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a b s t r a c t

We present a method for multiplication in finite fields which gives
multiplication algorithms with improved or best known bilinear
complexities for certain finite fields. Our method generalizes some
earlier methods and combines them with the recently introduced
complexity notion M̂q(`), which denotes the minimum number of
multiplications needed in Fq in order to obtain the coefficients of
the product of two arbitrary `-termpolynomialsmodulo x` inFq[x].
We study our method for the finite fields Fqn , where 2 ≤ n ≤
18 and q = 2, 3, 4 and we improve or reach the currently best
known bilinear complexities. We also give some applications in
cryptography.

© 2010 Published by Elsevier Inc.

1. Introduction

Let Fq be a finite field and n > 1 be an integer. Let F⊥qn be the dual of Fqn as a vector space over Fq.
Then the rank R(Fqn/Fq) over Fq is defined to be

min

{
` ∈ N | ∃ui, vi ∈ F⊥qn , wi ∈ Fqn such that ∀a, b ∈ Fqn , ab =

∑̀
i=1

ui(a)vi(b)wi

}
.

R(Fqn/Fq) is also denoted by µq(n) and it is called the bilinear complexity of multiplication in Fqn
over Fq. It corresponds to the minimum number of Fq bilinear multiplications in order to multiply
two arbitrary elements of Fqn . Winograd [27] showed that this complexity is ≥ 2n − 1, and it is
equal to 2n − 1 if and only if n ≤ 1

2q + 1. Algorithms obtaining the lower bound are based on
interpolation algorithmson the rational function field [27]. D.V. Chudnovsky andG.V. Chudnovsky [14]

∗ Corresponding author.
E-mail addresses:mcenk@cankaya.edu.tr (M. Cenk), ozbudak@metu.edu.tr (F. Özbudak).

0885-064X/$ – see front matter© 2010 Published by Elsevier Inc.
doi:10.1016/j.jco.2009.11.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82778942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:mcenk@cankaya.edu.tr
mailto:ozbudak@metu.edu.tr
http://dx.doi.org/10.1016/j.jco.2009.11.002


M. Cenk, F. Özbudak / Journal of Complexity 26 (2010) 172–186 173

generalized this idea to algebraic function fields (of one variable) over Fq. Shokrollahi [22] obtained
optimal algorithms for the multiplication in certain finite fields using the principle of D.V. and
G.V. Chudnovsky algorithm and the elliptic curves. Shparlinski, Tsfasman and Vladut [23] gave the
asymptotic bounds for multiplication in finite fields by using curves with many points. Ballet [2,3]
generalized Shokrollahi’s work to the algebraic function fields of genus g . Ballet and Rolland [4] gave
a generalization of D.V. Chudnovsky and G.V. Chudnovsky multiplication algorithm by interpolating
not only degree one places but also interpolating on degree two places. Moreover, Ballet, Rolland,
Chaumine and Brigand in [4–7] have improved the asymptotic bounds given by Shparlinski, Tsfasman
and Vladut in [23]. Arnaud [1] presented a method using local expansions with multiplicity 2 and
places of degree one and two. In [8], new upper bounds of the bilinear complexity of multiplication
in Fqn over Fq are obtained by proving the existence of certain types of non-special divisors of degree
g−1 in the algebraic function fields of genus g defined overFq. Moreover, concerning the use of places
of degree greater than one, Ballet and Rolland use places of degree one, two and four to improve the
asymptotic bilinear complexity of multiplication in the extensions of F2 in [10].
In this paper, we use algebraic function fields of one variable with places of arbitrary degrees and

moreover we use some places not only once but also many times. Here many times refers to using
first ui > 1 coefficients instead of the first (ui = 1) coefficient in the local expansion of a place Pi (see
themap ϕ in Section 3). The proposedmethod is a generalization of themethods introduced in [14,23,
22,2–7,1,8,9]. In the papers cited above, mostly degree one places are used only. Among these papers,
only [4–7,1,8,9] use places of degree greater than one. In these papers, [4–9] use only places of degree
one and degree two but always with ui = 1, i.e., using places only once. In [1], only places of degree
one and degree two are used and all of such places are used at most 2 times.
In order to use places of arbitrary degree, one needs a measure to estimate the contribution of

such places in the bilinear complexity. Here, we use the recently introduced complexity notion M̂q(`)
for this purpose [12]. Recall that M̂q(`) is the minimum number of multiplications needed in Fq in
order to obtain coefficients of the product of two arbitrary `-term polynomials modulo x` in Fq[x].
We observe that in order to get the best linear complexities using our method, one needs to solve an
optimization problem using M̂q(`) and curves with many points over finite fields. Here, curves with
many points refer to curves with many degree one and higher degree points, where the complexity
notion M̂q(`) indicates the weight of degree ` points of the curve in the optimization problem. Here,
wewould like to remark that local expansions andhigher degree points of curves over finite fields have
been shown to be very useful in algebraic geometry codes and low discrepancy sets and sequences
(see, for example [28,29,19,20]). One of our motivations in this paper comes from these results in
algebraic geometry codes and low discrepancy sets and sequences. We improve or reach the best
known bilinear complexities in Fqn where 2 ≤ n ≤ 18 and q = 2, 3, 4 by searching and optimizing
the suitable places and multiplicities in the proposed method. Moreover, our method gives explicit
multiplication formulae immediately. We also give some applications to cryptography.
The rest of the paper is organized as follows:we introduce complexity notions and a brief review of

algebraic function fields in Section 2. The proposed method is presented in Section 3. In Section 4, we
obtain currently best known upper bounds for the bilinear complexityµq(n) of multiplication for 2 ≤
n ≤ 18 and q = 2, 3, 4 which includes our some of improvements. Using the method of Section 3, we
obtain some improvements. In Section 5, we give an example of computingmultiplicative complexity
of finite fields with large number of elements used in cryptography. The proposed method gives
explicit formulae easily. We illustrate how to obtain explicit formulae reaching the upper bounds
of Section 3 with an example in Section 6.

2. Preliminaries

2.1. Some complexity notions

The notationµq(n) represents the bilinear complexity of multiplication in Fqn over Fq. It corresponds
to the minimum number of Fq bilinear multiplications in order to multiply two arbitrary elements
of Fqn . There is a related but different complexity notion. Let Mq(n) denote the number of
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multiplications needed in Fq in order to multiply two arbitrary n-term polynomials in Fq[x] (cf.
[13,15,16,25–27]). Here a polynomial is called an n-term polynomial in Fq[x] if it is of the form

a0 + a1x+ · · · + an−1xn−1 ∈ Fq[x].

As reduction modulo an irreducible polynomial in Fq[x] can be performed without multiplications in
Fq, we have

µq(n) ≤ Mq(n). (2.1)

However µq(n) and Mq(n) are not necessarily equal in general. Using a polynomial basis
{1, ξ , ξ 2, . . . , ξ n−1, . . . , ξ 2n−2} for Fq2n−1 over Fq, it is easy to show that

Mq(n) ≤ µq(2n− 1).

We will need another complexity notion in this paper. For a positive integer `, let M̂q(`) denote the
multiplicative complexity of computing the coefficients of the product of two `-term polynomials
modulo x` over Fq. In other words, M̂q(`) is the minimum number of multiplications needed in Fq
in order to obtain the first ` coefficients of the product of two arbitrary `-term polynomials in Fq[x].
It is not difficult to obtain useful upper bounds on M̂q(`) for certain values `. For example we have
M̂q(2) ≤ 3, M̂q(3) ≤ 5, M̂q(4) ≤ 8 and M̂q(5) ≤ 11 for any prime power q (cf. [13, Proposition 1]).

2.2. A brief review of algebraic function fields

We start with the basics of the algebraic function fields. The details in this subsection can be found
in [24].
An algebraic function field F/Fq of one variable over Fq is an extension field F ⊇ Fq such that F is

a finite extension of Fq(x) for some element x ∈ F which is transcendental over Fq. A valuation ring
of the function field F/Fq is a ring O ⊆ F with the properties Fq ⊂ O ⊂ F and for any z ∈ F , either
z ∈ O or z−1 ∈ O. A place of P of the function field F/Fq is the maximal ideal of some valuation ring
O of F/Fq. We will denote the set of all places of F/Fq as PF . IfO is a valuation ring of F/Fq and P is its
maximal ideal, then O is uniquely determined by P hence we denote O by OP .
FP := OP/P is called the residue class field of P . The map x→ x(P) from F to FP ∪{∞} is called the

residue class map with respect to P . Degree of P is [FP : Fq] := deg P .
The free abelian group which is generated by the places of F/Fq is called the divisor group of F/Fq

and it is denoted byDF . A divisor is a formal sum D =
∑
P∈PF

nPP with nP ∈ Z, almost all nP = 0. The
support of D is defined by suppD := {P ∈ PF |nP 6= 0}. A divisor of the form D = P with P ∈ PF is
called a prime divisor. Two divisorD =

∑
nPP andD′ =

∑
n′PP are added coefficientwise. ForQ ∈ PF

and D =
∑
nPP ∈ DF we define vQ (D) = nQ . A partial ordering onDF is defined by

D1 ≤ D2 ⇐⇒ vP(D1) ≤ vP(D2)

for any P ∈ PF . A divisor D ≥ 0 is called positive. The degree of a divisor is defined by

deg D :=
∑
P∈PF

vP(D) · deg P

and deg : D → Z is a group homomorphism.
Let 0 6= x ∈ F and Z (respectivelyN) be the set of zeros (poles) of x in PF . Then (x)0 :=

∑
P∈Z vP(x)P

is called the zero divisor of x, (x)∞ :=
∑
P∈N(−vP(x))P is called the pole divisor of x and (x) :=

(x)0 − (x)∞ is called the principal divisor of x.
The setPF := {(x)|0 6= x ∈ F} is defined as the group of principal divisors of F/Fq. The factor group

C := DF/PF

is called the divisor class group. The divisor class of D, denoted by [D], is the corresponding element
in the factor group CF . For D1,D2 ∈ DF , we denote D1 ∼ D2 if [D1] = [D2].
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For a divisor A ∈ DF we set

L(A) := {x ∈ F |(x) ≥ −A} ∪ {∞}.

L(A) is a vector space over Fq. If A′ is a divisor equivalent to A then L(A) ∼= L(A′). For A ∈ DF , the
integer dim A := dimL(A) is called the dimension of the divisor A. The genus of F/Fq is defined by

g := max{deg A− dim A+ 1|A ∈ DF }.

For A ∈ DF ,

i(A) := dim A− deg A+ g − 1

is called the index of speciality of A. Any divisor A ∈ DF is called non-special if i(A) = 0; otherwise A
is called special.

3. The method

Let F/Fq be an algebraic function field with full constant field Fq. Let P1, . . . , PN be distinct
places of arbitrary degrees. Assume that Q is a place of degree n. Let OQ be the valuation ring of
the place Q . Note that the residue field OQ /Q is isomorphic to Fqn . Let D be a divisor such that
suppD ∩ {Q , P1, P2, . . . , PN} = ∅. Let L(D) be the Riemann–Roch space of D. Assume also that the
evaluation map EvQ from L(D) to the residue field OQ /Q is onto. For 1 ≤ i ≤ N , let ti be a local
parameter at Pi. For f ∈ L(2D), let

f = αi,0 + αi,1ti + αi,2t2i + · · ·

be the local expansion at Pi with respect to ti, where αi,0, αi,1, . . . ∈ Fqdeg(Pi) . Let ui be a positive integer
and consider the Fq-linear map

ϕi : L(2D) →
(

Fqdeg(Pi)
)ui

f →
(
αi,0, αi,1, . . . , αi,ui−1

)
.

Let ϕ be the Fq-linear map given by

ϕ : L(2D) →
(

Fqdeg(P1)
)u1
×

(
Fqdeg(P2)

)u2
× · · · ×

(
Fqdeg(PN )

)uN
f → (ϕ1(f ), ϕ2(f ), . . . , ϕN(f )) .

(3.1)

Finally we assume that the map ϕ is injective.

Theorem 3.1. Under the notation and assumptions as above we have

µq(n) ≤
N∑
i=1

µq(deg(Pi))M̂qdeg(Pi)(ui). (3.2)

Proof. Let {h` : 1 ≤ ` ≤ n} be a fixed basis ofL(D) over Fq. Moreover we choose and fix h′1, . . . , h
′
m

such that {h` : 1 ≤ ` ≤ n}∪ {h′k : 1 ≤ k ≤ m} is a basis ofL(2D). We consider EvQ (h1), . . . , EvQ (hn),
EvQ (h′1), . . . , EvQ (h

′
m) ∈ OQ /Q ∼= Fqn as constants since h1, . . . , hn, h′1, . . . , h

′
m are fixed. Similarly,

we consider ϕ(h1), . . . , ϕ(hn), ϕ(h′1), . . . , ϕ(h
′
m) ∈

(
Fqdeg(P1)

)u1
× · · · ×

(
Fqdeg(PN )

)uN
as constants.

For f ∈ L(2D), there is no cost for bilinear complexity in obtaining ϕ(f ). Indeed, as

f =
n∑
`=1

c`h` +
m∑
k=1

dkh′k

with c1 . . . , cn, d1, . . . , dm ∈ Fq, we obtain ϕ(f ) using only multiplications with constants ϕ(h1), . . . ,
ϕ(hn), ϕ(h′1), . . . , ϕ(h

′
m) and additions as in

ϕ(f ) = c1ϕ(h1)+ · · · + cnϕ(hn)+ d1ϕ(h′1)+ · · · + dmϕ(h
′

m).
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Similarly for f ∈ L(2D), there is no cost for bilinear complexity in obtaining EvQ (f ). Note that the
evaluation map fromL(2D) to EvQ (f ) is surjective but not necessarily injective.
We identify L(D) with OQ /Q ∼= Fqn without any cost on bilinear complexity. For given α, β ∈

Fqn ∼= OQ /Q , let f1, f2 be corresponding functions in L(D). We obtain the coefficients a1, . . . , an,
b1, . . . , bm such that

f1 = a1h1 + · · · + anhn, f2 = b1h1 + · · · + bnhn (3.3)

without any cost in bilinear complexity.
Note that f1f2 ∈ L(2D). The only cost on bilinear complexity stems from obtaining the coefficients

c1, . . . , cn, d1, . . . , dm ∈ Fq, where

f1f2 =
n∑
`=1

c`h` +
m∑
k=1

dkh′k

using the coefficients a1, . . . , an, b1, . . . , bn given in (3.3). Indeed the product αβ ∈ Fqn is obtained
using EvQ (f1f2) without any extra cost in bilinear complexity provided that the coefficients c1, . . . ,
cn, . . . , dm ∈ Fq are known.
Using our arguments above, we obtain the coefficients c1, . . . , cn, d1, . . . , dm ∈ Fq from

ϕ(f1f2) = (ϕ1(f1f2), ϕ2(f1f2), . . . , ϕN(f1f2)).

We will complete the proof by showing that the cost of obtaining ϕi(f1f2) using the coefficients
a1, . . . , an, b1, . . . , bn is at most

µq(deg(Pi))M̂qdeg(Pi)(ui)

for each 1 ≤ i ≤ N .
Let 1 ≤ i ≤ N be an integer and

ϕi(f1) = (αi,0, αi,1, . . . , αi,ui−1), ϕi(f2) = (βi,0, βi,1, . . . , βi,ui−1).

Note that the coordinates αi,0, . . . , αi,ui−1, βi,0, . . . , βi,ui−1 ∈ Fqdeg(Pi) and they are obtained using the
coefficients a1, . . . , an, b1, . . . , bn and the constants ϕi(h1), . . . , ϕi(hn)without any cost.
For a transcendental x over Fqdeg(Pi) , we consider the polynomial ring Fqdeg(Pi) [x]. Let p

(i)
1 (x), p

(i)
2 (x) ∈

Fqdeg(Pi) [x] be polynomials given by

p(i)1 (x) = αi,0 + αi,1x+ · · · + αi,ui−1x
ui−1,

p(i)2 (x) = βi,0 + βi,1x+ · · · + βi,ui−1x
ui−1.

Let p(i)(x) = p(i)1 (x)p
(i)
2 (x) and γ

i
0, γ

i
1, . . . , γ

i
ui−1
∈ Fqdeg(Pi) be the first ui terms of p(x). Namely, let

γ i0, γ
i
1, . . . , γ

i
ui−1
∈ Fqdeg(Pi) such that

p(i)(x) ≡ γ i0 + γ
i
1x+ · · · + γ

i
ui−1x

ui−1 mod xui ∈ Fqdeg(Pi) [x].

It is clear that

ϕi(f1f2) = (γ i0, γ
i
1, . . . γ

i
ui−1).

The cost of obtaining the first ui terms γ i0, γ
i
1, . . . γ

i
ui−1
of the polynomial p(i)(x) using the polynomials

p(i)1 (x), p
(i)
2 (x) is at most

µq(deg(Pi))M̂qdeg(Pi)(ui).

This completes the proof. �

Using Theorem 3.1 we obtain explicit algorithms for multiplications in Fqn . The conditions of the
following theorem guarantee that the assumptions of Theorem 3.1 are satisfied.
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Theorem 3.2. Let F/Fq be an algebraic function field with full constant field Fq. Let g be the genus of
F . Let P1, P2, . . . , PN be distinct places of arbitrary degrees of F . Let u1, u2, . . . , uN be arbitrary positive
integers. Assume that

(1) there exists a non-special divisor of degree g − 1,
(2) there exists a place of degree n,
(3)

∑N
i=1 deg(Pi)ui > 2n+ 2g − 2.

Then assumptions in Theorem 3.1 hold and we have

µq(n) ≤
N∑
i=1

µq(deg(Pi))M̂qdeg(Pi)(ui).

Proof. LetG be a non-special divisor of degree g−1. LetQ be a place of degree n. LetD1 be the effective
divisor given by D1 = G+Q . As D1 ≥ G, we have that D1 is non-special again (cf. Remark I.6.9, item (f)
[24]). Hence

dimL(D1) = deg(D1)+ 1− g = (n+ g − 1)+ 1− g = n.

Using Strong Approximation Theorem (cf. Theorem I.6.4 [24]) we obtain a divisor D of F such that

D ∼ D1 and suppD ∩ {Q , P1, P2, . . . , PN} = ∅.

Hence D is non-special (cf. Remark 1.6.9, item (c)) and the map EvQ from L(D) to the residue field

OQ /Q is onto. Letϕ be theFq-linearmap fromL(2D) to
(

Fqdeg(P1)
)u1
×

(
Fqdeg(P2)

)u2
×· · ·×

(
Fqdeg(PN )

)uN
given by (3.1). It remains to prove that ϕ is injective. But the kernel of ϕ isL(2D−

∑
uiPi) and as the

degree of the divisor 2D−
∑
uiPi < 0 by the assumption (3), the kernel is {0}. So ϕ is injective. �

Remark 3.3. Under the notation and assumptions of Theorem 3.2, consider the subcase that N =
N1+N2, Pi is a degree one place for 1 ≤ i ≤ N1 and Pi is a degree two place for N1+ 1 ≤ i ≤ N1+N2.
Moreover let ui = 1 for 1 ≤ i ≤ N1+N2. Note thatµq(1) = 1,µq(2) = 3 (cf. [27]), and M̂qdeg(Pi)(1) = 1
for any deg(Pi). Therefore the condition (3) of Theorem 3.2 becomes

N1 + 2N2 > 2n+ 2g − 2,

and the bound of Theorem 3.2 on µq(n) becomes

µq(n) ≤ N1 + 3N2.

These coincide with the corresponding result of Ballet and Rolland in [4].

Remark 3.4. By Theorem 3.2, in order to obtain better upper bounds on µq(n), we need algebraic
function fields with full constant field Fq, with small genus g , and with enough number of rational
places of suitable degrees. It is well known that finding algebraic function fields over Fq with fixed
small genus g andmany rational places is not easy (cf. [18, Chapter 4]). In Theorem 3.2, as deg(Pi) and
ui are further parameters to be chosen, the condition (3) is weaker than the corresponding condition
in [4, Theorem 2.2].

Using u = 2 for degree one places and u = 1 for degree two places in Theorem 3.2, we obtain the
following corollary.

Corollary 3.5. Let F/Fq be an algebraic function field with full constant field Fq. Let g be the genus of F .
Assume there exist at least N1 degree one and at least N2 degree two places of F . If

(1) there exists a non-special divisor of degree g − 1,
(2) there exists a place of degree n,
(3) 2N1 + 2N2 > 2n+ 2g − 2,
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then we have

µq(n) ≤ 3n+
3g
2
.

Proof. We use N1 degree one places with u = 2 and N2 degree two places with u = 1. Since we have
2N1 + 2N2 > 2n + 2g − 2, then ϕ is injective with rank 2n + g − 1. Therefore we can choose N ′1
degree one places from degree one places and N ′2 degree two places from degree two places such that
2n+ g − 1 ≤ 2N ′1 + 2N

′

2 ≤ 2n+ g . Then we get

µq(n) ≤ 3N ′1 + 3N
′

2 ≤ 3
(
n+

g
2

)
= 3n+

3g
2
. �

We compare Corollary 3.5 with the corresponding results in [4]. The bound of Corollary 3.5 is at
least as good as the bounds of [4, Theorem 2.2] and [7, Theorem 2.1]. The condition (3) of Corollary 3.5
is weaker as the corresponding condition of [4] and [7] isN1+2N2 > 2n+2g−2. The other conditions
of Corollary 3.5 are the same as the ones in [4]. Therefore Corollary 3.5 gives improvedbounds onµq(n)
compared to the ones in [4].
For some explicit algebraic function fields, themapϕ in (3.1) becomes injective for suitable choices

of the places P1, . . . , PN and the divisor D even
∑N
i=1 deg(Pi)ui = 2n + g − 1 holds. We state such a

result in the following theorem.

Theorem 3.6. Let F/Fq be an algebraic function field with full constant field Fq. Let g be genus of F . Let
P1, . . . , PN be distinct places of arbitrary degrees of F . Let u1, u2, . . . , uN be arbitrary integers. Assume
that

(1) there exists a non-special divisor D of degree n+ g − 1,
(2) there exists a place of degree n,
(3)

∑N
i=1 deg(Pi)ui = 2n+ g − 1.

Let ϕ be the Fq-linear map fromL(2D) to
(

Fqdeg(P1)
)u1
×· · ·×

(
Fqdeg(PN )

)uN
given in (3.1). If ϕ is injective

then

µq(n) ≤
N∑
i=1

µq(deg(Pi))M̂qdeg(Pi)(ui).

Proof. As D is non-special, dim(L(D)) = degD+1−g = n. Moreover supp (D)∪{Q } = ∅ and hence
the evaluation map EvQ from L(D) to OQ /Q is bijective. Note that supp (D) ∪ {P1, . . . , PN} = ∅ as
well. The result follows from Theorem 3.1. �

Remark 3.7. It is enough to assume D is a non-special divisor of degree n + g − 1. Using Strong
Approximation Theorem (cf. Theorem I.6.4 [24]), we can always obtain D′ from such D with D′ ∼ D
and suppD′ ∩ {Q , P1, P2, . . . , PN} = ∅.

Remark 3.8. In the case of places only of degree one and two and with u = 1, the conditions of
Theorem3.6 are exactly equivalent to the conditions of Theorem2.2 in [7]. Moreover, The same bound
was given in [4] under certain conditions on q and n only for degree one and degree two places with
u = 1. The conditions on q and n in [4] seem to come from the choice of a non-special divisor Dwith
extra conditions. In our case the extra conditions refer to the injectivity of the map ϕ, even when∑N
i=1 deg(Pi)ui = 2n + g − 1. We give explicit examples of algebraic function fields satisfying this

criteria in our improvements.

The following example shows that Theorem 3.1 gives an improved bound for F39 .
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Example 3.9. Let q = 3 and n = 9. Using the results in the literature, to the best of our knowledge,
the best upper bound is µ3(9) ≤ 27, which can be derived by two alternative methods as follows.
Using [13,16,26], we obtain the upper bounds onM3(9) as 36, 34 and 27, respectively. Hence by [13]
and (2.1) we getµ3(9) ≤ 27. For themethod in [4], we have considered all algebraic function fields of
genus 0 and 1. Let E be elliptic curve y2 = x3+ x+ 2 over F3. It has 4 degree one places, 6 degree two
places and 8 degree three places. As 4+2·6 < 2·9+1−1, themethod of [4] cannot be applied directly.
Using 3 degree one places, 6 degree two places, and 1 degree three places, all with u = 1 as in [4], we
obtain thatµ3(9) ≤ 3 · 1+ 6 · 3+ 6 · 1 = 27. Nowwe improve this toµ3(9) ≤ 26 using Theorem 3.6
togetherwith u = 2 for someplaces.We take 2 degree one placeswith u = 2, 2 degree one placeswith
u = 1, and 6 degree two places with u = 1. Therefore we obtain thatµ3(9) ≤ 2 ·3+2 ·1+6 ·3 = 26.
We find an explicit formula of such an algorithm via Theorem 3.6, which can be found in Appendix.
The description and details of finding explicit formula for µ3(9) ≤ 26 are given in Section 6.

4. Multiplication in finite fields Fqn for 2 ≤ n ≤ 18 and q = 2, 3, 4

In this section, for 2 ≤ n ≤ 18 and q = 2, 3, 4, we obtain the best known (upper) bounds onµq(n)
using the various methods in the literature and the proposed method in this paper. In particular, we
indicate some improvements obtained using the proposed method on certain values of µq(n).
To the best of our knowledge, for this range of values of q and n, the best known (upper) bounds

on µq(n) are obtained using the following methods:

(i) The methods based on the idea of D.V. Chudnovsky and G.V. Chudnovsky [14], which are
presented in the [2–4,7].

(ii) The observation in (2.1) together with results presented in [12,13,15,16,26,27].
(iii) A well knownmethodwhen n is a composite number which is as follows: Let k, ` ≥ 2 be positive

integers with n = k · `. As Fq` is a subfield of Fqn , it immediately follows from the definitions of
µq(n), µq`(k) and µq(`) that

µq(n) ≤ µq`(k) · µq(`). (4.1)

(iv) The proposed method.

Nowwe give some of the improvements that are obtained by using the proposedmethod explicitly.
We start with multiplication in F3n . For the cases n = 9, 11, 13, 15, 17, 18, we improve the best
known bounds given in [13,16]. Throughout the paper we use the notation of Magma [11] for
presenting the places and the divisor of algebraic function fields.
In Example 3.9, it is already explained how to obtain µ3(9) ≤ 26. For the other improvements in

characteristic three in this section, we again use the same elliptic curve E given in Example 3.9. Recall
that E has 4 degree one places, 6 degree two places and 8 degree three places. For each choice of the
paces and the divisors given below, it is easy to verify, for example using Magma as in Section 6, that
the corresponding map ϕ in (3.1) is injective and hence the proposed method applies.
In order to show that µ3(11) ≤ 34, it is enough to take 2 degree one places with u = 2,

2 degree one places with u = 3 and 6 degree two places with u = 1 with the choice of D =
(x11 + 2x9 + x7 + x6 + x4 + x3 + 2x2 + x+ 1, y+ x10 + 2x7 + 2x5 + 2x4 + 2x3 + x+ 2).
In order to obtain µ3(13) ≤ 42, we use 4 degree one places with u = 2, 6 degree two places with

u = 1 and 2 degree three places with u = 1 with the choice of D = (x13 + 2x12 + x11 + 2x10 + x9 +
x8 + x7 + 2x4 + 2x3 + 1, y+ x12 + x11 + 2x10 + 2x9 + x7 + x5 + 2x4 + 2x3).
On the other hand, taking 4 degree one places with u = 3, 6 degree two places with u = 1 and 2

degree three places with u = 1 gives µ3(15) ≤ 50 where D can be selected as (x15 + 2x13 + 2x12 +
2x11 + x10 + x8 + x5 + 2x+ 2, y+ 2x13 + x12 + x11 + 2x10 + x9 + 2x5 + x4 + x3 + 2x2 + 2x).
When we choose D = (x17+2x16+2x15+ x13+ x10+2x9+ x8+ x7+2x6+2x5+2x2+ x+1, y+

2x15+ x14+ 2x13+ x12+ x11+ x10+ x9+ x2+ 2), another improved boundµ3(17) ≤ 58 is obtained
by using 2 degree one places with u = 2, 2 degree one places with u = 3, 6 degree two places with
u = 1 and 4 degree three places with u = 1.
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Finally, µ3(18) ≤ 62 is obtained by taking 3 degree one places with u = 2, 1 degree one places
with u = 3, 6 degree two places with u = 1 and 5 degree three places with u = 1 where one can use
D = (x18+2x17+2x16+x15+x11+2x10+x4+2x+2, y+2x17+x14+x13+2x12+2x8+x6+2x5+x4).
Next we show that the proposed method improves or reach the currently best known bilinear

complexities in F4n for n = 11, 13 and 17. In order to show that µ4(11) ≤ 30, µ4(13) ≤ 37 and
µ4(17) ≤ 53 we use the proposed method as follows. Let F4 = {0, 1, w,w + 1}wherew is a root of
x2 + x+ 1 ∈ F2[x]. Let

E1 : y2 + wy = x3 + x2 + wx+ 1,
E2 : y2 + w2xy+ wy = x3 + wx+ w2,
E3 : y2 + y = x3 + x2 + w2x+ w

be elliptic curves over F4. E1 has 7 degree one places, 7 degree two places and 14 degree three places.
E2 has 6 degree one places, 9 degree two places and 16 degree three places. Finally, E3 has 5 degree
one places, 10 degree two places and 20 degree three places.
The bound µ4(11) ≤ 30 can be obtained using the proposed method together with E1. When we

use 1 degree one place with u = 2, 6 degree one places with u = 1 and 7 degree two places with
u = 1, we getµ4(11) ≤ 30. Note that the same bound is also obtained by the method of [4]. If we use
E2 then we obtain µ4(11) ≤ 30 by using 6 degree one places and 8 degree two places.
The improved bound µ4(13) ≤ 37 can be obtained by using E2. Let {P1, . . . , P6,Q1, . . . ,Q9} be a

set of places where Pi ’s are of degree one and Qi’s are of degree two. Those are

P1 = ∞, P2 = (x, y+ 1), P3 = (x, y+ x+ w2), P4 = (x+ w2, y+ w),
P5 = (x+ 1, y), P6 = (x+ 1, y+ x), Q1 = (x+ w), Q2 = (x2 + x+ w2, y),
Q3 = (x2 + x+ w2, y+ w2x+ w), Q4 = (x2 + w2x+ 1, y+ w),
Q5 = (x2 + w2x+ 1, y+ w2x), Q6 = (x2 + w2x+ w2, y+ x),
Q7 = (x2 + w2x+ w2, y+ wx+ w), Q8 = (x2 + wx+ w, y+ x+ w2),
Q9 = (x2 + wx+ w, y+ wx+ 1).

When we use 2 degree one places, P1, P2, with u = 2, 4 degree one places, P3, . . . , P6 with u = 1
and 9 degree two places, Q1, . . . ,Q9 with u = 1, we obtain µ4(13) ≤ 37 where one can use
D = (x13 + w2x12 + x11 + x10 + wx9 + x8 + wx7 + wx4 + x2 + x + w, y + wx12 + x11 + w2x10 +
w2x9 + w2x8 + wx7 + w2x6 + wx5 + w2x4 + x3 + x2 + x+ w2).
The boundµ4(17) ≤ 53 can be obtained by using twomethods, the proposedmethod andmethod

introduced in [4]. When we use the elliptic curve E2 with 2 degree one places with u = 2, 4 degree
one places with u = 1 and 9 degree two places with u = 1, we get µ4(17) ≤ 53. On the other hand,
using E3 with 5 degree one places with u = 1, 10 degree two places with u = 1 and 3 degree three
places with u = 1 gives the same bound.
We summarize the results of this section in Table 1. The symbol ∗ denotes an improvement by

using the proposed method compared to the best known values in the literature. In this table, we
indicate the methods that achieve the bounds in the corresponding columns. These are the methods
(i), (ii), (iii) or (iv) explained in the beginning of Section 4.

5. Application

Finite field multiplication is widely used in many areas such as cryptography and coding theory.
For example, in elliptic curve cryptography, finite fieldswith large number of elements are used. Some
of the suitable finite fields are proposed by NIST (National Institute of Standards and Technology) [17].
In that list, it is suggested to use the fields with 2163, 2233, 2283, 2409 and 2571 elements. Now, we will
compute the multiplicative complexity for multiplication in F2163 using the proposed method. The
most suitable elliptic curve over F2 (up to isomorphism) is y2+y = x3+x+1which has 1 degree one
place, 2 degree two places, 4 degree three places, 5 degree four places, 8 degree five places, 8 degree
six places, 16 degree seven places and 25 degree eight places. We take 1 degree one place with u = 5,
2 degree two places with u = 2, 4 degree three places with u = 1, 5 degree four places with u = 1, 8
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Table 1
Bounds for µq(n) for 2 ≤ n ≤ 18 and q = 2, 3, 4.

n µ2(n) Method µ3(n) Method µ4(n) Method

2 3 (ii) 3 (ii) 3 (ii)
3 6 (ii) 6 (ii) 6 (ii)
4 9 (ii) 9 (ii) 8 (ii)
5 13 (ii) 12 (ii) 11 (ii)
6 15 (iii) 15 (ii) 14 (ii)
7 22 (ii) 19 (ii) 17 (ii)
8 24 (iii) 21 (iii) 20 (ii)
9 30 (ii) 26* (iv) 23 (ii)
10 33 (iii) 27 (iii) 27 (ii)
11 39 (ii) 34* (iv) 30 (i), (iv)
12 42 (iii) 36 (iii) 33 (iii)
13 48 (ii) 42* (iv) 37* (iv)
14 51 (iii) 45 (iii) 39 (iii)
15 54 (iii) 50* (iv) 45 (iii)
16 60 (iii) 54 (iii) 45 (iii)
17 67 (ii) 58* (iv) 53 (i), (iv)
18 69 (ii) 62* (iv) 51 (iii)

degree five places with u = 1, 8 degree six places with u = 1, 15 degree seven places with u = 1 and
11 degree eight places with u = 1. Therefore we obtain

µ2(163) ≤ 11+ 2 · 9+ 4 · 6+ 5 · 9+ 8 · 13+ 8 · 15+ 15 · 22+ 11 · 24 = 916,

where we use Table 1 and M̂2(5) ≤ 11, M̂4(2) ≤ 3 [12]. On the other hand, the best we can expect
fromKaratsuba algorithm (together with (2.1)) isµ2(163) ≤ N , whereN is an integer withN > 2187,
since it is given in [26] thatM2(128) ≤ 2187.
The finite field F397 is used in pairing based cryptography [13,21]. In order to compute µ3(97) by

using the proposed method, it would be better to use the elliptic curve y2 = x3 + x2 + 2x+ 1 which
has 3 degree one places, 6 degree two places, 11 degree three places, 15 degree four places and 42
degree five places. When we use 3 degree one places with u = 3, 6 degree two places with u = 1,
11 degree three places with u = 1, 15 degree four places with u = 1 and 16 degree five places with
u = 1, we obtain

µ3(97) ≤ 3 · 5+ 6 · 3+ 11 · 6+ 15 · 9+ 16 · 12 = 426

where we use Table 1 and M̂3(3) ≤ 5 [13]. Note that Karatsuba algorithm (together with (2.1)) gives
µ3(97) ≤ 1554 [26].

6. Multiplication in F39

In this section, we will give the details of obtaining an explicit formula for multiplication in F39 by
using an elliptic curve. In Example 3.9, we gave the known bounds and we showed that the proposed
method provides an improved bound µ3(9) ≤ 26. Now, we will give the details of how the formula
for multiplication F39 with µ3(9) ≤ 26 is obtained explicitly.
Consider the elliptic curve E : y2 = x3 + x + 2 over F3. Let {P1, . . . , P4,Q1, . . . ,Q6} be a set of

places where Pi’s are of degree one and Qi’s are of degree two. Those are

P1 = ∞, P2 = (x+ 1, y), P3 = (x+ 2, y+ 1), P4 = (x+ 2, y+ 2),
Q1 = (x), Q2 = (x2 + 2x+ 2, y), Q3 = (x2 + 1, y+ x), Q4 = (x2 + 1, y+ 2x),
Q5 = (x2 + x+ 2, y+ 1), Q6 = (x2 + x+ 2, y+ 2).

When we use P1 and P2 with u = 1, P3 and P4 with u = 2 and Q1, . . . ,Q6 with u = 1, the map ϕ
defined in Section 3 becomes injective. In order to find an explicit formula, we need to find the local
parameters of P3 and P4. The local parameters t3 and t4 corresponding to P3 and P4 respectively are

t3 =
y

(x2 + x+ 2)
+

1
(x2 + x+ 2)

, t4 =
y

(x2 + x+ 2)
+

2
(x2 + x+ 2)

.
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Let us choose
D = (x9 + x8 + x5 + 2x3 + 2x2 + 2x+ 1, y+ x7 + x6 + 2x5 + x+ 1).

Then a basis {f1, f2, . . . , f18} ofL(2D) containing the basis ofL(D) is

f1 =
x7y
f
+
(2x8 + 2x7 + x6 + 2x4 + x3 + x2 + 2x+ 2)

f
,

f2 =
x6y
f
+
(x8 + 2x6 + x5 + x4 + 2x3 + 1)

f
,

f3 =
x5y
f
+
(2x8 + 2x5 + x3 + x+ 1)

f
, f4 =

x4y
f
+
(2x8 + x7 + x4 + 2x2 + x+ 2)

f

f5 =
x3y
f
+
(x8 + x6 + x4 + x3 + 2x2 + x)

f
, f6 =

x2y
f
+
(x7 + x5 + x3 + x2 + 2x+ 1)

f

f7 =
xy
f
+
(2x8 + 2x7 + x6 + 2x2 + 2x)

f
, f8 =

y
f
+
(2x7 + 2x6 + x5 + 2x+ 2)

f
, f9 = 1

f10 =
(x14 + x13 + 2x12 + x10 + 2x8 + x7 + x5 + x3 + 2x2)y

f 2

+
(x18 + 2x17 + 2x16 + 2x15 + 2x13 + 2x12 + 2x10 + x9 + x8 + 2x7 + 2x4 + 2x)

f 2

f11 =
(x13 + x12 + 2x11 + x9 + 2x7 + x6 + x4 + x2 + 2x)y

f 2

+
(x17 + 2x16 + 2x15 + 2x14 + 2x12 + 2x11 + 2x9 + x8 + x7 + 2x6 + 2x3 + 2)

f 2

f12 =
(x12 + x11 + 2x10 + x8 + 2x6 + 2x5 + 2x4 + 2x3 + x)y

f 2

+
(x16 + 2x15 + 2x14 + 2x13 + 2x11 + 2x10 + x9 + 2x8 + x6 + x4 + x3 + x+ 1)

f 2

f13 =
(x11 + x10 + 2x9 + x7 + x5 + x3 + 2x2)y

f 2

+
(x15 + 2x14 + 2x13 + 2x12 + 2x10 + x9 + x8 + 2x4 + 2x)

f 2

f14 =
(x10 + x9 + 2x8 + x6 + x4 + x2 + 2x)y

f 2

+
(x14 + 2x13 + 2x12 + 2x11 + 2x9 + x8 + x7 + 2x3 + 2)

f 2

f15 =
(x9 + x8 + 2x7 + 2x5 + 2x4 + 2x3 + x)y

f 2

+
(x13 + 2x12 + 2x11 + 2x10 + x9 + 2x8 + x6 + x5 + x4 + x3 + x+ 1)

f 2

f16 =
(x8 + x7 + 2x6 + 2x5 + x3 + 2x2)y

f 2
+
(x12 + 2x11 + 2x10 + x9 + x8 + 2x)

f 2

f17 =
(x7 + x6 + 2x5 + 2x4 + x2 + 2x)y

f 2
+
(x11 + 2x10 + 2x9 + x8 + x7 + 2)

f 2

f18 =
(x6 + 2x5 + x4 + x)y

f 2
+
(x10 + 2x8 + x6 + x5 + x4 + x3 + x2 + x+ 1)

f 2

where {f1, f2, . . . , f9} is a basis ofL(D) and f = x9 + x8 + x5 + 2x3 + 2x2 + 2x+ 1.
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Now consider the elements a =
∑9
i=1 aifi ∈ L(D) and b =

∑9
i=1 bifi ∈ L(D). Let c =

∑18
i=1 cifi

be the product of a and b given by(
9∑
i=1

aifi

)
·

(
9∑
i=1

bifi

)
=

18∑
i=1

cifi. (6.1)

Then we get the following system of linear equations

m1
m2
m3

m4 −m3 −m5
m6

m7 −m6 −m8
m9 −m11

m10 −m9 −m11
m12 +m13
m14 −m12
m15 −m16

m17 −m15 −m16
m18 −m19

m20 −m18 −m19
m21 +m222

m23 −m21 −m22
m24 +m25

m26 −m24 +m25


︸ ︷︷ ︸

M

=



0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 2 2 2 0 0 1 2 1 2 1 1 0 0 2 2 1 1

0 1 0 2 0 0 2 2 1 0 0 2 0 0 2 0 0 2

0 2 2 0 0 0 1 2 0 0 0 1 1 1 2 2 2 0

2 0 2 1 2 2 1 1 1 0 0 0 0 0 0 0 0 0

2 2 1 2 1 0 1 2 0 0 0 0 0 0 0 0 0 0

2 1 1 2 0 1 0 2 1 0 2 1 0 2 1 0 2 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 2 0 1 1 2 2 2 1 1 2 0 2

2 2 2 2 1 1 2 2 0 0 1 1 0 2 0 2 2 2

1 0 1 1 0 1 0 0 1 2 0 0 2 2 0 0 2 2

0 1 1 0 1 0 0 0 0 0 1 1 2 1 2 2 0 2

1 2 1 2 0 0 0 1 1 2 0 0 2 2 0 0 2 2

2 1 2 0 0 0 1 0 0 0 1 1 2 1 2 2 0 2

0 0 0 1 1 0 0 2 1 2 0 0 1 2 1 1 0 2

2 1 2 2 2 1 2 0 0 1 2 2 1 1 1 2 1 2

0 2 2 2 1 1 1 1 1 1 1 1 0 1 0 2 2 0

1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 2 2


︸ ︷︷ ︸

G



c0
c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c15
c16
c17
c18


︸ ︷︷ ︸
C

where multiplicationsmi for 1 ≤ i ≤ 26, are given in Appendix.
Since G is invertible, we have C = G−1 · M . Then we can find the multiplication in F39 by using

EvQ (c)where we choose

Q = (x9 + 2x8 + x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2, y+ x8 + 2x6 + 2x4 + x3 + 1).

The explicit formula is given in the Appendix.
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Appendix

We give an explicit formula for multiplication in F39 . We represent F39 as the field F3(w) =
F3[x]/(p(x)) where w is the root of the irreducible polynomial p(x) = x9 + 2x8 + x6 + 2x5 + 2x4 +
2x3 + 2x2 + 2. Let α =

∑9
i=1 aiξi, β =

∑9
i=1 biξi, and γ =

∑9
i=1 ciξi ∈ F39 with(

9∑
i=1

aiξi

)
·

(
9∑
i=1

biξi

)
=

9∑
i=1

ciξi,
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where {ξi, ξ2, . . . , ξ9} is a basis of F39 over F3 such that

ξ1 = w
8
+ 2w7 + w6 + w4 + 2w3 + 2w2 + 2,

ξ2 = w
7
+ 2w6 + w5 + w3 + 2w2 + 2w,

ξ3 = 2w8 + w7 + w6 + w5 + 2w4 + w3 + 2w2 + 2,
ξ4 = w

8
+ w7 + w6 + 2w5 + w3 + w,

ξ5 = w
8
+ w6 + 2w5 + w4 + 2w3 + 2w + 1,

ξ6 = w
8
+ 2w5 + w4 + w2 + 2w + 2,

ξ7 = w
8
+ w5 + w4 + 2w2 + 2,

ξ8 = 2w8 + 2w7 + 2w5 + 2w4 + 2w3 + w2,
ξ9 = 1.

The following explicit formula consisting of the 26 multiplications in F3 gives γ from α and β . We
first define the multiplications mi, for 1 ≤ i ≤ 26 and then we give the formula for obtaining the
coefficients of γ using these multiplications.

m1 = a9b9
m2 = (2a2 + 2a3 + 2a4 + a7 + 2a8 + a9)(2b2 + 2b3 + 2b4 + b7 + 2b8 + b9)
m3 = (a2 + 2a8 + 2a4 + 2a7 + a9)(b2 + 2b8 + 2b4 + 2b7 + b9)
m4 = (a8 + 2 a4 + a9 + 2 a3)(b8 + 2 b4 + b9 + 2 b3)
m5 = (2a2 + a7 + 2a3 + 2a8)(2b2 + b7 + 2b3 + 2b8)
m6 = (2a1 + a9 + a7 + 2a3 + a8 + a4 + 2a5 + 2a6)

× (2b1 + b9 + b7 + 2b3 + b8 + b4 + 2b5 + 2b6)
m7 = (a1 + a9 + 2a7 + 2a6 + 2a2)(b1 + b9 + 2b7 + 2b6 + 2b2)
m8 = (2a2 + a3 + 2a4 + a7 + a5 + 2a8 + 2a1)(2b2 + b3 + 2b4 + b7 + b5 + 2b8 + 2b1)
m9 = (2a1 + a2 + a3 + 2a4 + a6 + 2a8 + a9)(2b1 + b2 + b3 + 2b4 + b6 + 2b8 + b9)
m10 = (2a1 + a2 + a3 + 2a4 + a6 + a9)(2b1 + b2 + b3 + 2b4 + b6 + b9)
m11 = a8b8
m12 = (a1 + a5 + a9 + 2a7)(b1 + b5 + b9 + 2b7)
m13 = (2a2 + 2a1 + a5 + 2a3 + 2a4 + 2a7 + 2a8 + a6)

× (2b2 + 2b1 + b5 + 2b3 + 2b4 + 2b7 + 2b8 + b6)

m14 = (2a5 + a9 + a7 + 2a2 + 2a3 + 2a4 + 2a8 + a6)
× (2b5 + b9 + b7 + 2b2 + 2b3 + 2b4 + 2b8 + b6)

m15 = (a1 + a3 + a9 + a4 + a6)(b1 + b3 + b9 + b4 + b6)
m16 = (a2 + a5 + a3)(b2 + b5 + b3)
m17 = (a1 + 2a3 + a9 + a4 + a6 + a2 + a5)(b1 + 2b3 + b9 + b4 + b6 + b2 + b5)
m18 = (a1 + a9 + 2a2 + a3 + 2a4 + a8)(b1 + b9 + 2b2 + b3 + 2b4 + b8)
m19 = (a2 + 2a1 + a7 + 2a3)(b2 + 2b1 + b7 + 2b3)
m20 = (a9 + 2a4 + a8 + a7)(b9 + 2b4 + b8 + b7)
m21 = (a5 + a9 + a4 + 2a8)(b5 + b9 + b4 + 2b8)
m22 = (2a1 + 2a4 + 2a3 + a6 + 2a7 + a2 + 2a5)(2b1 + 2b4 + 2b3 + b6 + 2b7 + b2 + 2b5)
m23 = (a9 + 2a8 + 2a1 + 2a3 + a6 + 2a7 + a2)(b9 + 2b8 + 2b1 + 2b3 + b6 + 2b7 + b2)
m24 = (a9 + 2a2 + a7 + 2a3 + a6 + 2a4 + a5 + a8)

× (b9 + 2b2 + b7 + 2b3 + b6 + 2b4 + b5 + b8)
m25 = (a2 + a3 + a6 + a4 + a8 + a1)(b2 + b3 + b6 + b4 + b8 + b1)
m26 = (a9 + a7 + 2a6 + a5 + 2a8 + a1)(b9 + b7 + 2b6 + b5 + 2b8 + b1).
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The coefficients of γ ∈ F39 are found by using the following equations.

c1 = (2m6 +m11 +m10 +m13 +m14 + 2m16 + 2m17 + 2m19 +m25 + 2m26
+ 2m20 + 2m21 + 2m22 + 2m2 +m1)

c2 = (m6 + 2m9 + 2m10 +m15 +m16 + 2m17 + 2m18 + 2m19 + 2m25 +m26
+m20 +m21 +m23 + 2m2 +m3 + 2m5 +m4)

c3 = (m6 + 2m9 + 2m10 +m13 +m14 +m15 + 2m16 +m19 + 2m24 + 2m25
+m20 +m22 + 2m23 + 2m2 + 2m3 +m5 + 2m4)

c4 = (m7 + 2m8 +m9 +m11 + 2m10 +m13 +m14 +m15 +m17 +m18 + 2m19
+m25 + 2m26 +m21 +m22 +m2 +m1 +m5 + 2m4)

c5 = (2m6 +m7 + 2m8 + 2m9 + 2m11 +m10 + 2m13 + 2m14 + 2m18 +m19
+m25 + 2m26 +m2 + 2m1)

c6 = (2m6 + 2m9 + 2m10 + 2m12 + 2m13 + 2m15 + 2m17 +m18 + 2m19
+ 2m25 +m26 +m22 + 2m23 +m2 +m1)

c7 = (m6 + 2m7 +m8 +m12 +m13 + 2m15 +m16 + 2m18 + 2m19 +m24
+m25 +m20 + 2m21 + 2m22 + 2m1 + 2m3 +m5 + 2m4)

c8 = (m6 + 2m11 + 2m10 + 2m12 +m13 + 2m14 +m16 +m17 + 2m19
+ 2m24 + 2m26 + 2m20 + 2m21 + 2m23 +m1 + 2m3)

c9 = (2m6 + 2m9 +m11 + 2m13 + 2m14 + 2m15 + 2m17 + 2m18 +m19 +m24
+ 2m25 + 2m26 + 2m21 +m22 +m23 + 2m5 +m4).
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