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1. Introduction

Let F, be a finite field and n > 1 be an integer. Let ]F?1 be the dual of F4» as a vector space over F.
Then the rank R(Fqn /Fy) over Iy is defined to be

4
min { € € N | Ju;, v € Fu, w; € Fyn such thatVa, b € Fyn, ab = Y us(@vi(b)wy
i=1

R(Fgn /Fq) is also denoted by pq(n) and it is called the bilinear complexity of multiplication in Fgn
over Fy. It corresponds to the minimum number of Fy bilinear multiplications in order to multiply
two arbitrary elements of Fyn. Winograd [27] showed that this complexity is > 2n — 1, and it is

equal to 2n — 1 if and only if n < %q + 1. Algorithms obtaining the lower bound are based on
interpolation algorithms on the rational function field [27]. D.V. Chudnovsky and G.V. Chudnovsky [ 14]

* Corresponding author.
E-mail addresses: mcenk@cankaya.edu.tr (M. Cenk), ozbudak@metu.edu.tr (F. Ozbudak).

0885-064X/$ - see front matter © 2010 Published by Elsevier Inc.
doi:10.1016/j.jc0.2009.11.002



https://core.ac.uk/display/82778942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:mcenk@cankaya.edu.tr
mailto:ozbudak@metu.edu.tr
http://dx.doi.org/10.1016/j.jco.2009.11.002

M. Cenk, F. Ozbudak / Journal of Complexity 26 (2010) 172-186 173

generalized this idea to algebraic function fields (of one variable) over . Shokrollahi [22] obtained
optimal algorithms for the multiplication in certain finite fields using the principle of D.V. and
G.V. Chudnovsky algorithm and the elliptic curves. Shparlinski, Tsfasman and Vladut [23] gave the
asymptotic bounds for multiplication in finite fields by using curves with many points. Ballet [2,3]
generalized Shokrollahi’s work to the algebraic function fields of genus g. Ballet and Rolland [4] gave
a generalization of D.V. Chudnovsky and G.V. Chudnovsky multiplication algorithm by interpolating
not only degree one places but also interpolating on degree two places. Moreover, Ballet, Rolland,
Chaumine and Brigand in [4-7] have improved the asymptotic bounds given by Shparlinski, Tsfasman
and Vladut in [23]. Arnaud [1] presented a method using local expansions with multiplicity 2 and
places of degree one and two. In [8], new upper bounds of the bilinear complexity of multiplication
in Fgn over Fy are obtained by proving the existence of certain types of non-special divisors of degree
g — linthe algebraic function fields of genus g defined over F;. Moreover, concerning the use of places
of degree greater than one, Ballet and Rolland use places of degree one, two and four to improve the
asymptotic bilinear complexity of multiplication in the extensions of F, in [10].

In this paper, we use algebraic function fields of one variable with places of arbitrary degrees and
moreover we use some places not only once but also many times. Here many times refers to using
first u; > 1 coefficients instead of the first (u; = 1) coefficient in the local expansion of a place P; (see
the map ¢ in Section 3). The proposed method is a generalization of the methods introduced in [ 14,23,
22,2-7,1,8,9]. In the papers cited above, mostly degree one places are used only. Among these papers,
only [4-7,1,8,9] use places of degree greater than one. In these papers, [4-9] use only places of degree
one and degree two but always with u; = 1, i.e., using places only once. In [1], only places of degree
one and degree two are used and all of such places are used at most 2 times.

In order to use places of arbitrary degree, one needs a measure to estimate the contribution of
such places in the bilinear complexity. Here, we use the recently introduced complexity notion Mg (¢)
for this purpose [12]. Recall that 1\71q(z) is the minimum number of multiplications needed in F, in
order to obtain coefficients of the product of two arbitrary ¢-term polynomials modulo x¢ in Fqlx].
We observe that in order to get the best linear complexities using our method, one needs to solve an
optimization problem using M, (¢) and curves with many points over finite fields. Here, curves with
many points refer to curves with many degree one and higher degree points, where the complexity
notion M, (¢) indicates the weight of degree £ points of the curve in the optimization problem. Here,
we would like to remark that local expansions and higher degree points of curves over finite fields have
been shown to be very useful in algebraic geometry codes and low discrepancy sets and sequences
(see, for example [28,29,19,20]). One of our motivations in this paper comes from these results in
algebraic geometry codes and low discrepancy sets and sequences. We improve or reach the best
known bilinear complexities in Fg» where 2 < n < 18 and q = 2, 3, 4 by searching and optimizing
the suitable places and multiplicities in the proposed method. Moreover, our method gives explicit
multiplication formulae immediately. We also give some applications to cryptography.

The rest of the paper is organized as follows: we introduce complexity notions and a brief review of
algebraic function fields in Section 2. The proposed method is presented in Section 3. In Section 4, we
obtain currently best known upper bounds for the bilinear complexity w4 (n) of multiplication for 2 <
n < 18 and q = 2, 3, 4 which includes our some of improvements. Using the method of Section 3, we
obtain some improvements. In Section 5, we give an example of computing multiplicative complexity
of finite fields with large number of elements used in cryptography. The proposed method gives
explicit formulae easily. We illustrate how to obtain explicit formulae reaching the upper bounds
of Section 3 with an example in Section 6.

2. Preliminaries

2.1. Some complexity notions

The notation 4 (n) represents the bilinear complexity of multiplication in Fgn over Fg. It corresponds
to the minimum number of F, bilinear multiplications in order to multiply two arbitrary elements
of Fgn. There is a related but different complexity notion. Let My(n) denote the number of
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multiplications needed in F, in order to multiply two arbitrary n-term polynomials in Fgy[x] (cf.
[13,15,16,25-27]). Here a polynomial is called an n-term polynomial in Fy[x] if it is of the form

Ao+ X+ -+ + ap1X" ! € Fylx].

As reduction modulo an irreducible polynomial in F¢[x] can be performed without multiplications in
Fq, we have

Hq(n) < My(n). (2.1)
However u,(n) and Mg(n) are not necessarily equal in general. Using a polynomial basis
{1,6,6%, ..., "1, ... E?" 2} for Fan1 over Fy, it is easy to show that

My(n) < puqg(2n—1).

We will need another complexity notion in this paper. For a positive integer £, let 1/\7Iq (¢) denote the
multlpllcatlve complexity of computing the coefficients of the product of two £-term polynomials
modulo x* over F,. In other words, M,(€) is the minimum number of multiplications needed in F,
in order to obtain the first £ coefficients of the product of two arbitrary £-term polynomials in Fg[x].
lt is not dlfﬁcult to obtam useful upper | bounds on Mq(ﬁ) for certain values ¢. For example we have
M ¢(2) <3, M 3) <5, M (4) <8 and M ¢(5) < 11 for any prime power q (cf. [13, Proposition 1]).

2.2. A brief review of algebraic function fields

We start with the basics of the algebraic function fields. The details in this subsection can be found
in [24].

An algebraic function field F /F; of one variable over Fy is an extension field F © F, such that F is
a finite extension of Fy(x) for some element x € F which is transcendental over F. A valuation ring
of the function field F /Fgq is aring © C F with the properties F; C @ C F and for any z € F, either
z € @orz~" € 09.Aplace of P of the function field F/F, is the maximal ideal of some valuation ring
O of F /IF,. We will denote the set of all places of F/IF; as P. If @ is a valuation ring of F/Fg and P is its
maximal ideal, then @ is uniquely determined by P hence we denote @ by Op.

Fp := Op /P is called the residue class field of P. The map x — x(P) from F to Fp U {oo} is called the
residue class map with respect to P. Degree of P is [Fp : Fq] := degP.

The free abelian group which is generated by the places of F /F, is called the divisor group of F /Fq
and it is denoted by Dr. A divisor is a formal sum D = ZPE]P’ npP w1th np € Z,almost all np = 0. The
support of D is defined by suppD := {P € Pg|np # 0}. A divisor of the form D = P with P € Pr is
called a prime divisor. Two divisor D = ) npP and D’ = }_ n,P are added coefficientwise. For Q € P¢
and D = ) npP € Dr we define vq (D) = nq. A partial ordering on D is defined by

Dy < D; <= vp(D1) < vp(Dy)
for any P € Pr. A divisor D > 0 is called positive. The degree of a divisor is defined by
deg D := Z vp(D) - degP
PePr

and deg : »H — Z is a group homomorphism.

Let 0 # x € F and Z (respectively N) be the set of zeros (poles) of x in Pr. Then (x)o := Y _p, vp(x)P
is called the zero divisor of x, (X)oo = D py(—vp(x))P is called the pole divisor of x and (x) :=
()0 — (x)oo is called the principal divisor of x.

The set r = {(x)|0 # x € F} is defined as the group of principal divisors of F /IF,. The factor group

C = G{DF/JPF

is called the divisor class group. The divisor class of D, denoted by [D], is the corresponding element
in the factor group Gr. For D1, D, € Df, we denote Dy ~ D, if [D1] = [D,].



M. Cenk, F. Ozbudak / Journal of Complexity 26 (2010) 172-186 175

For a divisor A € Dr we set
L(A) .= {x € F|(x) > —A} U {o0]}.

£L(A) is a vector space over Fg. If A’ is a divisor equivalent to A then £(A) = L(A'). For A € Dy, the
integer dim A := dim «£(A) is called the dimension of the divisor A. The genus of F /F, is defined by

g = max{deg A — dimA + 1|A € Df}.
ForA € O,
i(A) :=dimA—degA+g—1

is called the index of speciality of A. Any divisor A € D is called non-special if i(A) = 0; otherwise A
is called special.

3. The method

Let F/F, be an algebraic function field with full constant field F,. Let Py, ..., Py be distinct
places of arbitrary degrees. Assume that Q is a place of degree n. Let Oy be the valuation ring of
the place Q. Note that the residue field Oq/Q is isomorphic to Fgn. Let D be a divisor such that
suppD N {Q, Py, P, ..., Py} = @. Let L(D) be the Riemann-Roch space of D. Assume also that the
evaluation map Evq from £(D) to the residue field 9o /Q is onto. For 1 < i < N, let t; be a local
parameter at P;. For f € £(2D), let

f=aio+aiiti+ Oli,ztiz + -
be the local expansion at P; with respect to t;, where o; o, @i 1, . .. € queg([’i). Let u; be a positive integer
and consider the Fy-linear map

u;
@i . L(2D) — (]queg(m)
= (o, @its .-, 1) -

Let ¢ be the Fy-linear map given by

up uz un
¢ L(2D) — (]queg(P])) X (queg(Pz)) X oo X (Iqueg(PN)) (3.1)
f= (@), g20). ..., on ().
Finally we assume that the map ¢ is injective.
Theorem 3.1. Under the notation and assumptions as above we have
N o~
1q(M) <Y pig(deg(P)Mesery (u). (3.2)
i=1
Proof. Let {h, : 1 < ¢ < n} be a fixed basis of £(D) over F,. Moreover we choose and fix i}, ..., h,
suchthat {hy : 1 < £ <n}U{h, : 1 <k < m}isabasis of £(2D). We consider Evq (h;), ..., Evg (hy),
Evo(h)), ..., Evq(h},) € Oq/Q = Fqn as constants since hy, ..., hy, h, ..., h), are fixed. Similarly,

u u
we consider p(hy), ..., p(hy), p(H). ..., p(H.) € (queg@“) U x (quegwm) N

For f € L£(2D), there is no cost for bilinear complexity in obtaining ¢(f). Indeed, as

n m
f=2 chet ) d
= k=1

withcy ..., ¢, dy, ..., dn € Fg, we obtain ¢(f) using only multiplications with constants ¢ (hy), .. .,
o(hy), e(h)), ..., ¢(h),) and additions as in

O(f) = 1) + - - + cug(ha) + dio(h}) + - - + dmgp (7).
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Similarly for f € £(2D), there is no cost for bilinear complexity in obtaining Evq (f). Note that the
evaluation map from .£(2D) to Evg (f) is surjective but not necessarily injective.
We identify £(D) with Oq/Q = Fg4n without any cost on bilinear complexity. For given o, 8 €

Fpn = Oq/Q, let fi, f, be corresponding functions in £(D). We obtain the coefficients ay, ..., a,,
b1, ..., by such that
fi =athy + -+ ayhy, fr =bihi 4+ -+ byhy (3.3)

without any cost in bilinear complexity.
Note that fif> € £(2D). The only cost on bilinear complexity stems from obtaining the coefficients
ClyovosCpydy, ..., dpn € Fg, where

n m
fifs =) cohe + )y dih
=1 k=1

using the coefficients aq, ..., an, by, ..., b, given in (3.3). Indeed the product o8 € Fgn is obtained
using Evq (f1f2) without any extra cost in bilinear complexity provided that the coefficients cq, .. .,
Cay - .., dyy € Fq are known.

Using our arguments above, we obtain the coefficients ¢y, ..., ¢y, dy, ..., dyy € Fy from

o(fif) = (e1(fif), e2(fifo), .. ., en(fif2)).

We will complete the proof by showing that the cost of obtaining ¢;(fif>) using the coefficients
aj,...,ay, by, ..., b,isat most

11 (deg(P)M escry (1)

foreach1 <i <N.
Let 1 <i < N be an integer and

@i(f1) = (oo, i1, -5 Oigy—1), ¢i(f2) = Bios Bits -+ s Biu—1)-

Note that the coordinates a;y, ..., ®jy—1, Bio, - - Biy—1 € ]queg(pi> and they are obtained using the

coefficients ai, ..., ay, by, ..., by and the constants g;(h1), . .., ¢i(h,) without any cost. _
For a transcendental x over I degrp, WE consider the polynomial ring IF jdegp) [x]. Let pﬁ” (x), pg') x) €
Fgegrp [x] be polynomials given by

p(]:) x) = ajo+oaix+---+ ai,ui—]xui_lv

pYX) = Bio+ Biix+ - + Biy—x"
Let p?(x) = p’(®)py’(x) and yi, yi..... ¥l _ € F ey be the first u; terms of p(x). Namely, let
Yo» Vis -+ +» Yuy—1 € Fyaegry such that
PP =5+ vix+ -+ i X mod X € Fgeecry [x].
It is clear that
0i(Fify) = (Vo Vis -+ Yag1)-
The cost of obtaining the first u; terms y;, y{, . . . v, _; of the polynomial p’ (x) using the polynomials

p(li) (x), pg) (x) is at most

144(deg(P;)M ey ().
This completes the proof. O

Using Theorem 3.1 we obtain explicit algorithms for multiplications in Fgn. The conditions of the
following theorem guarantee that the assumptions of Theorem 3.1 are satisfied.
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Theorem 3.2. Let F/F; be an algebraic function field with full constant field F,. Let g be the genus of
F. Let Py, P,, ..., Py be distinct places of arbitrary degrees of F. Let uy, u,, ..., uy be arbitrary positive
integers. Assume that

(1) there exists a non-special divisor of degreeg — 1,
(2) there exists a place of degree n,

(3) Y, deg(P)u; > 2n +2g — 2.

Then assumptions in Theorem 3.1 hold and we have

N
1q(M) <Y piq(deg(P,)Myaesiey (1)

i=1

Proof. Let G be a non-special divisor of degree g — 1. Let Q be a place of degree n. Let D, be the effective
divisor given by D; = G+ Q.As D; > G, we have that D, is non-special again (cf. Remark 1.6.9, item (f)
[24]). Hence
dim£L(Dq) =deg(D;)+1—-g=Mn+g—-1)+1—g=n.
Using Strong Approximation Theorem (cf. Theorem 1.6.4 [24]) we obtain a divisor D of F such that
D~D; and suppDN{Q,Pi,P,,...,Py}=40.
Hence D is non-special (cf. Remark 1.6.9, item (c)) and the map Ev, from £(D) to the residue field
u u u
o /Q isonto. Let ¢ be the Fg-linear map from £(2D) to (]queg([)l)) ! % (queg(Pz)) 2 XeeeX (quegwm) N

given by (3.1). It remains to prove that ¢ is injective. But the kernel of ¢ is £(2D — ) u;P;) and as the
degree of the divisor 2D — Y u;P; < 0 by the assumption (3), the kernel is {0}. So ¢ is injective. O

Remark 3.3. Under the notation and assumptions of Theorem 3.2, consider the subcase that N =
N1+ N, P; is a degree one place for 1 < i < Ny and P; is a degree two place for Ny +1 < i < Ny +N,.
Moreoverletu; = 1for 1 < i < N;+N,.Note that ;q(1) = 1, uq(2) = 3(cf. [27]), andqueg(Pi)(]) =1
for any deg(P;). Therefore the condition (3) of Theorem 3.2 becomes

Ny +2N; > 2n+2g — 2,
and the bound of Theorem 3.2 on p4(n) becomes
Hq(n) < Ny + 3N,.

These coincide with the corresponding result of Ballet and Rolland in [4].

Remark 3.4. By Theorem 3.2, in order to obtain better upper bounds on j4(n), we need algebraic
function fields with full constant field 4, with small genus g, and with enough number of rational
places of suitable degrees. It is well known that finding algebraic function fields over F; with fixed
small genus g and many rational places is not easy (cf. [ 18, Chapter 4]). In Theorem 3.2, as deg(P;) and
u; are further parameters to be chosen, the condition (3) is weaker than the corresponding condition
in [4, Theorem 2.2].

Using u = 2 for degree one places and u = 1 for degree two places in Theorem 3.2, we obtain the
following corollary.

Corollary 3.5. Let F /F, be an algebraic function field with full constant field IF,. Let g be the genus of F.
Assume there exist at least N, degree one and at least N, degree two places of F. If

(1) there exists a non-special divisor of degreeg — 1,
(2) there exists a place of degree n,
(3) 2Ny 4+ 2N, > 2n+2g — 2,
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then we have

3
Hq(n) <3n+ 7g

Proof. We use Ny degree one places with u = 2 and N, degree two places with u = 1. Since we have
2N; + 2N, > 2n + 2g — 2, then ¢ is injective with rank 2n + g — 1. Therefore we can choose N;
degree one places from degree one places and N; degree two places from degree two places such that
2n+g — 1 < 2N} + 2N, < 2n + g. Then we get

Hq(n) < 3N; + 3N, 53(n+§) :3n+37g. O

We compare Corollary 3.5 with the corresponding results in [4]. The bound of Corollary 3.5 is at
least as good as the bounds of [4, Theorem 2.2] and [7, Theorem 2.1]. The condition (3) of Corollary 3.5
is weaker as the corresponding condition of [4] and [7] is Ny +2N; > 2n+2g —2.The other conditions
of Corollary 3.5 are the same as the ones in [4]. Therefore Corollary 3.5 gives improved bounds on 4 (1)
compared to the ones in [4].

For some explicit algebraic function fields, the map ¢ in (3.1) becomes injective for suitable choices
of the places Py, ..., Py and the divisor D even Zf'zl deg(P))u; = 2n + g — 1 holds. We state such a
result in the following theorem.

Theorem 3.6. Let F/F, be an algebraic function field with full constant field Fg. Let g be genus of F. Let
Py, ..., Py be distinct places of arbitrary degrees of F. Let uy, uy, ..., uy be arbitrary integers. Assume
that

(1) there exists a non-special divisor D of degreen + g — 1,
(2) there exists a place of degree n,

(3) LN, deg(Pyu; = 2n+g — 1.

up un
Let ¢ be the IFy-linear map from £(2D) to <queg(l’1)) XX <]queg(pm> givenin (3.1). If ¢ isinjective
then

N
1q(m) < Y pig(deg(P)Mygesiry (w).
i=1

Proof. As D is non-special, dim(L£(D)) = degD+1—g = n. Moreover supp (D) U{Q} = @ and hence
the evaluation map Evq from £(D) to Oq/Q is bijective. Note that supp (D) U {Py,...,Py} = @ as
well. The result follows from Theorem 3.1. O

Remark 3.7. It is enough to assume D is a non-special divisor of degree n 4+ g — 1. Using Strong
Approximation Theorem (cf. Theorem 1.6.4 [24]), we can always obtain D’ from such D with D’ ~ D
andsuppD’' N {Q, Py, P, ..., Py} =0.

Remark 3.8. In the case of places only of degree one and two and with u = 1, the conditions of
Theorem 3.6 are exactly equivalent to the conditions of Theorem 2.2 in [7]. Moreover, The same bound
was given in [4] under certain conditions on g and n only for degree one and degree two places with
u = 1. The conditions on q and n in [4] seem to come from the choice of a non-special divisor D with
extra conditions. In our case the extra conditions refer to the injectivity of the map ¢, even when
Z?’ﬂ deg(P)u; = 2n 4+ g — 1. We give explicit examples of algebraic function fields satisfying this
criteria in our improvements.

The following example shows that Theorem 3.1 gives an improved bound for F.



M. Cenk, F. Ozbudak / Journal of Complexity 26 (2010) 172-186 179

Example 3.9. Let ¢ = 3 and n = 9. Using the results in the literature, to the best of our knowledge,
the best upper bound is ©3(9) < 27, which can be derived by two alternative methods as follows.
Using [13,16,26], we obtain the upper bounds on M3(9) as 36, 34 and 27, respectively. Hence by [13]
and (2.1) we get 3(9) < 27. For the method in [4], we have considered all algebraic function fields of
genus 0 and 1. Let E be elliptic curve y? = x> + x + 2 over F3. It has 4 degree one places, 6 degree two
places and 8 degree three places. As4+2-6 < 2-9+1—1, the method of [4] cannot be applied directly.
Using 3 degree one places, 6 degree two places, and 1 degree three places, all with u = 1 as in [4], we
obtain that ©3(9) <3-1+4+6-3+4+6-1 = 27. Now we improve this to ©3(9) < 26 using Theorem 3.6
together with u = 2 for some places. We take 2 degree one places with u = 2,2 degree one places with
u = 1, and 6 degree two places with u = 1. Therefore we obtain that ;3(9) <2-34+2-1+6-3 = 26.
We find an explicit formula of such an algorithm via Theorem 3.6, which can be found in Appendix.
The description and details of finding explicit formula for ©3(9) < 26 are given in Section 6.

4. Multiplication in finite fields F» for2 <n < 18andq = 2, 3,4

In this section, for2 < n < 18 and q = 2, 3, 4, we obtain the best known (upper) bounds on r4(n)
using the various methods in the literature and the proposed method in this paper. In particular, we
indicate some improvements obtained using the proposed method on certain values of 14 (n).

To the best of our knowledge, for this range of values of q and n, the best known (upper) bounds
on jq(n) are obtained using the following methods:

(i) The methods based on the idea of D.V. Chudnovsky and G.V. Chudnovsky [14], which are
presented in the [2-4,7].
(ii) The observation in (2.1) together with results presented in [12,13,15,16,26,27].
(iii) A well known method when n is a composite number which is as follows: Let k, £ > 2 be positive
integers with n = k - £. As F¢ is a subfield of Fyn, it immediately follows from the definitions of
Hq(n), pqe (k) and puq(€) that

tq() < pge (k) - paq(L). (4.1)
(iv) The proposed method.

Now we give some of the improvements that are obtained by using the proposed method explicitly.
We start with multiplication in F3n. For the cases n = 9, 11, 13, 15, 17, 18, we improve the best
known bounds given in [13,16]. Throughout the paper we use the notation of Magma [11] for
presenting the places and the divisor of algebraic function fields.

In Example 3.9, it is already explained how to obtain ©3(9) < 26. For the other improvements in
characteristic three in this section, we again use the same elliptic curve E given in Example 3.9. Recall
that E has 4 degree one places, 6 degree two places and 8 degree three places. For each choice of the
paces and the divisors given below, it is easy to verify, for example using Magma as in Section 6, that
the corresponding map ¢ in (3.1) is injective and hence the proposed method applies.

In order to show that pu3(11) < 34, it is enough to take 2 degree one places with u = 2,
2 degree one places with u = 3 and 6 degree two places with u = 1 with the choice of D =
G20 X + X8 X X3 2% +x+ 1,y + X042 + 280 + 2% + 23 + x4+ 2).

In order to obtain w3(13) < 42, we use 4 degree one places with u = 2, 6 degree two places with
u = 1 and 2 degree three places with u = 1 with the choice of D = (x> + 2x'? + x'! 4+ 2x1° +- x® +
XX+ 2+ 2 + 1,y + %2 4+ x4+ 2x10 4 2x7 &7 4+ X% 4+ 2x* + 2X3).

On the other hand, taking 4 degree one places with u = 3, 6 degree two places with u = 1 and 2
degree three places with u = 1 gives 113(15) < 50 where D can be selected as (x'> 4 2x!3 4 2x12 +
2 4 x10 x84 2x+ 2,y 4+ 2%13 4+ x12 4 X1 4 2x10 4+ X9 4+ 200 4+ x* + x5 + 2x% + 2x).

When we choose D = (x17 +2x16 4+ 2x1° 4+ x13 4+ x104+2x° +-x® +x" +2X0 +2x° + 28> +x+ 1,y +
2% x4 2x13 4 x12 4 x11 4+ x10 4 %% 4 x? 4- 2), another improved bound p3(17) < 58 is obtained
by using 2 degree one places with u = 2, 2 degree one places with u = 3, 6 degree two places with
u = 1and 4 degree three places withu = 1.
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Finally, ©3(18) < 62 is obtained by taking 3 degree one places with u = 2, 1 degree one places
with u = 3, 6 degree two places with u = 1 and 5 degree three places with u = 1 where one can use
D = (x184+2x17 4-2x16 4 x5 4 x4 2x10 - x* 4 2x 4+ 2, y+2x17 +-x14 4 x13 4+ 2x12 4 2x8 4+ x84+ 2x° 4+-x%).

Next we show that the proposed method improves or reach the currently best known bilinear
complexities in F4n for n = 11, 13 and 17. In order to show that p4(11) < 30, u4(13) < 37 and
14(17) < 53 we use the proposed method as follows. Let F4, = {0, 1, w, w + 1} where w is a root of
x> +x+ 1 € Fy[x]. Let

Eq :y2+wy=x3+x2+wx+l,
E2:y2+w2xy+wy=x3+wx+w2,
E3:y2—|—y=x3+x2—|—w2x+w

be elliptic curves over Fy4. E; has 7 degree one places, 7 degree two places and 14 degree three places.
E; has 6 degree one places, 9 degree two places and 16 degree three places. Finally, E5 has 5 degree
one places, 10 degree two places and 20 degree three places.

The bound 4(11) < 30 can be obtained using the proposed method together with E;. When we
use 1 degree one place with u = 2, 6 degree one places with u = 1 and 7 degree two places with
u = 1, we get ;£4(11) < 30. Note that the same bound is also obtained by the method of [4]. If we use
E, then we obtain 14(11) < 30 by using 6 degree one places and 8 degree two places.

The improved bound p4(13) < 37 can be obtained by using E,. Let {Py, ..., Ps, Q1,...,Qo} be a
set of places where P; ’s are of degree one and Q;’s are of degree two. Those are

Py = o0, P,=xy+1), P3=(x,y+x+w2), P4=(x—|—w2,y+w),
Ps=@x+1y), P=Kx+1Ly+x, Q=@&+w), Q@=&+x+uv’y),
0= +x+wy+wix+w), U= +wkx+1,y+w),

Q= +wx+1Ly+wx, Q=E+wx+uw’ y+x),

Q; = (X +wx + w?, y + wx + w), Qs = (> +wx+w,y+x+w?),

Qo = (X* + wx+w,y + wx + 1).

When we use 2 degree one places, P;, P,, with u = 2, 4 degree one places, P, ...,Ps withu = 1
and 9 degree two places, Qq, ..., Q9 with u = 1, we obtain u4(13) < 37 where one can use
D= (x4 wx? +x" +x0 £ wx® 28 +wx’ +wx + 2 +x+w,y+ wx'? 11+ wx0
w?x% + w2x® + wx” + wx® + wx’ + wix* + x> + X + x + w?).

The bound 144(17) < 53 can be obtained by using two methods, the proposed method and method
introduced in [4]. When we use the elliptic curve E, with 2 degree one places with u = 2, 4 degree
one places with u = 1 and 9 degree two places with u = 1, we get u4(17) < 53. On the other hand,
using E3 with 5 degree one places with u = 1, 10 degree two places with u = 1 and 3 degree three
places with u = 1 gives the same bound.

We summarize the results of this section in Table 1. The symbol * denotes an improvement by
using the proposed method compared to the best known values in the literature. In this table, we
indicate the methods that achieve the bounds in the corresponding columns. These are the methods
(i), (ii), (iii) or (iv) explained in the beginning of Section 4.

5. Application

Finite field multiplication is widely used in many areas such as cryptography and coding theory.
For example, in elliptic curve cryptography, finite fields with large number of elements are used. Some
of the suitable finite fields are proposed by NIST (National Institute of Standards and Technology) [17].
In that list, it is suggested to use the fields with 2163, 2233 2283 2499 3pd 2571 elements. Now, we will
compute the multiplicative complexity for multiplication in F,is3 using the proposed method. The
most suitable elliptic curve over F, (up to isomorphism) is y?> +y = x> 4+x+ 1 which has 1 degree one
place, 2 degree two places, 4 degree three places, 5 degree four places, 8 degree five places, 8 degree
six places, 16 degree seven places and 25 degree eight places. We take 1 degree one place withu = 5,
2 degree two places with u = 2, 4 degree three places with u = 1, 5 degree four places withu = 1,8
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Table 1
Bounds for pq(n) for2 <n < 18andq=2,3,4.
n Mo (n) Method ns(n) Method na(n) Method
2 3 (ii) 3 (ii) 3 (ii)
3 6 (ii) 6 (ii) 6 (ii)
4 9 (ii) 9 (ii) 8 (ii)
5 13 (ii) 12 (ii) 11 (ii)
6 15 (iii) 15 (ii) 14 (ii)
7 22 (ii) 19 (ii) 17 (ii)
8 24 (iii) 21 (iii) 20 (ii)
9 30 (ii) 26* (iv) 23 (ii)
10 33 (iii) 27 (iii) 27 (ii)
11 39 (ii) 34* (iv) 30 (i), (iv)
12 42 (iii) 36 (iii) 33 (iii)
13 48 (ii) 42* (iv) 37* (iv)
14 51 (iii) 45 (iii) 39 (iii)
15 54 (iii) 50* (iv) 45 (iii)
16 60 (iii) 54 (iii) 45 (iii)
17 67 (ii) 58* (iv) 53 (1), (iv)
18 69 (ii) 62* (iv) 51 (iii)

degree five places with u = 1, 8 degree six places with u = 1, 15 degree seven places with u = 1 and
11 degree eight places with u = 1. Therefore we obtain

n2(163) <11 +2-9+4-64+5-94+8-13+8-154+15-22 4 11- 24 = 916,

where we use Table 1 and Mz 5) < 11, 1\714(2) < 3[12]. On the other hand, the best we can expect
from Karatsuba algorithm (together with (2.1))is u»(163) < N, where N is an integer with N > 2187,
since it is given in [26] that M, (128) < 2187.

The finite field F597 is used in pairing based cryptography [13,21]. In order to compute 1t3(97) by
using the proposed method, it would be better to use the elliptic curve y*> = x> + x> + 2x + 1 which
has 3 degree one places, 6 degree two places, 11 degree three places, 15 degree four places and 42
degree five places. When we use 3 degree one places with u = 3, 6 degree two places withu = 1,
11 degree three places with u = 1, 15 degree four places with u = 1 and 16 degree five places with
u = 1, we obtain

13(97) <3-5+6-34+11-6+15-9+16- 12 = 426

where we use Table 1 and IV[_:;(3) < 5[13]. Note that Karatsuba algorithm (together with (2.1)) gives
w3(97) < 1554 [26].

6. Multiplication in F5o

In this section, we will give the details of obtaining an explicit formula for multiplication in F3s by
using an elliptic curve. In Example 3.9, we gave the known bounds and we showed that the proposed
method provides an improved bound u3(9) < 26. Now, we will give the details of how the formula
for multiplication Fy9 with p3(9) < 26 is obtained explicitly.

Consider the elliptic curve E : y*> = x> + x + 2 over Fs. Let {P;, ..., P4, Qy, ..., Qs} be a set of
places where P;’s are of degree one and Q;’s are of degree two. Those are

Py = o0, P, =x+1,y), P3=(x+2,y+1), Py=(x+2,y+2),
Q=K. Q=F+2&+2y., QG=F+1Ly+x, Q=E+1y+2x),
G=K+x+2,y+1), Q=&F+x+2,y+2).
When we use P; and P, withu = 1, P; and P, withu = 2 and Qy, ..., Qs withu = 1, the map ¢
defined in Section 3 becomes injective. In order to find an explicit formula, we need to find the local
parameters of P3 and P,4. The local parameters t3 and t4 corresponding to P3 and P4 respectively are
_ y 1 oo y 2
TR +x+2) KR +x+2)] TR rx+2) R 4x+2)

t3
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Let us choose
D=+ 4+ +2+2%+ 2+ 1, y+x +x5+2° +x+ 1).
Then a basis {f1, f, . . ., fig} of £L(2D) containing the basis of L(D) is
Xy @2+ X+ 2P+ 2x+2)

h=—+ G ,
f x6y+(x8+2x6—|—x5+x4—|—2x3+1)
2= — ,
f f
Xy 2 +2°+x3+x+1) Xy @2 +X+x+2°+x+2)
f3 =—+ ’ f4 =—+
f f f f
By B+ 2% +x) Xy K+ +x3+x2+2x+1)
f5 =—+ ’ fG =—+
f f f f
xy  (2x® 4+ 2x7 +x% 4+ 2x2 + 2x) y X 4+ 25 +x° +2x+2)
f7=7+ 7 ) f8=)7+ 7 . fo=1
(M 4 X3 4 2x12 4 x10 4 268 £ X7 415 + 5 + 28)y
fio = >
N (%18 + 2x17 4+ 2x16 4+ 2x1° 4 2x13 4+ 2x12 + 2x10 4 X% + X8 + 2x7 + 2x* + 2x)
I
f P+ x12 4 2% 20 4+ 2¢7 + X8 X+ X2+ 20)y
1 = P
N 7 4+ 2x16 4 2xB F2xM 4 2xP 4 2N 20 X8 X + 248 + 253 +2)
I
I (%12 4 x4+ 2x10 4 X8 4+ 2x6 +2x° + 2x* + 2x3 + x)y
12 = 5
N X+ 2x 2xM 2B 2 22X 2B X x4+ 1)
2
; &1+ X104+ 2% + X7 +2° + 2% + 2y
13 = >
N (X1 4+ 2x1 4 2x13 + 2x12 4+ 2x10 4 X% + X8 + 2x* + 2x)
2
f 10 4+ %%+ 2x8 + X0 + x* + X2 + 2x)y
14 =
I
N M 2B 4 2x12 21T 420 + x84 X7 + 243 4+ 2)
I
I (0 4+ x® 4+ 2x7 +2%° + 2x* + 2% + x)y
15 =
2
N P22 2" 20 P 28 XX X x4 )
2
OB +x +25 420 + 33+ 2%y (x4 2" 4+ 2x10 + X% + %8 + 2x%)
fis = 3 + 5
f f
K +x8+2° 2+ X2+ 20y M+ 210+ 20 +x8 + X7 +2)
fir = 3 + 3
f f
CE+2° +x +x)y GO+ 28 x4+ + X+ X2 +x+1)
fis = 72 + 72

where {fi, fo, ..., fo}isabasisof L(D) and f = x° +x¥ +x° +2x> +2x*> +2x + 1.
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Now consider the elemgnts a= Z?:l aif € L(D)and b = 2?21 bifi € L(D).Letc = 211:81 cif;
be the product of a and b given by

9 18

9
ARDINIAEDI (6.1)
i=1

i=1 i=1

Then we get the following system of linear equations

r m 7 [0 0 000 0O O0OT1T1UO0O0O0 0 0 0 0 O0/[cT
m, 00222 00 12 12110022 1 1|]|¢g
m; 01 02 00 2 2 100 20020 0 2|]|c
my — m3 — ms 0022000 120001112 2 2 0f]cg
mg 2 02 12 2 111000000 0 0 0|]|c
m; — mg — mg 2 212 1012 0000000 0 0 0]cs
my — my 2112 0102 10210210 2 1|]|c¢
My — My — My 0000 00O 100O0O0UO0OTUO0TUO0TO0O0 O0f]c¢
Myy + mis 1000 10 2 01 12 2 2 1120 2|]|c
My — My “l2 222 1122001102022 2||c
Mys — Mg 101 10100 12 00 2 200 2 2||co
My7 — Mys — Mg 0110100000 1 12 12 2 0 2|]|en
Myg — Mg 1212 000 1 12 00 2 200 2 2||cp
Mg — Mg — Mig 212 000 1000 1 12 12 2 0 2||cs
Moy + My 000 1 100 2 120012110 2|]cs
Mys — Myy — My 212 2 2 1200 12 2 1112 1 2|]|ce
Mg + Mas 00222 111111110 10 2 2 0|]ecy
Lmys—maa+mysd L1 1 1 1 0 1.0 1 0 0 1 1 1 0 1 0 2 21 Legd
——
M G C

where multiplications m; for 1 < i < 26, are given in Appendix.
Since G is invertible, we have C = G~! - M. Then we can find the multiplication in F39 by using
Evg (c) where we choose

Q:(x9—|—2x8+x6+2x5+2x4+2x3+2x2+2,y+x8+2x6+2x4+x3+1).

The explicit formula is given in the Appendix.
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Appendix

We give an explicit formula for multiplication in Fys. We represent Fyo as the field F3(w) =
F3[x]/(p(x)) where w is the root of the irreducible polynomial p(x) = x° 4+ 2x® + x® 4+ 2x> + 2x* +

20422 4 2. leta =Y 0 ai&, B=Y, big,andy = Y0 | ci& € Fyo with

9 9

9
Z ai&; | - Z bi&i | = Z ci&i,
i1

i=1 i=1



184 M. Cenk, F. Ozbudak / Journal of Complexity 26 (2010) 172186

where {&;, &5, ..., &} is a basis of F3s over F5 such that
& = wd+ 2w’ + wb + w4+ 2w + 2w + 2,
& = w + 2w’ 4w’ + w? 4 2w? + 2w,
& = 2wt + w’ + wb + w’ + 2w + w? + 2w? + 2,
& =w+w +uw®+2w +w +w,
&s w® + wb + 2w’ + w + 2w + 2w + 1,
& = wd + 2w’ + w* + w? + 2w + 2,

& = wd + w® + w? +2w? + 2,
& = 2w 4+ 2w’ + 2w + 2w + 2w + w?,
& = 1.

The following explicit formula consisting of the 26 multiplications in F5 gives y from « and 8. We
first define the multiplications m;, for 1 < i < 26 and then we give the formula for obtaining the
coefficients of y using these multiplications.

mp = a9b9

m; = (2(12 + 203 + 2(.14 +a; + 2ag + ag)(2b2 + 2b3 + 2b4 + b7 + 2b3 + b9)

ms = (a2 + Zag + 2(14 + 207 + a9)(b2 + Zbg + 2b4 + 2b7 + bg)

my = (ag +2as + ag + 2 az)(bg + 2 by + bg + 2 b3)

ms = (202 +a; + 2(13 + Zag)(sz + b7 + 2b3 + Zbg)

meg = (2(11+(19+Cl7+2(13+(13+a4+205+2(16)
X(2b1+bg+b7+2b3+bg+b4+2b5+2b6)

my; = (ay + ag + 2a; + 2ag + 2ay) (b + bg + 2b; + 2bg + 2by)

mg = (2a, + as + 2a4 + a; + as + 2ag + 2a;)(2by + bs + 2bs + by + bs + 2bg + 2b;)
mg = (2a; + a; + az + 2a4 + ag + 2ag + ag)(2by + by + b3 + 2bs + bg + 2bg + bg)
Mo = (2a1 + az + a3 + 2a4 + as + a9)(2by + by + b3 + 2bs + bs + bg)

my; = agbg

myz = (a1 + as + ag + 2a7)(by + bs + by + 2by)

my3 = (2ay + 2a; + as + 2as + 2a4 + 2a; + 2ag + ag)

X (2by + 2by + bs + 2bs + 2bs + 2b; + 2bg + bg)

(2as + ag + a; + 2a, + 2a3 + 2a4 + 2ag + ag)

X (2bs 4 bg + by + 2b, + 2b3 + 2bs + 2bs + bg)

mys = (a1 + a3 + ag + a4 + ag) (b1 + b3 + bg + by + be)

myg = (az + as + asz)(by + bs + bs3)

mq7 = (a1 + 2a3 + dg + a4 + s + a2 + as)(by + 2b3 + by + by + bs + by + bs)

mig = (a1 + ag + 2a; + az + 2a4 + ag) (b1 + by + 2by + b3 + 2by + bs)

Mg = (az + 2a; + a7 + 2a3)(by + 2by + by + 2b3)

Myo = (Ag + 2a4 + ag + a7)(bg + 2by + bg + by)

My1 = (@5 + ag + a4 + 2ag)(bs + by + by + 2bg)

myp; = (201 + 2a4 + 2613 + ag + 2(17 +a + 2(15)(2b1 + 2b4 + 2b3 =+ be + 2b7 + b2 + 2b5)
mp3 = ((19 + 2ag + 2a; + 2as + ag + 2a; + az)(bg + 2b8 + 2b1 + 2b3 + bG + 2b7 + bz)

myy = (ag + 2a; + a7 + 2a3 + ag + 244 + as + ag)
X (bg 4 2by 4 b7 + 2b3 + bg + 2bs + bs + bg)

Mys = (az + as + ag + a4 + ag + ay) (b + b3 + bg + by + bg + by)
mye = (a9 + a7 + 2a¢ + as + 2ag + a1)(bg + b7 4+ 2bg + bs 4 2bg + by).

M1y
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The coefficients of y € F3 are found by using the following equations.

€1 = (2mg + myy + Mg + My3 + Mg + 214 + 2My7 + 2Myg + Mps + 2iMyg
+2myg + 2myy + 2myy + 2my + my)

€2 = (Mg + 2mg + 2myo + M5 + My + 2Ma7 + 2Myg + 2Myg + 2Mas + Mag
+ Myg + My + M3 + 2my + ms3 + 2ms + my)

c3 = (Mg + 2mg + 2myo + My3 + Mg + M5 + 2Myg + Mg + 2Mpa + 2mMys
+ My 4+ My + 2my3 + 2my 4 2ms + ms 4 2my)

€4 = (M7 + 2mg + mg + My + 2myg + M3 + Mg + Mys + My7 + Mg + 2mMyg
+ mys + 2mae + myy + My + my + my + ms + 2my)

s = (2mg 4+ m7 + 2mg + 2mg + 2myqq + myg + 2my3 + 2myy + 2myg + myg
+ mys + 2mae + my + 2my)

s = (2mg + 2mg + 2myg + 2myy + 2my3 + 2mys + 2mq7 + myg + 2myg
+2mys + mae + My + 2mp3 + my + my)

¢; = (mg + 2m7 + mg + My + M3 + 2mMys + Mye + 2myg + 2myg + Mg
4+ Mys + Myg + 2myy + 2myy + 2my + 2ms + ms + 2my)

cg = (Mg + 2myy + 2myg + 2myy + my3 + 2myg + Myg + M7 + 2Myg
4 2Myy + 2Mye + 2Myg + 2mMyq 4 2my3 + my + 2ms)

€9 = (2mg + 2mg + myy + 2my3 + 2myg + 2mys + 2my7 + 2myg + Mg + Mg
+2mys + 2mye + 2myy + Myy + My3 + 2ms + my).

References

[1] N.Arnaud, Evaluation Dérivée, Multiplication dans les Corps finis et codes correcteurs, Ph.D. dissertation, Université de la
Méditerranée, France, 2006.

[2] S.Ballet, Curves with many points and multiplication complexity in any extension of Fy, Finite Fields their Applications 5
(1999) 364-377.

[3] S.Ballet, Quasi-optimal algorithms for multiplication in the extension of degree 13, 14, and 15, Journal of Pure and Applied
Algebra 171 (2002) 149-164.

[4] S.Ballet, R. Rolland, Multiplication algorithm in a finite field and tensor rank of the multiplication, Journal of Algebra 272/1
(2004) 173-185.

[5] S.Ballet, ]. Chaumine, On the bounds of the bilinear complexity of multiplication in some finite fields, Applicable Algebra
in Engineering, Communication and Computing 15 (2004) 205-211.

[6] S.Ballet, D. Le Brigand, R. Rolland, On an application of the definition field descent of a tower of function filed, in: Colloque
International Arithmetic, Geometry and Coding Theory 2005 (AGCT 10), in: Société Mathématiques de France, sér.
Séminaires et Congrés, vol. 21, 2009, pp. 187-203.

[7] S.Ballet, An improvement of the construction of the D.V. and G.V. Chudnovsky algorithm for multiplication in finite fields,
Theoretical Computer Science 352 (2006) 293-305.

[8] S. Ballet, On the tensor rank of the multiplication in the finite fields, Journal of Number Theory 128 (2008) 1795-1806.

[9] S. Ballet, A note on the tensor rank of the multiplication in certain finite fields, in: ]J. Hirschfeld, ]. Chaumine, R. Rolland
(Eds.), Algebraic Geometry and its Applications (Proceedings of Symposium of Algebraic Geometry and Applications, Tahiti,
7-11 mai 2007), in: Number Theory and its Applications, vol. 5, World Scientific, 2008, pp. 332-342.

[10] S. Ballet, R. Rolland, Asymptotical bounds for the tensor rank of the multiplication in finite extensions of I, preprint IML
2008, web site IML.

[11] W. Bosma, ]. Cannon, C. CPlayoust, The Magma algebra system I. The user language, Journal of Symbolic Computation 24
(3-4) (1997) 235-265.

[12] M. Cenk, F. Ozbudak, Improved polynomial multiplication formulas over F, using Chinese Remainder Theorem, IEEE
Transactions on Computers 58 (4) (2009) 572-576.

[13] M. Cenk, F. Ozbudak, Efficient multiplication in Fyem, m > 1and 5 < ¢ < 18, in: Africacrypt 2008, in: Lecture Notes in
Computer Science, vol. 5023, Springer-Verlag, 2008, pp. 406-414.

[14] D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, Journal of Complexity 4
(1988) 285-316.

[15] H. Fan, M.A. Hasan, Comments on five, six, and seven-term Karatsuba-like formulae, IEEE Transactions on Computers 56
(5)(2007) 716-717.

[16] P.L. Montgomery, Five, six, and seven-term Karatsuba-like formulae, IEEE Transactions on Computers 54 (3) (2005)
362-369.

[17] National Institute of Standards and Technology, Digital Signature Standard, FIPS Publication 186-2, 2000.



186 M. Cenk, F. Ozbudak / Journal of Complexity 26 (2010) 172186

[18] H.Niederreiter, C. Xing, Rational Points on Curves Over Finite Fields: Theory and Applications, Cambridge University Press,
Cambridge, UK, 2001.

[19] H. Niederreiter, F. Ozbudak, Constructions of digital nets using global function fields, Acta Arithmetica 105 (3) (2002)
279-302.

[20] H.Niederreiter, F. Ozbudak, Improved asymptotoic bounds for codes using distinguished divisors of global function fields,
SIAM Journal on Discrete Mathematics 21 (4) (2007) 865-899.

[21] D.Page, N.P. Smart, Hardware implementation of finite fields of characteristic three, in: CHESS 2003, in: Lecture Notes in
Computer Science, vol. 2523, Springer-Verlag, 2003, pp. 539-539.

[22] M.A. Shokrollahi, Optimal algortihms for multiplication in certain finite fields using algebraic curves, SIAM Journal on
Computing 21 (6) (1992) 1193-1198.

[23] LE. Shparlinski, M.A. Tsfasman, S.G. Vladut, Curves with many points and multiplication in finite fields, in: Lecture Notes
in Mathematics, vol. 1518, Springer, Berlin, 1992, pp. 145-169.

[24] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

[25] B. Sunar, A generalized method for constructing subquadratic complexity GF(2*) multipliers, IEEE Transactions on
Computers 53 (9) (2004) 1097-1105.

[26] A. Weimerskirch, C. Paar, Generalizations of the Karatsuba algorithm for polynomial multiplication. Avaliable at:
http://eprint.iacr.org/2006/224.

[27] S.Winograd, Arithmetic Complexity of Computations, SIAM, 1980.

[28] C.P. Xing, H. Niederreiter, Low-discrepancy sequences obtained from algebraic function-fields over finite-fields, Acta
Arithmetica 72 (3) (1995) 281-298.

[29] C.P. Xing, H. Niederreiter, K.Y. Lam, Constructions of algebraic-geometry codes, IEEE Transactions on Information Theory
45 (4)(1999) 1186-1193.


http://eprint.iacr.org/2006/224

	On multiplication in finite fields
	Introduction
	Preliminaries
	Some complexity notions
	A brief review of algebraic function fields

	The method
	Multiplication in finite fields  Fqn  for  2 leq n leq 1 8  and  q = 2, 3, 4 
	Application
	Multiplication in  F39 
	Acknowledgments
	Appendix
	References


