error event. This will likely become a reversion node, since it is repeat behaviour, but this will
be resolved during the integration phase. Requirement R4 and Requirement R6 are translated similarly. Requirement R5 is
translated using alternative choice between the two input events. Once one of the buttons is pressed, the Control enters the
corresponding mode and will not leave it (unless the system is restarted).

Several issues are raised during the translation, for instance, in Requirement R6, is the halt message only of relevance
while the Control is in the state ready, or should the same behaviour follow even if it has progressed to state active? For this
example, we have assumed the Controlwill be shutdown anytime it receives a halt message. Another issue is what happens
if the second button is pressedwhile the Control is ready?We have assumed that the second button is ignored unless Control
is active. These are exactly the types of issues that Behavior Treemodelling is intended to highlight; while such issueswill be
raised whichever modelling language or approach is used, using Behavior Trees the task is systematic. If the modeller notes
choices and assumptions using the colour coding, they can be traced back to the original requirements document using the
tags, facilitating discussion with the originator of the requirements as the model develops.

6 As mentioned earlier, we do not consider the static information contained in Composition Trees in this paper.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 907

(a) Integration of Requirements R2 and R3. (b) Integration of Requirements R4 and R6.

Fig. 10. Partial integration of requirements.

4.3.3. Requirements integration
We now integrate the individual trees to construct a full view of the system. The integration process is based on finding

syntacticallymatching nodes, and completing other aspects of the tree such as reversion. Although this process is systematic,
and therefore potentially amenable to tool support, there are still choices for the modeller to make. For instance, if the
integration results in a branch, a decision must be made as to whether the branch should be a parallel or alternative choice;
the order in which trees are integrated will also effect the shape of the final tree [40]. The contribution of the Behavior Tree
modelling approach is not to eliminate such choices, but to make the choice explicit and traceable in the model.

Requirements R2 and R3 integrate end-to-end, since they share a common (joining) node. Furthermore, because the leaf
node Sensor > error < matches one of its ancestors, it is flagged as a reversion node. The resulting tree, which captures
the behaviour of the Sensor component, is shown in Fig. 10(a). Note that the joining node references the tags for both
requirements. Fig. 10(b) shows the result of integrating Requirements R4 and R6. In this case the integration point (node
Control[ready]) is the root node of both trees. Wemust decide whether the resulting branches are composed in parallel
or as alternatives. As mentioned above, we assume that the halt message is always of relevance, and hence is not affected by
the subsequent behaviour of Control; hence we integrate the trees using parallel composition. The Control[ready] leaf
node is also flagged as a reversion.

It remains to integrate Requirement R5 with Fig. 10(b), and to integrate both trees with Requirement R1, both of which
tasks are straightforward. The resulting Behavior Tree, giving the complete behaviour of the system, is shown in Fig. 11.

The system has been built out of its natural language requirements in a straightforward manner. Even though the
requirementswe have given are contrived for simplicity, they demonstrate that even in simple systems there is considerable
room for (mis)interpretation of natural language. Using the Behavior Tree approach, inconsistencies and modelling
assumptions can be highlighted and communicated to the client, and through keeping (multiple) tags in the tree, traceability
from the model back to the original requirements is maintained.

For example, consider a variation on Requirement R3 in which the first phrase is omitted: The Sensor waits until the
Control is ready before trying to detect further errors. The resulting translation would appear as in Fig. 9, without the first
Sensor < halt > node. This means that Requirement R3 no longer integrates with Requirement R2. One may be tempted
to treat the guard as a state realisation instead, and integrate it with the root node of Requirement R6, but this leads to an
inconsistent tree where it is unclear that the Sensor process needs to be restarted. The error of omission may be resolved
by adding the missing node to Requirement R3 and flagging it as a missing requirement using the colour coding, and later
confirming the decisionwith the client using the tags. Errors of ambiguitymay be discovered if there aremultiple integration
points; redundancy may be discovered if there are identical subtrees; and inconsistency may be uncovered if integration
leads to contradictory behaviour.

5. Translating Behavior Trees to CSPσ

In this section we describe how Behavior Trees may be translated into CSPσ processes. The translation process is defined
so that the structure of the tree is preserved, and is summarised in Fig. 12. The translation occurs in three phases. Phase
1 identifies and marks subtrees that are the target of process kill and reversion. The second phase is the bulk of the
translation, where themarked trees are recursively transformed into CSPσ processes. The final phase collects state and event
information. We describe these phases in more detail below. Throughout the translation process we assume that given a
Behavior Tree node N, a canonical representation of N may be generated and used as events andmessages. For instance, from

908 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

Fig. 11. Fully integrated requirements.

the nodeControl[ready]wemay generate a string such as control.ready.Wewrite rev(N) for the reversion (restart) event
name generated from node N, and kill(N) for the kill message generated from node N.

5.1. Phase 1

Phase 1 is an initial traversal of the Behavior Tree to handle the node modifiers that refer to subtrees found elsewhere in
the structure. The first task in Phase 1 is to replace goto nodes N=> with the target tree, which we write as tree(N), i.e., the
subtreewith root node N. For this replacement to bewell-formed, the scope of the node and its targetmust be the same. That
is, they must reference the same set of variables, events, and messages. This is implied by the well-formedness constraints
on Behavior Trees, and that source and target nodes of a goto must appear in sibling branches in an alternative flow.

The remaining tasks of Phase 1 are to mark trees that are the target of a process kill or reversion. Given a tree T we let
kill:T be the tree marked as the target of a process kill, rev:T be the tree marked as a target of a reversion node, and
kill:(rev:T) be the tree marked as the target of both a process kill and a reversion. Trees may of course be unmarked.
The marking is a temporary syntactic construct used only as an intermediate step in the translation. The marking may be
achieved through a simple traversal of the tree, since any Behavior Tree has a finite number of subtrees.

Given the existence of a node N−− in the tree, the target tree of that node, say T, is replaced by kill:T. Tree T must
be the subtree which has root node N. A similar translation occurs for trees that are the target of a reversion, or of both a
process kill and a reversion.

5.2. Phase 2

Having identified the targets of process kills and reversion, and having eliminated goto nodes, the translation to CSPσ

may begin. We use the relation to transform a Behavior Tree to a CSPσ process, or a node to a CSPσ action.
The left-hand column of Fig. 12 for Phase 2 is a left-to-right textual representation of the constructs which were depicted

graphically in Figs. 7 and 8, as well as the marked trees described above. The translated versions are given in the right-hand
column.

5.2.1. Targets of process kill
A tree with root node N that is marked as the target of a process kill node is translated to an interrupt process, where

the interrupt is triggered by the canonical message kill(N). As described below, this is the message that is sent by the
corresponding process kill node, N−−. After the kill message is received, the process terminates.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 909

Phase 1.
N=> becomes tree(N)

Let N be root(T)
T becomes kill:T if N−− exists

T becomes rev:T if N ˆ exists
T becomes kill:(rev:T) if N−− and N ˆ exist

Phase 2.
Let N be root(T), and assume T T ′, Ti T ′

i , N N ′, and Ni N ′

i
kill:T T ′

△ (recv kill(N) → STOP)
rev:T restart(rev(N), T ′)

N -> T N ′
→ T ′

N ->[] (T1, .., Tn) N ′
→ (T ′

1 [] .. [] T ′
n)

N -> (T1, .., Tn) N ′
→ ((T ′

1‖
A1
T ′

2)‖
A2

.. ‖
An−1

T ′
n)

(N1 -- .. -- Nn) (N ′

1 ◦ .. ◦ N ′
n)

C[s] C := S
C???s??? [C = S]

C > m < recvm
C < m > sendm

N−− send kill(N)
N ˆ rev(N)
N@ (N ′, sync(N))

Fig. 12. Translation summary.

5.2.2. Targets of reversion
Before giving the translation for the target of a reversion we first briefly discuss the difference between reversion and

recursion: in a reversion the behaviour of relevant sibling threads must terminate. In this sense, a reversion behaves as a
restart. When a threadwith a reversion does not contain any parallelism, then the behaviour is identical to that of recursion.
Consider the following example:

µ r • (µ s • .. → s) ‖ (.. → r)
There are two threads operating in parallel. The inner thread scoped by the recursion name s may be thought of as a

sensor, while the other thread may be some controller thread. Under certain conditions, the controller thread will need to
restart the entire system. As the program above is written, every time the controller restarts the system through unfolding
r , a new copy of the sensor thread will be generated. However, this does not model the typical restart of a system, where
each subthread will be restarted individually. This is the meaning of reversion, and is part of the Behavior Tree notation
because within requirements documents it is more common to find ‘‘restart’’ behaviour than the behaviour associated with
pure recursion.

The target of a reversion node becomes a restart process, where the restart is triggered by the canonical event name
rev(N). This is an event that occurs internally to T ′, and is generated by a corresponding source reversion node, N .̂ When
the event rev(N) is generated by the execution of T ′, the subprocesses associated with the tree T ′ are terminated and a new
copy of T ′ begins (recall abbreviation (2)).

5.2.3. Targets of process kill and reversion
In the case where a node is the target of both a process kill and a reversion, the resulting process becomes a restart inside

an interrupt. The processwill execute, and restart, as usual, until the killmessage is received, and all behaviour is terminated.

5.2.4. Translation of constructors
A sequential flow in Behavior Trees, represented textually as N -> T, is straightforwardly translated to prefixing in CSPσ .

Alternative flow, represented textually as N ->[] (T1, .., Tn), is straightforwardly translated to external choice.
Concurrent branching, represented textually as N -> (T1, .., Tn), is translated to an alphabetised parallel

composition. Given a composition T1‖
A
T2, the interface A is the intersection of the common synchronisation events in T1

and T2.7

7 This is a similar process to determining the alphabet of an individual process following the ideas of Hoare [10].

910 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

An atomic composition of nodes, represented textually as (N1 -- .. -- Nn), are relationally composed into a single
command/event pair. The individual nodes are translated independently, and composed in order. Since there can be at most
one event or message in a CSPσ action, there can be at most one event-based node in the chain. This means there may be at
most one node of type input/output event, process kill, reversion, or synchronisation in the chain. The remaining nodesmust
be guards, state updates, with potentially a goto node as the leaf (assuming the chain does not also contain a reversion).

The relational composition of two specification commands which have the same frame is given below, and is described
in detail in [20].

x : [R1] ◦ x : [R2] = x :
[
∃ x′′

• R1

[
x′′

x′

]
∧ R2

[
x′′

x

]]
The expression R1[

x′′
x′] is R1 with a syntactic replacement of variables x′ with x′′. (Note that this is a different type of

substitution to that involving states.) For the purposes of defining relational composition when the frames do not match,
their frames may be widened according to the rule below.

x : [R] = x, y : [R ∧ y′
= y] for x ∩ y = ∅ (18)

We lift relational composition to command/event pairs, as defined below.

(c1, τ) ◦ (c2, τ) = (c1 ◦ c2, τ)

(c1, a) ◦ (c2, τ) = (c1 ◦ c2, a) = (c1, τ) ◦ (c2, a)

The composition is undefined if more than one of the pairs has a non-internal event. An example of translating atomic
composition is given in Section 5.4.

5.2.5. Translation of state- and event-based nodes
A state update C[s] is straightforwardly translated to an update of C to the value s, C := s. A guard C ???s??? is

translated simply to [C = s]. The full syntax for Behavior Trees contains constructs for tests other than equality; these may
be translated straightforwardly to guards as well.

Input nodes, C > m <, are translated to receiving messages, and outputs, C < m >, to sending messages.

5.2.6. Kill nodes
A kill node is translated to the sending of message kill(N), which is the interrupt message in the target process. We use a

message, rather than an event, so that the killing thread is not blocked in the case where the target thread is not active.

5.2.7. Reversion nodes
A reversion node, represented textually as N ,̂ is translated to the canonical event name rev(N).
By default we do not place the event rev(N) into the interfaces of parallel composition. This means that any single

reversion node will trigger a restart. However, this may result in undesirable race conditions in some cases. An alternative is
for all related reversion nodes (or a selection of them) to synchronise before the restart can take place. In Behavior Trees, this
behaviour can be expressed by coupling the reversion symbol with the synchronisation symbol. To translate this behaviour
into CSPσ , the rev(N) event name must be added to the interfaces of the relevant parallel composition operators.

5.2.8. Synchronisations
A synchronisation, represented textually as N@, is mapped to a CSPσ event name sync(N), which, as above, we assume

may be constructed canonically from N . In addition, the node N itself must be translated, and this is paired with the event
sync(N). This implies that the node N must be a guard or state update, as it is not possible to combine more than one event
or message. This is typical of process algebras, where it is not possible to atomically combine the actions of one event with
another.

For instance, the node Control[ready]@ is translated to
(Control := ready, control.ready)

where the event name control.ready has been constructed from the node itself. Since all synchronisation nodes by definition
encode the same test or update of a component, only one of the synchronisation nodes requires the translated node to be
paired with the event; the remaining nodes are translated to the singular event sync(N).

5.3. Phase 3

In the final phase, all component names are collected and added as local variables, and event and message names
used to communicate between local threads are hidden. This limits the effect of the Behavior Tree to interactions with
the environment. The scope of a local variable (component) x may be restricted to the smallest subtree that contains all
references to x, and similarly an event e, used for internal communication, may be hidden at the level of the smallest subtree
that contains all uses of e. The initial value of components are nondeterministically chosen.

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 911

Sys = (state {Control → } • Main)\{send halt, recv halt}
Main = (Control := init) →

(restart(rev(s), Sensor))
‖

(restart(rev(c), ControlReady))
Sensor = recv error → send halt → [Control = ready] → rev(s)

ControlReady = (Control := ready) →

recv halt → (Control := shutdown) → rev(c)
‖

recv bpush1 → (Control := active) →

(recv bpush1 → (Control :=modeA)
[] recv bpush2 → (Control :=modeB))

Fig. 13. Translated version of Fig. 11.

5.4. Example translation

The translation of the Behavior Tree in Fig. 11 is given in Fig. 13. To ease the presentation we break the definition into
several (named) subprocesses. Because there are no synchronisations, the interfaces of the parallel composition operators
are empty and hence omitted. All revert events e are written rev(e), and for brevity we allow leaf nodes N to abbreviate
the process N → SKIP . At the top level we define the process Sys, which gives the context of the system. It includes the
variable Control to represent the state of the Control component, which has some unknown initial value (represented by an
underscore). To keep the tree relatively concise, we hide the halt message, which is used for communication between the
Sensor and ControlReady processes, at the topmost level, although it could be hidden with a smaller scope on the parallel
composition within the definition of Main. The error and bpush messages are not hidden, since they are received from
processes outside of the scope of Sys.

This example shows the translation of the control structures parallel, alternative, and sequential flow, and the node types
state update, guard, input/output event and reversion. We now provide examples of the remaining constructs.

5.4.1. Process kill
Consider extending the controller system to add Requirement R7, that states that ‘‘The Sensor terminates if the level

exceeds 50’’ (we do not elaborate further on the meaning of level). The corresponding Behavior Tree for R7 is given in
Fig. 14(a)—the root node of the Sensor process is the target of a process kill node after the value of level exceeds 50. The
translation of this behaviour into CSPσ introduces a newmessage name, kill(s), that acts as an interrupt to the Sensor process.

(Sensor △ recv kill(s)) ‖ (.. → [level > 50] → send kill(s) → ..)

The introduction of the process kill node means that the node Sensor >error< is now the target of both a kill and a
reversion.

5.4.2. Synchronisation
Consider using synchronisation nodes to communicate between the Control and the Sensor , as in Fig. 14(b). Instead of a

guard to check whether the Control is ready, the Sensor synchronises on the change to the ready state. Note the use of the
synchronisation flag ‘‘@’’.

The synchronisation nodes are translated as described earlier: we arbitrarily choose one of the nodes (in the Control
process) to contain the action of updating the Control, while both nodes synchronise on the event control.ready, which is
placed into the interface of the parallel operator.

Control := init → (.. → control.ready → ..) ‖{control.ready} (Control := ready, control.ready) → ..

This is a stronger, and perhapsmore correct, version of the specification, since the Sensor will restart as soon as the Control
becomes ready; using a guard, the Sensor will not become ready until the next time the Sensor process takes a step. This is
a common issue (a ‘‘race condition’’) with shared-variable communication.

5.4.3. Atomic composition
Consider themodification of the controller system in Fig. 14(c), which specifies thatwhen the Control component is in the

ready state and button 1 is pushed, the Control immediately becomes active. Unarrowed lines are used to connect the first
three nodes. The three nodes are combined into a single atomic action, which is enabled based on the state of the component
Control, a message being received, and includes an update of the state.

Using relational composition as described earlier, we generate the following single action, inwhichwe abbreviate Control
by C , to represent the three nodes.

(C: [C = ready ∧ C ′
= active], recv bpush1) → ..

912 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

(a) Example kill process. (b) Example synchronisation process.

(c) Example atomic process.

Fig. 14. Translation examples.

5.5. Summary

We have presented a general process for translating Behavior Trees into an extended version of CSP. The structure of the
Behavior Tree itself is preserved, with only minor additions required for handling reversion and process termination. The
most complex translation was that for reversion, due to its subtle difference to recursion; however, the restart operator is
roughly of the same complexity as the interrupt and exception operators of CSP [11,34].

Since there is a structure-preservingmapping from Behavior Trees to an extended version of CSP, there is scope for using
program verification methods such as animation, model checking, and refinement, which can build on existing support for
CSP. Furthermore, the structure-preserving nature of the translation also admits representing the animation of the dynamic
behaviour of the models back to the original graphical Behavior Tree. This ‘‘backwards-translation’’ process would show the
dynamic flow of control through the requirements document using the tags on the nodes.

6. Conclusions

In this paper we have presented a semantics for Behavior Trees. This is a graphical notation used for building a model
of a system from requirements found in informally written documents, and as such it contains a collection of language
constructs: state changes and tests, message passing, and synchronisation. Typical specification languages are either state

R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914 913

based, such as Z [41] and VDM [42], or event based, such as CSP [10,11] and CCS [43]. Our approach to defining the semantics
for Behavior Trees was to extend CSP, which natively handles process synchronisation, to include hierarchical state and a
publish/subscribe notion of message passing. We then gave a translation from the Behavior Tree notation into a process in
the extended CSP language. The formal semantics provides a definition of the Behavior Tree notation which can be used as
the basis for developing tool support for simulation, model checking, and theorem proving.

Plotkin’s seminal paper on operational semantics [35] defines transition rules for imperative languages with state. There
are also many other examples of such semantics in the literature, notably the semantics of Hoare and He Jifeng [44], and
the semantics for the programming language Occam [36]. Our approach is different in that the state is treated as part of the
process, and guards and updates are treated as labels to the transition relation. This allows state accesses to be (perhaps
partially) instantiated within a context which defines the values of the local state. The traditional operational semantics
approach defines the transition relation on program/state pairs, and the state is updated in the rule for each construct (e.g.,
update). This approach does not so easily support the hierarchical construction of the state as in our approach, with local
variables in the traditional style being captured as global variables with syntactic restrictions. In the approach adopted here,
by treating state access as transition labels, the state-based reasoning is ‘quarantined’ to a single, general rule (Rule 12),
allowing the construct rules, e.g., Rule 1, to be defined concisely, and without explicit reference to a particular state.

Acknowledgements

The authors are indebted to the late R. Geoff Dromey for inspiring the Behavior Tree formalisation research. We thank
Kirsten Winter, and other members of the Dependable Complex Computer-based Systems group, for their help with the
Behavior Tree notation. We also thank the three anonymous referees of [20] for their comments on the CSPσ language,
and three anonymous referees of this paper for their suggestions for improvement. This work is supported, in part, by the
Australian Research Council (ARC) Linkage Grant LP0989363, Reducing the risks associated with developing large-scale, critical
software-integrated systems.

References

[1] R.G. Dromey, Formalizing the transition from requirements to design, in: J. He, Z. Liu (Eds.), Mathematical Frameworks for Component Software:
Models for Analysis and Synthesis, Component-Based Development, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2006, pp. 156–187.

[2] R.G. Dromey, From requirements to design: formalizing the key steps, keynote address, in: 1st International Conference on Software Engineering and
Formal Methods (SEFM), IEEE Computer Society, 2003, pp. 2–11.

[3] C. Smith, K. Winter, I.J. Hayes, R.G. Dromey, P.A. Lindsay, D.A. Carrington, An environment for building a system out of its requirements, in: 19th IEEE
International Conference on Automated Software Engineering, ASE, IEEE Computer Society, 2004, pp. 398–399.

[4] R.G. Dromey, D. Powell, Early requirements defects detection, TickIT J. 4Q05 (2005) 3–13.
[5] D. Powell, Requirements evaluation using Behavior Trees—findings from industry, Industry Track Papers, Australian Software Engineering Conference,

ASWEC, 2007, http://aswec07.cs.latrobe.edu.au/itp-aswec2007.htm.
[6] Raytheon Australia, http://www.raytheon.com.au/.
[7] P. Papacostantinou, T. Tran, P. Lee, V. Phillips, Implementing a Behavior Tree analysis tool using Eclipse development frameworks, in: A. Aitken,

S. Rosbotham (Eds.), 19th Australian Software Engineering Conference, Experience Report Proceedings, Curtin University of Technology, 2008, pp.
61–66.

[8] L. Grunske, K.Winter, N. Yatapanage, Defining the abstract syntax of visual languageswith advanced graph grammars—a case study based on Behavior
Trees, J. Vis. Lang. Comput. 19 (3) (2008) 343–379.

[9] L. Wen, R. Colvin, K. Lin, J. Seagrott, N. Yatapanage, R.G. Dromey, Integrare, a collaborative environment for behavior-oriented design, in: Y. Luo (Ed.),
Cooperative Design, Visualization, and Engineering, CDVE, in: Lecture Notes in Computer Science, vol. 4674, Springer, 2007, pp. 122–131.

[10] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1985.
[11] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1998.
[12] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of publish/subscribe, ACM Comput. Surv. 35 (2) (2003) 114–131.
[13] Failures-Divergence Refinement: FDR2 User Manual, Formal Systems (Europe) Ltd., 1999.
[14] M. Leuschel, M. Fontaine, Probing the depths of CSP-M: a new FDR-compliant validation tool, in: S. Liu, T.S.E. Maibaum, K. Araki (Eds.), FormalMethods

and Software Engineering, 10th International Conference on Formal Engineering Methods, ICFEM, in: Lecture Notes in Computer Science, vol. 5256,
Springer, 2008, pp. 278–297.

[15] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison-Wesley, 1998.
[16] R. Colvin, I.J. Hayes, A semantics for Behavior Trees, ACCS Technical Report ACCS-TR-07-01, ARC Centre for Complex Systems, April 2007.
[17] K. Winter, Formalising Behavior Trees with CSP, in: Integrated Formal Methods, in: LNCS, vol. 2999, Springer Verlag, 2004, pp. 148–167.
[18] R. Colvin, L. Grunske, K. Winter, Timed Behavior Trees for failure mode and effects analysis of time-critical systems, J. Syst. Softw. 81 (12) (2008)

2163–2182.
[19] R. Colvin, L. Grunske, K. Winter, Probabilistic timed Behavior Trees, in: J. Davies, J. Gibbons (Eds.), Proceedings of the International Conference on

Integrated Formal Methods, IFM, in: Lecture Notes in Computer Science, vol. 4591, Springer-Verlag, 2007, pp. 156–175.
[20] R. Colvin, I.J. Hayes, CSP with hierarchical state, in: M. Leuschel, H.Wehrheim (Eds.), Integrated Formal Methods, IFM 2009, in: Lecture Notes in Comp.

Sci., vol. 5423, Springer, 2009, pp. 118–135.
[21] J.C.P. Woodcock, A.L.C. Cavalcanti, The semantics of circus, in: D. Bert, J.P. Bowen, M.C. Henson, K. Robinson (Eds.), ZB 2002: Formal Specification and

Development in Z and B, in: Lecture Notes in Computer Science, vol. 2272, Springer-Verlag, 2002, pp. 184–203.
[22] G. Smith, A semantic integration of Object-Z and CSP for the specification of concurrent systems, in: J.S. Fitzgerald, C.B. Jones, P. Lucas (Eds.), 4th

International Symposium of Formal Methods Europe, FME 97, in: Lecture Notes in Computer Science, vol. 1313, Springer, 1997, pp. 62–81.
[23] C. Fischer, H. Wehrheim, Model-Checking CSP-OZ Specifications with FDR, in: K. Araki, A. Galloway, K. Taguchi (Eds.), Integrated Formal Methods, 1st

International Conference, Proceedings, Springer, 1999, pp. 315–334.
[24] M. Butler, A CSP approach to action systems, Ph.D. Thesis, Computing Laboratory, Oxford University, 1992.
[25] M.J. Butler, M. Leuschel, Combining CSP and B for specification and property verification, in: J. Fitzgerald, I.J. Hayes, A. Tarlecki (Eds.), FM 2005:

Formal Methods, International Symposium of Formal Methods Europe, Proceedings, in: Lecture Notes in Computer Science, vol. 3582, Springer, 2005,
pp. 221–236.

[26] S. Schneider, H. Treharne, CSP theorems for communicating B machines, Formal Asp. Comput. 17 (4) (2005) 390–422.

http://aswec07.cs.latrobe.edu.au/itp-aswec2007.htm
http://www.raytheon.com.au/

914 R.J. Colvin, I.J. Hayes / Science of Computer Programming 76 (2011) 891–914

[27] J.C.M. Baeten, J.A. Bergstra, Global renaming operators in concrete process algebra, Inf. Comput. 78 (3) (1988) 205–245.
[28] J.C.M. Baeten, J.A. Bergstra, Process algebra with propositional signals, Theor. Comput. Sci. 177 (2) (1997) 381–405.
[29] K.G. Larsen, L. Xinxin, Compositionality through an operational semantics of contexts, J. Log. Comput. 1 (6) (1991) 761–795.
[30] J. Sun, Y. Liu, J.S. Dong, C. Chen, Integrating specification and programs for system modeling and verification, in: W.-N. Chin, S. Qin (Eds.), Third IEEE

International Symposium on Theoretical Aspects of Software Engineering, TASE, IEEE Computer Society, 2009, pp. 127–135.
[31] J. Sun, Y. Liu, J.S. Dong, J. Pang, PAT: Towards flexible verification under fairness, in: A. Bouajjani, O. Maler (Eds.), 21st International Conference on

Computer Aided Verification, CAV, in: Lecture Notes in Computer Science, vol. 5643, Springer, 2009, pp. 709–714.
[32] S. Schneider, Concurrent and Real-time Systems: The CSP Approach, Wiley, 2000.
[33] C. Morgan, Programming from Specifications, 2nd ed., Prentice Hall, 1994.
[34] A.W. Roscoe, The three platonic models of divergence-strict CSP, in: J.S. Fitzgerald, A.E. Haxthausen, H. Yenigün (Eds.), International Colloquium on

Theoretical Aspects of Computing, ICTAC, in: Lecture Notes in Computer Science, vol. 5160, Springer, 2008, pp. 23–49.
[35] G.D. Plotkin, A structural approach to operational semantics, J. Log. Algebr. Program. 60–61 (2004) 17–139.
[36] Y. Gurevich, L.S. Moss, Algebraic operational semantics and Occam, in: E. Börger, H.K. Büning, M.M. Richter (Eds.), Proceedings of 3rd Workshop on

Computer Science Logic, CSL 89, in: Lecture Notes in Computer Science, vol. 440, Springer, 1990, pp. 176–192.
[37] Y. Chevalier, L. Compagna, J. Cuéllar, P.H. Drielsma, J. Mantovani, S.Mödersheim, L. Vigneron, A high-level protocol specification language for industrial

security-sensitive protocols, in: Specification and Automated Processing of Security Requirements, Austrian Computer Society, 2004, pp. 193–205.
[38] A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P.H. Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim,

D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, L. Vigneron, The AVISPA tool for the automated validation of internet security
protocols and applications, in: K. Etessami, S.K. Rajamani (Eds.), Computer Aided Verification, 17th International Conference, CAV 2005, Proceedings,
in: Lecture Notes in Computer Science, vol. 3576, Springer, 2005, pp. 281–285.

[39] L. Cardelli, A.D. Gordon, Mobile ambients, in: M. Nivat (Ed.), Foundations of Software Science and Computation Structure, First International
Conference, FoSSaCS’98, in: Lecture Notes in Computer Science, vol. 1378, Springer, 1998, pp. 140–155.

[40] K. Winter, I.J. Hayes, R. Colvin, Integrating requirements: the Behavior Tree philosophy, in: J.L. Fiadeiro, S. Gnesi (Eds.), Proceedings of International
Conference on Software Engineering and Formal Methods, SEFM 2010, IEEE Computer Society Press, 2010, pp. 41–50.

[41] J.M. Spivey, The Z Notation: A Reference Manual, 2nd ed., Prentice Hall, 1992.
[42] C.B. Jones, Systematic Software Development using VDM, Prentice Hall, 1990.
[43] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New York, Inc., 1982.
[44] C.A.R. Hoare, J. He, Unifying Theories of Programming, Prentice Hall, 1998.

	A semantics for Behavior Trees using CSP with specification commands
	Introduction
	Related work: requirements modelling
	Related work: Behavior Tree semantics
	Related work: process algebras with state

	CSPσ
	Syntax
	Semantics
	Prefixing
	Channels
	External and internal choice
	Sequential composition
	Recursion
	Hiding
	Interrupt
	Restart

	State-based rules
	Interface parallel
	Examples

	Message passing
	Example 1
	Example 2
	Related work: message passing

	Behavior Trees
	Notation and informal description
	Application
	Example
	The system and its requirements
	Individual requirements translation
	Requirements integration

	Translating Behavior Trees to CSPσ
	Phase 1
	Phase 2
	Targets of process kill
	Targets of reversion
	Targets of process kill and reversion
	Translation of constructors
	Translation of state- and event-based nodes
	Kill nodes
	Reversion nodes
	Synchronisations

	Phase 3
	Example translation
	Process kill
	Synchronisation
	Atomic composition

	Summary

	Conclusions
	Acknowledgements
	References

