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Inhibition of glucose-induced insulin secretion by interleukin-l/I (IL-l/I), or IL-ID plus tumour necrosis factor-a (TNF-a), was less marked when 
rat islets of Langerhans were cultured for 12 h with these cytokines in L-arginine-free medium as opposed to medium containing L-arginine (1 
mM). Inhibition of secretion by IL-f@ was further alleviated when islets were maintained in L-arginine-free medium supplemented with N-o-nitro-L- 
arginine methyl ester (NAME), while synergism between IL-la plus TNF-GI was completely abolished. Tissue culture medium nitrite levels were 
raised in islets treated with IL-I/3 or TNF-c( (48 h). Cytokine-stimulated nitrite production was not observed in islets cultured with NAME (1 mM). 

In conclusion, an L-arginine-dependent nitric oxide generating mechanism is involved in the inhibition of insulin secretion by IL-ID, and accounts 
for the phenomenon of synergism between IL-l#I and TNF-a. 
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1, INTRODUCTION 

Cytotoxic activated macrophages (CAM) induce 
metabolic dysfunction in target cells including the in- 
hibition of mitochondrial respiration, aconitase activity 
and DNA replication, by a process dependent on the 
metabolism of L-arginine to nitrite, nitrate and L- 
citrulline [ 1,2]. The immediate precursor of nitrite and 
nitrate is the free radical nitric oxide (NO) derived from 
one of the N-terminal guanidino nitrogen atoms of L- 
arginine [2-61. CAM-induced target cell inhibition, and 
NO generation are prevented by closely-related struc- 
tural analogues of L-arginine [l-7]. The inhibitory ac- 
tivity of macrophage-derived NO may, in part, be due 
to the inactivation of iron-sulphur clusters at the active 
sites of mitochondrial enzymes [S,9]. 

Pretreatment of isolated rat islets of Langerhans with 
interleukin-l/3 (IL-ID) inhibits glucose-induced insulin 
secretion in a dose- and time-dependent manner 
[ IO,1 11. This effect is potentiated synergistically when 
islets are exposed to IL-l@ in combination with tumour 
necrosis factor-a (TNF+) [12]. Furthermore, the com- 
bination of IL-10 and TNF-(x has a cytolytic effect in 
long-term cultures of rat and human islet cell 
monolayers [ 13- 151. The mechanism(s) of action IL- l/3 
and TNF-a on the islet P-cell remain largely unknown. 
Here, we investigate the involvement of an L-arginine- 
dependent-nitric oxide generating mechanism in the in- 
hibition of insulin secretion by IL-l/3 and TNF-(r in 
isolated rat islets of Langerhans. 
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2. EXPERIMENTAL 

2.1. Materials 
Tissue culture reagents were from Gibco (UK). Dextran T70 was 

from Pharmacia (UK). Collagenase type XI, calf thymus DNA type 
I, L-arginine-HCl, and N-w-nitro-L-arginine methyl ester (NAME) 
were from Sigma Chemicals (UK). Human recombinant 

interleukin-l/3 (code 86/552) and human recombinant tumour 
necrosis factor-a (code 87/650) were from NIBSC. 

2.2. Islet isolation and tissue culture 
Islets of Langerhans were isolated from groups of 4-6 Sprague- 

Dawley rats (200 g) by a collagenase digestion technique [16]. Islets 

were separated from pancreatic acinar tissue by centrifugation (800 x 
g, 5 min) in 23% dextran T70 (w/v) and collected using a finely 
drawn-out Pasteur pipette in a bicarbonate-buffered medium [ 171, 
pH 7.4, containing 2 mM glucose. Islets were then cultured for 48 h 
in RPMI-1640 tissue culture medium supplemented with 5% foetal 

calf serum, penicillin (60 000 U/l) and streptomycin (100 mg/l) prior 
to all experimental studies. 

2.3. Insulin secretion studies 
Islets were divided into three groups and transferred into fresh 

RPMI-1640 medium prepared without L-arginine, and (i) sup- 
plemented with L-arginine (1 mM), (ii) maintained without L- 
arginine, or (iii) supplemented with NAME (I mM). Islets were then 
cultured for 12 h ? the addition of IL-lb, TNF-ol, or IL-18 plus TNF- 
cy (0.1 nM) as shown in Results. The culture medium was removed, 
and the islets rinsed twice in bicarbonate buffered medium [17], pH 
7.4, containing 2 mM glucose, and preincubated in this medium for 
1 h at 37°C. Groups of 5 islets were then transferred into 500 ~1 of 
medium containing 20 mM glucose and incubated for 30 min at 37°C. 
Aliquots of medium were radioimmunoassayed for insulin as describ- 

ed previously [18]. 

2.4. Determination of nitrite and total islet DNA content 
Groups of 70-100 islets (in triplicate) were cultured in 120 ~1 of 

RPMI-1640 medium (i) containing L-arginine (1 mM), or (ii) without 
L-arginine but supplemented with NAME (1 mM), for 48 h + the ad- 
dition of IL-lp, TNF-ol or IL-lp plus TNF-o (0.5 nM). Tissue culture 
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Fig. 1. L-Arginine requirement for the synergistic inhibition of insulin secretion by IL-10 and TNF-a. Groups of islets were cultured for 12 h + 
the addition of cytokines (0.1 nM), in (A) RPMI-1640 medium containing L-arginine (1 mM). (B) L-arginine-free medium, or (C) L-arginine-free 
medium supplemented with NAME (1 mM). Islet insulin-secretory responsiveness was determined by a subsequent 20 mM glucose challenge (see 
section 2). Values are means + SE from 3 separate experiments (n = 26). Insulin secretion from control islets without cytokine treatment was not 
affected by the omission of L-arginine or the addition of NAME (1 mM). Insulin secretion significantly reduced vs control (tP<O.Ol and 

ttPc0.0001). IL-16 and TNF-o synergistically potentiated inhibition by IL-l@ alone (+ P<O.O5, + + P<O.OOOl). 

medium was then removed and stored at - 20°C. Duplicate 50 ~1 ali- 
quots of culture medium were mixed with 50 ~1 of the Griess reagent 
[I91 and 200 pl distilled water and nitrite levels determined at an ab- 
sorbance of 550 nM against a sodium nitrite standard curve. Islet 
DNA contents were determined as described previously 1201. 

2.5. Statistical analysis 
Values are means k SE from at least 3 separate experiments. 

Results were analysed using an unpaired Student’s t-test. 

3. RESULTS 

Pretreatment of rat islets of Langerhans (12 h) with 
IL-10 (0.1 nM) inhibited insulin secretion induced by a 
20 mM glucose challenge (19.2 + 1 .O vs control 77.3 + 
5.5 fmol/islet/30 min, respectively, n =46 from 5 
separate experiments, P< 0.0001). In contrast, pretreat- 
ment with TNF-a! (0.1 nM) did not affect insulin secre- 
tion (65.6 & 4.6 vs control 68.8 + 5.9 fmol/islet/30 min, 
n = 27 from 3 separate experiments); however, pretreat- 
ment of islets with IL-lb plus TNF-a (0.1 nM) poten- 
tiated the inhibitory effect of IL-l/3 alone in a 
synergistic manner (8.1& 0.8 vs 18.4 f 1.3 fmol/islet/30 
min, respectively, n = 26 from 3 separate experiments, 
P<O.OOOl). In Fig. 1, inhibition of secretion by IL-l@ 
(0.1 nM), or by IL-1P plus TNF-(r (0.1 nM) was less 
marked when islets were treated with these cytokines in 
L-arginine-free medium, although synergism between 
IL-10 and TNF-(r clearly potentiated the inhibitory ef- 
fect of IL-10 alone. The inhibitory effect of IL-lb was 
alleviated to a greater extent when islets were maintain- 
ed in medium supplemented with NAME (1 mM), but 
most markedly, the synergistic inhibitory action of 
IL-10 plus TNF-(Y was completely abolished. To deter- 
mine if the requirement for L-arginine was due to the 
generation of nitric oxide, we measured the accumula- 
tion of nitrite in the tissue culture medium from islets 

exposed to IL-10 and TNF-(r (alone and in combina- 
tion). Table I shows an 8-fold increase in nitrite release 
from islets treated with IL-10 (0.5 nM) for 48 h in the 
presence of L-arginine (1 mM), and a smaller (2-fold) 
but significant increase in nitrite release from TNF-a 
treated islets. Nitrite release was further increased in 
islets treated with IL-l@ plus TNF-(r (0.5 nM) compared 
to islets treated with either cytokine alone (in this in- 
stance in an additive rather than synergistic manner). 
Maintenance of islets for 48 h in medium containing 
NAME (1 mM) prevented cytokine-stimulated nitrite 
production. In a separate series of experiments we have 
found that maintenance of islets in L-arginine-free 
medium in the presence of NAME (1 mM) for up to 36 
h does not affect the islet secretory response to a subse- 
quent 20 mM glucose challenge (results not shown). 
Thus the lack of nitrite production following prolonged 
exposure to NAME does not appear to be due to 

Table I 

Nitrite production by cultured rat islets of Langerhans 

Treatment Nitrite production (pmol/islet/48,h) 

(+ ) L-arginine (+) NAME 

Control 0.8 f 0.18 0.9 * 0.14 
IL-lb 6.9 + 0.96** 0.7 + 0.13 
TNF-a 1.8 + 0.42* 0.6 * 0.15 
IL-10 + TNF-ol 10.2 _t 1.11**** 1.1 * 0.15 

Groups of 70-100 islets were cultured for 48 h in RPMI-1640 medium 
containing L-arginine (1 mM), or without L-arginine supplemented 
with NAME (1 mM) + the addition of cytokines (0.5 nM) as shown. 
Values are means + SE of 3 separate experiments (n =9). In the 
presence of L-arginine, nitrite production was increased by all 
cytokine treatments (**PC 0.001, *P<O.OS) vs control, and was 
greatest with the combination of IL-16 + TNF-o, (*P<O.OS vs 
either cytokine alone). Cytokine treatments did not affect nitrite pro- 

duction in the presence of NAME. 
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deleterious effects of this compound. Total islet DNA 
contents were not affected by the treatments shown in 
Table I (results not shown). 

4. DISCUSSION 

We have demonstrated the involvement of an L- 
arginine-dependent mechanism in the inhibition of in- 
sulin secretion by IL-l& and have shown that such a 
mechanism accounts for the synergistic inhibition of in- 
sulin secretion observed between IL-I@ and TNF-(r. 
Raised nitrite production in IL-l@ and TNF-a-treated 
islets, which is prevented by the L-arginine analogue 
NAME, indicates that L-arginine is required as a 
substrate for the generation of NO. Previous studies 
have shown that IL-l&mediated inhibition of insulin 
secretion is accompanied by a reduced rate of glucose 
oxidation [21] reflecting an impairment in the proximal 
steps of the Krebs cycle [22]. Furthermore, IL-l@- 
induced inhibition of giucose oxidation is potentiated 
by TNF-CY 1121. As in CAB-induced target cell inhibi- 
tion [1,8,9], L-arginine-derived NO may impair islet 
mitochondrial oxidative metabolism through the for- 
mation of nitrosyl-Fe complexes at the iron-sulphur 
clusters of key mitochondrial enzymes. Recently, IL-10 
has been shown to inhibit glucokinase activity in an in- 
sulin secreting @-cell line 1231. Interaction of NO with 
functionally-essential thiol groups situated at the sugar 
binding site of this enzyme to yield the corresponding S- 
nitrosothiol, may account for this inhibition of enzyme 
activity [24]. Prolonged inactivation of such key sites 
may account for the inhibition of islet P-cell function, 
and islet &cell death observed in IL-l& and TNF-cx- 
treated islets [13-15). 

It is speculated that NO production may be an impor- 
tant contributory factor to IL-l@ and TNF-cr mediated 
inhibition of islet P-cell function and cell death, in- 
cluding that observed during the development of 
insulin-dependent diabetes mellitus. 
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