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Abstract 
Cloud computing is one of the growing technology usage for the day-to-day business operations in today’s IT industry. The 
diverse features of cloud such as on-demand self-service, quality of service, pay-per-usage pricing, virtualization and elasticity 
make the cloud more popular in industries as well as research communities. However, the mapping of the cloud resources in 
forms of virtual machines (VMs) to fulfill the customer requests is very challenging and a well-known NP-Complete problem. In 
this paper, we propose an allocation-aware task scheduling (ATS) algorithm for heterogeneous multi-cloud systems. The 
algorithm has three phases, namely matching, allocating and scheduling that aim to map the customer requests (or tasks) to the 
VMs of the clouds such that the overall completion time i.e., makespan is minimized. Moreover, the algorithm introduces a new 
phase called allocating to reschedule the tasks to meet the requirement of scheduling strategy. We perform rigorous experiments 
on benchmark as well as synthetic datasets and compare the experimental results by extending two existing multi-cloud 
scheduling algorithms as per the proposed model. The results clearly indicate that the proposed algorithm outperforms both the 
algorithms in terms of makespan and average cloud utilization.  
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1. Introduction 
Cloud computing provides on-demand self-services to the customers on pay-per-usage basis. The cloud services 

are provisioned in the form of storage, computation, network and many more. IaaS (Infrastructure as a Service) 
cloud provides the services by deploying virtual machines (VMs) in their data center. However, IaaS cloud uses a 
scheduling policy to allocate VMs to the customer requests. For instance, GoGrid [1] uses round robin (RR) 
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scheduling to assign customer requests to the VMs evenly. OpenNebula [2] uses rank scheduling policy to the 
services that are more suitable for VMs. Least connect scheduling  [3] assigns the requests to the VMs that are least 
loaded. Weighted least scheduling connect [4] assigns a weight value to each VM. The VM with higher weight is 
assigned large number of requests at a time. Thus the future of cloud computing will collaborate among the cloud 
service providers (CSPs) to solve the complex problems dealing with scientific and engineering applications. It is 
essential because there is no data center which has unlimited resources to handle such complex problems.      

The inter-cloud collaboration makes the task scheduling very challenging and is the main focus of current 
research in cloud computing. In this case, the CSPs may accept the centralized management to perform task 
scheduling. The centralized node keeps track of the current status of the VMs and the scheduling policy in each 
cloud. Alternatively, assigning the requests to the VMs or clouds without concerning the scheduling policy makes 
task scheduling very inefficient. Moreover, mapping the requests to the VMs is a two-phase process, namely 
matching followed by scheduling. The matching finds the VMs for the tasks whereas scheduling arranges the 
execution order of all the tasks. However, there is a gap between the two phases as far as multi-cloud collaboration is 
considered. The task-cloud pair in the matching phase may differ from the task-cloud pair in the scheduling phase. 
This is due to CSPs that are scheduled using different scheduling policy. 

In this paper, we propose a new algorithm called allocation-aware task scheduling (ATS). The algorithm is a three 
phase process consisting of matching, allocating and scheduling. The allocating phase fulfills the gap between 
matching and scheduling. The algorithm is tested with synthetic and benchmark datasets. The experimental results 
show that the proposed model along with the proposed algorithm performs better than the existing algorithms in 
terms of makespan (i.e., the overall completion time to execute all the tasks) and average cloud utilization. Our 
major contribution can be summarized as follows. 1) Development of a task scheduling algorithm for collaboration 
of multiple CSP in heterogeneous environment. 2) Present a new phase called allocating to fulfill the gap between 
matching and scheduling. 3) Simulation of the proposed algorithm in benchmark and synthetic datasets. 4) 
Comparison of the experimental results with the existing algorithms. 

The remainder of this paper is organized as follows. Section 2 presents related work with their applicability in 
multi-cloud collaboration. Section 3 explains the proposed cloud model and the scheduling problem associated with 
the model. We present the proposed algorithm in Section 4 followed by the experimental results in Section 5. We 
conclude the paper in Section 6.    

2. Related Work 
There have been a number of algorithms for task scheduling in cloud computing. They map the customer requests 

to the clouds by assuming the VMs within a data center form a cloud [5]. Chen et al. [6] have proposed user-priority 
guided min-min scheduling algorithm which is an extension of the traditional min-min [7-8] algorithm. However, 
the customer requests (or tasks) are mapped to the resources (or clouds) instead of VMs which is created under the 
clouds. Similarly Kim et al. [9] have presented biogeography-based optimization (BBO) for job scheduling. The 
performance of BBO is better than other optimization problems such as genetic algorithm (GA), particle swarm 
optimization (PSO) and simulated annealing (SA) for large size problems. Here also the jobs are scheduled to the 
clouds instead of VMs. GoGrid [1] cloud used RR algorithm to distribute the tasks evenly. However, due to task 
heterogeneity, the algorithm does not produce better makespan. Recently, Li et al. [5] have presented two 
algorithms, namely cloud list scheduling (CLS) and cloud min-min scheduling (CMMS) for heterogeneous multi-
cloud environment. CLS is a single-phase scheduling and CMMS is a two-phase scheduling. However, both 
scheduling algorithms assign the tasks of an application to the clouds without concerning the VMs creation.      

3. Cloud Model and Problem Statement 

3.1. Cloud Model 
Consider a multi-cloud system in which each cloud has its own data center consisting of a set of servers to deploy 

the VMs [5]. Each CSP has its own scheduler that assigns the tasks to the VMs using its own scheduling strategy. 
Note that the scheduling strategy of the clouds may be different. For example, Amazon Elastic Compute Cloud 
(EC2) and Microsoft Azure use different scheduling strategies. The future cloud computing may have multiple cloud 
providers to run various applications [10-11]. In that case, the service providers may adopt a centralized 
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management approach to achieve some common goals [5], [12-13]. The proposed cloud model has following key 
components: 

1. Customer: Customers are the service consumers of the clouds. They place the service request with the help     
cloud manager. 

2. Cloud Manager: Cloud manager receives the service request from the customers. On the other hand, it keeps 
track of number of active VMs on each cloud. Furthermore, the cloud manager tracks the scheduling strategy used 
by each cloud. Note that, VMs are heterogeneous in nature as they have different computing capabilities and 
specifications like storage, network etc. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           Fig. 1. The Proposed Cloud Model                              
3. Cloud Service Provider (CSP): CSPs are the producers of the clouds. They provide the services by deploying 

VMs on the active servers. These VMs execute the service requests as per the scheduling strategy. However, the 
scheduling strategies of the service providers are not be same or different as stated earlier. 

3.2. Problem Statement 
Definition 1. Let C = {C1, C2, C3,…, Cm} denote the set of clouds and let Ci = {Si, |Vi|} denote the ith cloud with 
scheduling algorithm (Si) and the number of active VMs (|Vi|). The scheduling algorithm Si is used to schedule the 
tasks assigned to the cloud Ci. The active VMs are used to execute the assigned tasks on the clouds. Note that Si and 
|Vi| may vary from one cloud to another cloud, e. g., C1 = {RR, 4}, C2 = {CLS, 3} and C3 = {CLS, 5} indicate that 
C1 has round robin (RR) scheduling strategy with 4 active VMs and C2 and C3 have cloud list scheduling (CLS) with 
3 and 5 active VMs respectively. 
Definition 2. Let T = {T0, T1, T2,…, Tp} denote the set of tasks which are to be assigned to the clouds. Let Vj = {P, 
B} denote the jth virtual machine with the processing speed P in MIPS and bandwidth B in Mbps. Similarly let Ti = 
{I, D} denote the ith task with the set of instruction I in MI and data D in Mb. Then the execution time of Ti on Vj is 
expressed as follows: 

                                                                            ETCij = 
I D

P B
                                                                            (1) 

For example, the execution time required to execute a task T1 = {200, 20} on a VM V1 = {100, 10} is 3 time units. 
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Definition 3. A cloud manager ₵ receives a request set R = {R1, R2,…, Rq} from a customer set CU = {CU1, CU2, 
CU3,…, CUq} where a service request Ri = {T0, T1,…, Tp} denote a set of tasks given by a customer CUi. The cloud 
manager then maps this request set with the set of clouds C = {C1, C2, C3,…, Cm}. It keeps track of all the active 
VMs on a particular cloud. 
The problem is to map the customer requests (or tasks) to the clouds such that the following objective is fulfilled. 
Objective 1. The overall processing time (makespan) is minimized. 
Objective 2. Each cloud must receive those tasks which results least makespan in its VMs.   

Note that we call this scheduling as “Allocation-aware task scheduling” as the manager sends the tasks to the 
clouds based on their scheduling algorithm (Objective 2) that results minimization of makespan (Objective 1 and 
Objective 2). 

4. Proposed Algorithm 
The basic idea of the proposed algorithm is as follows. It consists of three-phases. In the first phase called 

matching, the cloud manager maintains a global queue (Qg) to place the incoming service requests from the 
customers. Here, the service requests are in the form of one or more tasks. Then the cloud manager removes a task 
(say, task i) from the global queue and calculates the completion time of task i on each VM of the CSPs. Note that 
completion time is the sum of the execution time and the ready time. Furthermore, the manager finds the VM that 
holds minimum completion time for task i (say, VM j) followed by the cloud that holds the VM (say, cloud k). This 
completes the first phase. In the second phase called allocating, the manager finds the scheduling strategy of cloud k. 
The rationale behind this is that 1) the service requests are provisioned as per the scheduling strategy 2) the service 
requests need to be assigned such that makespan is minimized. For instance, the scheduling strategy is RR on cloud 
k with three VMs and task 1 achieves minimum completion time on VM 2. Then the manager will not assign the 
task 1 to VM 2 because the cloud k is going to assign VM 1 for task 1 that is first in first out (FIFO) order. 
Consequently, the manager will find another VM for task 1 that gives minimum completion time. In contrary, if the 
scheduling strategy is CLS then task 1 is scheduled on VM 2 because CLS is not assigned in FIFO order. This phase 
may alter the assignment as per scheduling strategy. In the third phase, task scheduling is performed to carry out the 
computations. Note that each cloud can execute more than one task simultaneously. We use the following 
terminologies for the pseudo code of the algorithm shown in Fig. 2.  

 Notation Definition 
Qg Global queue of all the tasks 
ETC(i, j) Expected time to compute task i on cloud j 
RT(j) Ready time of cloud j 
CT(i, j) Completion time of task i on cloud j 
n Total number of VMs in all the clouds 
M Total number of clouds 
vmcountk Total number of VMs on cloud k 

The proposed algorithm places the service requests in the global queue (Line 1). The requests are served in first-
come first-serve order. Thus the manager selects one task from the queue at a time (Line 2). The manager matches 
the task with all the VMs (Lines 3 and 5) to find the best VM over all (Lines 6 to 13). Then the manager finds the 
cloud k where the best VM (say, index) is deployed (Lines 14 to 15). To know the status of the best VM, Procedure 
1 is called. It checks the scheduling strategy of cloud k i.e., RR or CLS in the proposed algorithm. If the scheduling 
strategy is RR then it finds vmcount of cloud k (represented as vmcountk) (Lines 1-2 of Procedure 1). The vmcountk 
value ranges from the first VM to the last VM in the cloud k. Initially, the value of vmcountk = 1. Once the first VM 
receives the task the vmcountk is updated to 2 and so on. The reason behind this is that RR schedules the first VM 
followed by second VM and so on. If the vmcountk is the same as index, then the task is assigned to index VM 
(Lines 3-4). Otherwise, it returns assignment failure (Lines 8-9). On the other hand, if the scheduling strategy is CLS 
then it directly assigns the task to index VM (Lines 11-15 of Procedure 1). If the task is not schedulable by RR and 
cloud k does not follow CLS scheduling strategy, then it calls the Procedure 2. This procedure assigns infinity value 
(or a very big number) to the previous assignment as it was failed in the last assignment (Lines 1 of Procedure 2). 
Then it finds the best VM over all the clouds (Lines 2-9). At last, it calls the Procedure 1 to assign the task to the 
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best VM (Line 12). The process is repeated until the task is scheduled to the best VM and the scheduling strategy is 
assigning the task to the best VM (Lines 17-19 of main algorithm). 

 
 

 

 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                                             Fig. 2. Pseudo code for ATS 

4.1. An Illustration 
       Let us consider the ETC matrix as shown in Table 1. There are two different clouds and each cloud contains two 
VMs with their scheduling strategy RR and CLS respectively. We assume that the tasks are arrived to the cloud 
manager in numeric order. When task T0 arrives, the manager finds the VM that takes minimum completion time 
i.e., VM2 of cloud 1. However, when manager dispatches task T0, it is scheduled VM1 as per RR scheduling strategy. 
Therefore, the matching is rejected and the corresponding ETC value is replaced by ∞ i.e., ETC(T0, VM2) = ∞. Thus 
the manager finds another VM that takes minimum completion time for task T0 which results VM3. So, the task T0 is 
scheduled to VM3. Next task T1 is scheduled to VM1 as it takes minimum completion time and RR scheduling is 
assigned T1 to VM1. Like task T1, task T2 is scheduled to VM2. Then task T3 is scheduled to VM4 because the manager 
found that the minimum completion time for task T3 in all the VMs i.e., 6 + 2, 3 + 2, 8 + 3 and 5 + 0 respectively in 
which 5 + 0 is the minimum. Next for task T4, the minimum completion time in all the VMs is 4 + 2, 7 + 2, 5 + 3 
and 3 + 5 respectively. Therefore task T4 is scheduled to be scheduled to VM1 as 4 + 2 is the minimum one and so on. 

Algorithm: ATS 

1. while Qg ≠ NULL do 
2.       i ← Delete(Qg) 
3.       for j = 1, 2, 3, … , n 
4.             CT(i, j) = ETC(i, j) + RT(j) 
5.       endfor 
6.       minimum = CT(1, 1) 
7.       index = 1 
8.       for j = 2, 3, 4, … , n 
9.            if minimum > CT(i, j) 
10.                  minimum = CT(i, j) 
11.                  index = j 
12.            endif 
13.       endfor  
14.       for k = 1, 2, 3, …, M 
15.             if index virtual machine is 

deployed under a cloud k  
16.                  Call SCHEDULE            

(i, k, index) 
17.                  while the task is not 

schedulable 
18.                        Call RESCHEDULE 

(i, k, index) 
19.                       endwhile 
20.                 endif  
21.      endfor 
22. endwhile 

1. if cloud k schedules by RR algorithm 
2.      Find vmcountk 
3.      if vmcountk = index 
4.           Assign task i to index virtual machine 
5.           RT(index) = RT(index) + ETC(i, index) 
6.           Remove task i from Qg 
7.                Update vmcountk 
8.       else  
9.            Return Failure 
10.        endif 
11.else cloud k schedules by CLS algorithm 
12.      Assign task i to index virtual machine 
13.      RT(index) = RT(index) + ETC(i, index) 
14.       Remove task i from Qg 
15.endif 
16.Return 

Procedure 1: SCHEDULE(i, k, index) 

1. CT(i, index) = ∞ 
2. minimum = CT(1, 1) 
3. index = 1 
4. for j = 2, 3, 4, … , n 
5.       if minimum > CT(i, j) 
6.           minimum = CT(i, j) 
7.           index = j 
8.      endif 
9. endfor  
10.for k = 1, 2, 3, …, M 
11.       if index virtual machine is deployed under a 

cloud k  
12.            Call SCHEDULE(i, k, index) 
13.       endif 
14.endfor 

Procedure 2: RESCHEDULE(i, k, index) 
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The task-VM mapping is shown in Fig. 3.          
Table 1. The ETC matrix for 10 tasks and 4 VMs 

  T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
Cloud 1 

(RR) 
VM1 9 2 7 6 4 5 9 10 8 7 4 
VM2 2 5 2 3 7 6 8 6 5 4 9 

Cloud 2 
(CLS) 

VM3 3 10 9 8 5 3 4 5 7 3 5 
VM4 8 6 3 5 3 8 3 4 2 9 6 

 
 

 
 
 
 
 
 

 

                                                             Fig. 3. Gantt chart for the proposed algorithm 

 
Theorem 4.1: The overall time complexity of the algorithm ATS is O(ln). 
 
Proof: Let l be the total number of tasks and n is the total number of VMs. Line 2 requires O(1) time. To find the 
completion time, Line 3 to 5 requires O(n) time. Line 6 to 7 require O(1) time followed by Line 8 to 13 require O(n) 
time. Line 15 to 21 require O(n) time. The Procedure SCHEDULE requires O(1) time and the Procedure 
RESCHEDULE requires O(n-1) time. So, the overall time complexity of ATS is O(ln) time for l tasks. 
 
Theorem 4.2: The Procedure RESCHEDULE requires no more than O((n/2)-1) time iff (n/2) VMs are used in 
each scheduling strategy (i.e., RR and CLS). 
 
Proof: Let {VM1, VM2,…, VMn/2} uses RR scheduling strategy and {VM(n/2)+1, VM(n/2)+2,…, VMn} uses CLS 
scheduling strategy. In the worst case, the T1 is scheduled to VMi, 2 ≤ i ≤ n/2 and |i| = ((n/2)-1). The first 
RESCHEDULE Procedure is called to find another VMj, 2 ≤ j ≤ n/2, i ≠ j and |j| = ((n/2)-2). The last RESCHEDULE 
Procedure is called to find another VMk, 2 ≤ k ≤ n/2, i ≠ k, j ≠ k and |k| = ((n/2)-(n/2)). The total number of Procedure 
call is (n/2)-2+1 = (O(n/2)-1).     

5. Experimental Results 
 

     We evaluate the proposed algorithm through simulation run with some benchmark and synthetic datasets. The 
experiments were carried out using MATLAB R2012a version 7.14.0.739 on an Intel Core 2 Duo processor, 2.20 
GHz CPU and 4 GB RAM running on Microsoft Windows 7 platform.  

 
5.1. Performance Metrics 
5.1.1. Makespan 
It is the overall completion time needed to assign all the tasks to the available clouds. Let Ti → Cj denote the task Ti 

is assigned to cloud Cj. Then it is mathematically defined as follows 

                            
max( ( ,1) ( ,1),    ( , 2) ( , 2),   ...   , ( , ) ( , ))

1 1 1

x x x
M ETC i F i ETC i F i ETC i m F i m

i i i

   
  
                 (2) 
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where
1    

( , )
0     

if T Ci j
F i j

Otherwise

 


                                                                                                             (3) 

 
5.1.2. Average Cloud Utilization 
It is the average amount of time in which the cloud resources are busy. It ranges from 0 to 1. It is defined by 

                                                                       

( )

1

m M Ci
M

iU
m




                                                          (4) 

where M(Ci) denotes the makespan of cloud C 
 
5.2. Datasets 

We picked two benchmark datasets generated by Braun et al. [14] and one synthetic dataset formed by 
MATLAB pseudorandom integer function. The first benchmark dataset consists of 512 tasks to be scheduled to 16 
VMs which contains 12 different instances. The instances are denoted by u_x_yyzz where u is the uniform 
distribution used to generate the instances, x is the type of consistency (i.e., consistent (c), inconsistent (i) or semi-
consistent (s)) and yyzz is the task and VM heterogeneity (i.e., hihi, hilo, lohi, lolo) respectively. Similarly, the 
second dataset contains 1024 tasks which are assigned to 32 different VMs. We denote the datasets 512 × 16 and 
1024 × 32 respectively. We assume that there are four clouds in 512 × 16 dataset in which each cloud holds four 
VMs. In the similar fashion, eight clouds hold 32 VMs in 1024 × 32 dataset. These datasets are used in task 
scheduling [15-23]. The synthetic dataset consists of six instances. The instances are represented by v × w where v is 
the total number of tasks that are assigned w clouds. Note that the VMs in each cloud are fixed for the simplicity of 
experiments. However, there may be any number of VMs created in each cloud based on their capacity and the 
manager must keep track of the number of active VMs in each cloud.       

 
5.3. Experimental Results 

We divide the experimental results in to two parts. In the first part, the scheduling strategy of all the clouds is 
same. For instance, if one cloud schedules the tasks using RR scheduling strategy then other clouds are also 
schedule the tasks using RR scheduling strategy. On the other hand, the scheduling strategy of each cloud is 
different in the second part. For instance, cloud 1 schedules the tasks using RR whereas cloud 2 uses CLS 
scheduling and so on. Alternatively, we assume that one of the two scheduling algorithms, RR or CLS is used by 
each cloud or all clouds and four VMs are active in each cloud. We call the proposed algorithm as ATS-RR when all 
the clouds schedule the tasks using RR scheduling strategy and ATS-RR-CLS when RR and CLS scheduling 
strategies are used to schedule the tasks. The comparison of makespan and average cloud utilization of RR, ATS-
RR, CLS and ATS-CLS for 512 × 16 and 1024 × 32 benchmark datasets are shown in Table 2 and Table 3 
respectively. 

Table 2. Comparison of makespan for RR, ATS-RR, CLS and ATS-CLS using benchmark datasets 
 

Instance RR 
(512 × 16) 

ATS-RR 
(512 × 16) 

CLS 
(512 × 16) 

ATS-CLS 
(512 × 16) 

RR 
(1024 × 32) 

ATS-RR 
(1024 × 32) 

CLS 
(1024 × 32) 

ATS-CLS 
(1024 × 32) 

u_c_hihi 4.6589e+07 2.2930e+07 4.7472e+07 1.1423e+07 1.6070e+08 5.9123e+07 1.5447e+08 3.2833e+07 
u_c_hilo 4.8937e+05 2.7474e+05 1.1851e+06 1.8589e+05 1.6570e+07 6.2427e+06 1.5504e+07 3.2458e+06 
u_c_lohi 1.5174e+06 7.9683e+05 1.4531e+06 3.7830e+05 1.9752e+04 6.1469e+03 1.4151e+04 3.0587e+03 
u_c_lolo 1.8132e+04 9.7440e+03 3.9582e+04 6.3601e+03 1.4582e+03 6.7273e+02 1.5675e+03 3.2628e+02 
u_i_hihi 3.4409e+07 1.6272e+07 4.5085e+06 4.4136e+06 1.0113e+08 3.1518e+07 7.4620e+06 7.5671e+06 
u_i_hilo 3.0365e+05 2.0020e+05 9.6610e+04 9.4856e+04 9.6486e+06 3.4381e+06 7.6598e+05 7.1313e+05 
u_i_lohi 1.0015e+06 5.3748e+05 1.8569e+05 1.4382e+05 9.9151e+03 3.5443e+03 8.5439e+02 7.5410e+02 
u_i_lolo 1.1034e+04 7.4452e+03 3.3993e+03 3.1374e+03 1.0733e+03 3.6450e+02 9.1120e+01 7.2390e+01 
u_s_hihi 4.1530e+07 2.1845e+07 2.5162e+07 6.6939e+06 1.5160e+08 4.7943e+07 8.4821e+07 1.9008e+07 
u_s_hilo 4.4659e+05 2.5367e+05 6.0536e+05 1.2659e+05 1.6722e+07 4.2095e+06 8.0988e+06 1.8255e+06 
u_s_lohi 1.1974e+06 7.3769e+05 6.7469e+05 1.8615e+05 1.5227e+04 4.0046e+03 8.3377e+03 1.8220e+03 
u_s_lolo 1.5397e+04 9.4821e+03 2.1042e+04 4.4361e+03 1.5880e+03 4.4558e+02 8.0161e+02 1.9423e+02 
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Table 3. Comparison of average cloud utilization for RR, ATS-RR, CLS and ATS-CLS using benchmark datasets 
 

Instance 
RR 

(512 × 16) 
ATS-RR 
(512 × 16) 

CLS 
(512 × 16) 

ATS-CLS 
(512 × 16) 

RR 
(1024 × 32) 

ATS-RR 
(1024 × 32) 

CLS 
(1024 × 32) 

ATS-CLS 
(1024 × 32) 

u_c_hihi 0.51 0.80 1 0.95 0.50 0.85 1 0.93 
u_c_hilo 0.54 0.84 1 0.97 0.48 0.81 1 0.94 
u_c_lohi 0.53 0.79 1 0.96 0.40 0.81 1 0.92 
u_c_lolo 0.50 0.79 1 0.95 0.54 0.80 1 0.95 
u_i_hihi 0.69 0.93 0.62 0.93 0.81 0.93 0.66 0.91 
u_i_hilo 0.84 0.95 0.75 0.95 0.78 0.90 0.60 0.91 
u_i_lohi 0.82 0.94 0.53 0.94 0.80 0.89 0.57 0.91 
u_i_lolo 0.81 0.92 0.74 0.96 0.72 0.90 0.52 0.91 
u_s_hihi 0.57 0.87 0.19 0.92 0.52 0.91 0.05 0.91 
u_s_hilo 0.58 0.84 0.21 0.93 0.47 0.92 0.06 0.93 
u_s_lohi 0.58 0.76 0.21 0.95 0.50 0.92 0.06 0.89 
u_s_lolo 0.61 0.84 0.22 0.95 0.50 0.94 0.06 0.90 

 
Next we compare RR-CLS and ATS-RR-CLS using benchmark datasets. The comparison of both makepsan and 

average cloud utilization is shown in Table 4.  
Table 4. Comparison of makespan and average cloud utilization for RR-CLS and ATS-RR-CLS using benchmark datasets 

 

Instance RR-CLS 
(512 × 16) 

ATS-RR-CLS 
(512 × 16) 

RR-CLS 
(1024 × 32) 

ATS-RR-CLS 
(1024 × 32) 

RR-CLS 
(512 × 16) 

ATS-RR-CLS 
(512 × 16) 

RR-CLS 
(1024 × 32) 

ATS-RR-CLS 
(1024 × 32) 

u_c_hihi 3.3903e+07 1.9945e+07 1.0065e+08 5.3123e+07 0.3371 0.8677 0.2903 0.8961 
u_c_hilo 3.2317e+05 2.5924e+05 9.8061e+06 4.9743e+06 0.5745 0.8554 0.2933 0.8978 
u_c_lohi 1.2006e+06 6.7325e+05 1.0416e+04 5.4921e+03 0.3330 0.8600 0.2490 0.8654 
u_c_lolo 1.1040e+04 8.9011e+03 1.0160e+03 5.6015e+02 0.5568 0.8518 0.2847 0.8794 
u_i_hihi 2.3136e+07 7.5328e+06 8.7800e+07 1.4293e+07 0.4865 0.9162 0.3527 0.9193 
u_i_hilo 3.0530e+05 1.3034e+05 9.5388e+06 1.4134e+06 0.5376 0.9494 0.3037 0.8984 
u_i_lohi 7.4806e+05 2.5151e+05 7.2647e+03 1.4487e+03 0.5174 0.9349 0.4057 0.9357 
u_i_lolo 1.0177e+04 4.5871e+03 7.1349e+02 1.2927e+02 0.5256 0.9458 0.4004 0.9090 
u_s_hihi 4.5194e+07 1.1266e+07 7.3232e+07 3.7281e+07 0.3256 0.9016 0.3355 0.9175 
u_s_hilo 4.8018e+05 1.6586e+05 6.5326e+06 3.3115e+06 0.4014 0.9463 0.4003 0.9005 
u_s_lohi 1.3603e+06 3.4379e+05 5.9709e+03 3.6808e+03 0.3363 0.9212 0.4437 0.8655 
u_s_lolo 1.5199e+04 6.0038e+03 6.2923e+02 3.7205e+02 0.4288 0.9186 0.3730 0.8893 

 
Next we experiment the proposed and existing scheduling algorithms using synthetic dataset. The comparison of 

makespan and average cloud utilization for RR, ATS-RR, CLS and ATS-CLS scheduling are jointly shown in Table 
5. 
                  Table 5. Comparison of makespan and average cloud utilization for RR, ATS-RR, CLS and ATS-CLS using synthetic dataset 
 

Instance RR ATS-RR CLS ATS-CLS RR ATS-RR CLS ATS-CLS 
128 × 16 2990 1967 1667 1324 0.8043 0.9110 0.6082 0.9162 
256 × 16 5663 3558 3058 2561 0.8632 0.9285 0.6410 0.9424 
384 × 16 8128 5297 4461 3588 0.8798 0.9610 0.6630 0.9720 
640 × 32 6848 3637 3243 2731 0.8643 0.9292 0.6856 0.9623 
768 × 32 8326 4322 4608 3231 0.8494 0.9539 0.5798 0.9699 
896 × 32 9619 4956 4405 3763 0.8602 0.9650 0.7088 0.9728 

 
The comparison of RR-CLS and ATS-RR-CLS using makespan and average cloud utilization performance 

metrics is shown in Table 6. 
 
                 Table 6. Comparison of makespan and average cloud utilization for RR-CLS and ATS-RR-CLS using synthetic dataset 
 

Instance RR-CLS ATS-RR-CLS RR-CLS ATS-RR-CLS 
128 × 16 2473 1492 0.6345 0.9186 
256 × 16 5039 2887 0.6602 0.9294 
384 × 16 7245 4199 0.7100 0.9701 
640 × 32 7191 2979 0.5520 0.9709 
768 × 32 8511 3558 0.5525 0.9548 
896 × 32 8189 4186 0.6577 0.9666 
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6. Conclusion 

We have presented an allocation-aware task scheduling algorithm for heterogeneous multi-cloud environment. 
The algorithm has been shown to require O(ln) time for l tasks and n VMs. It was experimented rigorously on 
benchmark and synthetic dataset. The experimental results have been compared with two multi-cloud task 
scheduling algorithms, namely RR and CLS. The comparison results show the superiority of the proposed algorithm 
over existing algorithms in terms of two performance metrics, makespan and average cloud utilization. 
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