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S U M M A R Y

Background: Chronic HIV infection leads to severe perturbations of the B cell populations and hypo-

responsiveness to vaccines. The associations between circulating B cell subpopulations and the antibody

response to pneumococcal polysaccharide vaccine in antiretroviral-naı̈ve and treated patients were

studied.

Methods: Sixty-six HIV-infected adults were grouped according to antiretroviral therapy (ART) and

CD4+ cell count; 31 were ART-naı̈ve and 35 were ART-treated, and they were matched for age, CD4 cell

count, and duration of HIV infection. All subjects were immunized with the 23-valent polysaccharide

vaccine against Streptococcus pneumoniae. Pre- and post-vaccination B cell subpopulations were assessed

by flow cytometry. Serum IgG concentrations for vaccine serotypes were quantified by ELISA at baseline

and at 4 and 48 weeks post-vaccination.

Results: Patients under highly active antiretroviral therapy (HAART) had significantly higher antibody

levels against pneumococcal vaccine antigens, while an adequate number of patients responded

to vaccination. Memory B cells were diminished over time, although treated patients maintained higher

levels of all subsets studied, with the exception of activated memory and isotype-switched memory

B cells.

Conclusions: Low concentrations of total B cells and exhausted memory B cells was the strongest

independent predictor of poor pneumococcal vaccine responsiveness, emphasizing that B cell subset

disturbances are associated with a poor vaccine response among HIV-infected patients.

� 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

Streptococcus pneumoniae infections are the most common
cause of bacterial pneumonia among HIV-infected patients and
account for high morbidity and mortality.1 The introduction of
highly active antiretroviral therapy (HAART) has led to a decline
in the incidence of invasive pneumococcal disease, although it
still affects HIV-infected more often than healthy individuals,
even those with preserved CD4 cell counts.2–7
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The guidelines still recommend vaccination of HIV-infected
people with the 23-valent polysaccharide vaccine (PPV-23)8 despite
its challenge from the conjugate polysaccharide vaccine. Despite
scheduled immunization and the introduction of HAART,9–12 the risk
of pneumococcal infection among these immunocompromised
hosts remains high.13–15

B cells comprise one the most dysfunctional lymphocyte
populations in patients with HIV infection.16 During chronic viral
replication, functional perturbations of B cells occur, including
polyclonal activation,17 hypergammaglobulinemia,16 dysregulation
of isotype switching, variation in the proportions and absolute
numbers of circulating B cells, and impaired immune responses to
immunization.18–20 Significant heterogeneity is also obvious among
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memory B cells, and despite their ambiguous functional heteroge-
neity, many phenotypic subpopulations have been recognized.21

The loss of memory B cells is one aspect of dysfunction in HIV
infection.22 Moreover, there is evidence of alterations in B cell
populations against T cell-independent antigens such as pneumococcal
polysaccharides.18 A reduced frequency of IgM+ memory B cells, which
mediate memory responses against pneumococcal infection, is also
observed.23 Most activated B cells undergo apoptosis after infections
lapse, except for a few cells comprising the resting memory B cell
compartment, necessary for a rapid secondary immune response.

During the natural course of HIV-1 infection, the B cell subsets
are altered, including resting memory B cells, which are severely
depleted.24 Additionally, defective B cell populations, including
activated memory and exhausted memory B cells, rise in HIV-1-
infected individuals, while they circulate at very low levels in
healthy individuals.25 These aberrant cells express a low level of
CD21 on their surface and present features of immune activation26

and cellular exhaustion.25

HAART initiation reduces polyclonal B cell activation20,25 and
normalizes limited numbers of naı̈ve and memory B cell
subsets.18–20,27 However, neither the amount of circulating
isotype-switched memory B cells nor their functional activity
are restored by HAART,28,29 which might lead to impaired
immunity, even in treated patients.11,12 The loss of memory is
reflected in the decline in antigen-specific memory B cells after
vaccination, which are not restored by HAART.30,31 HAART has only
a limited effect on the normalization of the B cell compartment.
Resting memory B cells are maintained if HAART is initiated early
post primary HIV infection.32 It remains, though, to be elucidated
whether HAART restores certain B cell defects. Furthermore,
viremia has been associated with certain B cell defects.30 However,
the impacts of HIV viremia and the level of nadir CD4 cell counts
have not been fully clarified, except in a few studies.32

Although antibody levels are useful as a surrogate marker of
protection and have been used during recent decades as the gold
standard assay, they have limitations and cannot fully describe the
immune response to vaccines; consequently other markers have
been established to assess immunogenicity and protection of
immunization more precisely.33–40

The aim of this study was to fully assess the implication of
memory B cells in the antibody response to the 23-PPV in HIV
patients. Specifically, it was sought to record and evaluate
associations between circulating B cell subpopulations in the
peripheral blood and the antibody response during a 48-week
period, pre and post immunological stimulation with the recom-
mended vaccine against S. pneumoniae in HIV-1 patients. Two
patient groups of distinct infection status were studied, those
treated successfully with HAART and those who were HAART-naı̈ve.

2. Materials and methods

2.1. Study participants and ethics approval

This was a longitudinal study involving 66 HIV-1 patients, of
whom 31 were antiretroviral-naı̈ve and had preserved CD4 cells
(CD4 cell count above 500 copies/mm3) and 35 were on successful
HAART, with satisfactory viral suppression (HIV-1 viral load below
50 copies/ml); these patients were matched for age, CD4 cell count,
and duration of HIV infection. All clinical, epidemiological, and
laboratory data, including age, gender, HIV-1 transmission route,
co-morbidities, HIV-1 viral load, current CD4 T cell count, and nadir
CD4 cell count, were recorded or measured.

All patients were immunized for the first time against S.

pneumoniae. Individuals who had been on HAART for less than
6 months or who had an HIV RNA above 50 copies/ml while being
under HAART, those who had a CD4 T cell count below 200 cells/ml,
and those who missed the first visit (4th week) post-immunization
were excluded.

All patients were followed-up in the Infectious Diseases Unit of
AHEPA University Hospital in Thessaloniki Greece. The ethics
committee of the study institution approved the study protocol
and all participants submitted a written informed consent.

2.2. Immunization and blood sample collection

All patients underwent blood sampling and then received
0.5 ml of the 23-valent polysaccharide vaccine Pneumovax 23
(Merck and Co., Inc.) via intramuscular administration. Patients
returned 4 and 48 weeks post vaccination for further blood
sampling. Fifteen millilitres of fresh whole blood was collected in
ethylenediaminetetraacetic acid (EDTA) tubes for B cell staining;
10 ml more of whole blood was collected into heparin-coated,
pyrogen-free tubes for phagocytosis assessment and 15 ml in tubes
without anti-clot agent for antibody measurement via ELISA. Blood
samples were analysed within 2 h of collection.

2.3. B cell immunophenotyping

The following mouse anti-human fluorochrome-conjugated
monoclonal antibodies of Immunostep Company were used:
CD19-PerCP, CD27-PE, IgM-FITC, IgD-FITC, and CD21-FITC. Results
were expressed as the subset percentage of the total B cell fraction.
Sample processing and analysis of results were performed in the XL
Epics cytometer (Beckman Coulter Company, Miami, FL, USA). Upon
addition of 10 ml of the above combined monoclonal antibodies,
100 ml of each blood sample was incubated in the dark for 10 min.
Subsequently, red blood cells were thawed upon ingestion of 2 ml of
Lysis Buffer (Becton Dickinson Biosciences, San Jose, CA, USA) and
incubated for another 20 min at room temperature. The cell staining,
input capture, and flow analysis were performed promptly in a
blinded pattern. B cells were assessed prior to vaccination. The
different B cell subsets were characterized at baseline as follows: total
B cells (CD19+), memory B cells (CD19+CD27+, BMC), resting memory
B cells (CD19+CD27+CD21high, RM), exhausted memory B cells
(CD19+CD21lowCD27�, EM), IgM memory B cells (CD19+CD27+
IgMhigh), isotype-switched memory B cells (CD19+CD27+IgM�, ITS),
and activated memory B cells (CD19+CD21low+CD27+, AM). Results
were expressed as B cell concentrations or as a percentage of the
total B cell fraction. The cell staining, data capture, and flow analysis
were performed in a blinded fashion.

2.4. ELISA

Prior to vaccination and at weeks 4 and 48, blood samples were
collected, allowed to clot naturally, and the serum separated; ELISA
was then performed immediately. Microwells were pre-coated
with the Pneumocystis jirovecii Pneumonia (PCP) antigen (1–5, 6B,
7F, 8, 9N, 9 V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F,
23F, 33F). Calibrators and controls were pre-absorbed against
capsular polysaccharide (CPS) and samples were diluted in
diluents containing CPS. The calibrators, controls, and diluted
patient samples were then added to the wells and antibodies
recognizing the PCP antigen bound, during the first incubation.
Samples were run in duplicate.

The rest of the procedure was executed according to manufac-
turer’s instructions.41 In order to interpret the immune response to
the vaccine, several criteria are used: the post-vaccination antibody
titre, the fold-increase, and the frequencies of serotypes with a
satisfactory response. Currently there is no global definition for the
adequate response to pneumococcal polysaccharide vaccine. In
this study a satisfactory antibody response was considered a two-
fold antibody increase from the initial level.42



Table 1
Baseline characteristics of the study participants at inclusion

HAART-naı̈ve patients (n = 31) Treated patients (n = 35) p-Value

Age, years, mean � SD 30.46 � 7.12 33.15 � 7.9 0.178

Gender, male/female, n (%) 31 (100.0%)/0 (0.0%) 31 (85.7%)/4 (14.3%) 0.065

Years of HIV infection, mean � SD 3.84 � 1.85 4.68 � 4.44 0.345

CD4 cell count before vaccination, mean � SD (copies/mm3) 637.9 � 270.4 708.7 � 296.1 0.316

Nadir CD4 cell count, mean � SD (copies/mm3) 596.6 � 239.1 315 � 192.1 0.0005

VL before vaccination, median (IQR) 36 503 (165 080) 47 (0) 0.0005

HAART duration in months, mean � SD NA 35.6 � 14.35 NA

Body weight, kg, mean � SD 76.1 � 10.22 73.0 � 10.87 0.239

HCV infection, n (%) 1 (3.2%) 3 (8.6%) 0.616

HBV infection, n (%) 6 (19.4%) 3 (8.6%) 0.287

Current smoker, n (%) 21 (67.7%) 12 (34.3%) 0.013

HAART, highly active antiretroviral therapy; SD, standard deviation; VL, HIV RNA viral load; IQR, interquartile range; NA, not applicable; HCV, hepatitis C virus; HBV, hepatitis

B virus.
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2.5. Statistical analysis

Data were expressed as the mean � standard deviation (SD) or
median (interquartile range (IQR)) (in the case of violation of
normality) for continuous variables, and as counts and percentages
for categorical data. The Kolmogorov–Smirnov test was used for
normality analysis of the parameters.

The one-factor repeated measures analysis of variance (ANOVA)
model was used to compare the different time measurements of
variables for each group. Pair-wise multiple comparisons were
performed using the critical difference method of Tukey.

The vaccine antibody responses were calculated as the relative
vaccine-specific IgG increase from pre-vaccination baseline to
4 and 48 weeks, thus providing a correlate for total vaccine
response adjusted for the patient’s IgG concentration of the
23 vaccine serotypes at the time of enrolment. The number of B
cells and B memory cell subpopulations were compared between
the two patient groups by Student’s t-test, or the Mann–Whitney
test in the case of violation of normality.

This was supplemented with multivariable regression analyses
with adjustments for patient group (ART-naı̈ve and treated
patients) and current smoking status (yes/no). Logarithmic
transformation was used when appropriate to obtain normality.

All tests are two-sided, and a p-value of <0.05 was used to denote
statistical significance. All analyses were carried out using the
statistical package SPSS version 16.00 (SPSS Inc., Chicago, IL, USA).

3. Results

The demographic, clinical, and laboratory data of the 66 HIV-1
patients are summarized in Table 1.

CD4 cell counts were higher in the treated group and their
progress was different compared to naı̈ve patients (p = 0.024), who
had a downward trend in their CD4 cell counts. Concerning each
post-vaccination time point separately, there was a significant
variation at week 4 (p = 0.029) and week 48 (p = 0.001) in CD4
frequencies (data not shown). The two groups differed significantly
Table 2
Antibody response to 23-PPV in naı̈ve and treated HIV patientsa

HAART-naı̈ve patie

Antibodies (log) pre-immunization, mean � SD 3.16 � 0.98 

Antibodies (log) 4th week, mean � SD 4.62 � 1.38 

Antibodies (log) 48th week, mean � SD 0.29 � 0.5 

Responders 26 (83.8%) 

Non-responders 5 (16.1%) 

Fold increase, mean � SD 6.72 � 6.8 

23-PPV, 23-valent pneumococcal polysaccharide vaccine; HAART, highly active antiret
a Treated patients maintained higher levels of antibodies against Streptococcus pneu

vaccine, irrelevant of HAART intake. However, there were twice as many treated non-r
concerning smoking habit (p = 0.013) and nadir CD4 cell count
(p < 0.0005) (Table 1).

3.1. Antibody response to 23-PPV

Patients under HAART had significantly higher antibody levels
at all three time points: at baseline (p = 0.0005) and at 4 weeks
(p = 0.006) and 48 weeks (p = 0.001) post-vaccination. Fifty
patients doubled their initial IgG level (responders), while 16 were
non-responders (Table 2). Interestingly, the vast majority of non-
responders were under HAART treatment. No correlation between
an adequate response and current CD4 or nadir CD4 cell count was
detected.

3.2. Most B cell subsets were lower among ART-naı̈ve patients

compared to treated patients at baseline

The frequency of total B cells, BMC, RM, and EM was higher in
treated patients compared to naı̈ve patients; in contrast, IgM
memory B cells and ITS were higher in the naı̈ve group. Furthermore,
ART-naı̈ve patients also preserved higher fractions of AM pre
vaccination (Figure 1). These differences were not statistically
significant. Memory B cells were diminished over time in both
groups, although treated patients maintained higher levels of all
subsets studied, with the exception of AM and ITS. There was no
significant relationship between CD4 cell counts and the studied B
cell subsets pre vaccination. In contrast, on multivariate analysis, low
levels of nadir CD4 correlated with the diminished levels of resting
(p < 0.01) and activated memory B cells (p = 0.03) (data not shown).

3.3. Memory B cells and IgM memory B cells demonstrated no

correlation with vaccine IgG response

In unadjusted linear regression analyses, the levels of memory B
cell and IgM memory B cell counts did not predict the vaccine
response at all time points. Similarly, regression analyses adjusted
for patient group showed no effect of memory B cell and IgM
memory B cell concentrations on IgG vaccine response.
nts (n = 31) Treated patients (n = 35) p-Value

4.4 � 1.43 0.0005

5.46 � 1.04 0.006

0.65 � 0.33 0.001

24 (68.5%) 0.047

11 (31.4%) 0.047

8.18 � 13.41 NS

roviral therapy; SD, standard deviation; NS, not significant.

moniae pre- and post-immunization. Most patients responded successfully to the

esponders as naı̈ve non-responders.



Figure 1. Distinct frequencies of total B cells and other B memory subpopulations in the peripheral blood of HIV viremic and aviremic (treated) individuals before

immunization with the PPV-23 vaccine against Streptococcus pneumoniae. No significant differences in the levels of total B cells and certain memory B cell subsets were

detected among antiretroviral-naı̈ve and treated patients at baseline. HAART had no effect on the fluctuation of the initial B lymphocyte levels in HIV-1 infection.
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3.4. Total B cell count and exhausted memory B cells predicted the

antibody response to the vaccine

The vaccine-specific IgG concentration measured 4 weeks post
vaccination correlated positively with total baseline B cell (p = 0.02)
and exhausted memory B cell subsets (p = 0.07) in the unadjusted
(Figure 2) and adjusted linear regression analyses. No other baseline
B cell compartment was associated with the antibody response and
preservation of the antibody concentrations post vaccination over
the 48-week study period (data not shown).



Figure 2. Linear regression plots: pre-vaccination baseline B cell subpopulations as

predictors of the IgG antibody response. Scatter plots with the best fitted line.

Association between the two B cell subsets (log cells/ml) plotted against the IgG

vaccine-specific antibody concentration (log IgG mg/ml) at 4 weeks post-

immunization, which were found to be significant, implying a positive

predictive correlation of the initial levels of total B cells and the exhausted

memory B cell subpopulation and the antibody response to PPV-23.
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3.5. Contribution of viremia and nadir CD4 cell count

In order to investigate the role of different factors associated
with B cell alterations, demographic, virological, and immunologi-
cal factors at baseline were evaluated by multivariate analysis. Age
correlated with activated and resting memory B cells, while gender
did not seem to affect these populations. HIV RNA at baseline
showed no correlation with AM, RM, or IgM memory B cell counts
at baseline. The nadir CD4 cell count correlated with low levels of
resting memory and activated memory B cells (data not shown).

To evaluate more precisely the accumulated results from the
previous analysis, the possibility of a linear association of B cell
subpopulation frequencies with HIV RNA viral load and CD4 T cell
counts at all three time points were further investigated separately
(before vaccination and at week 4 and week 48 post-vaccination).
Activated B cells at baseline were associated with the baseline viral
load (r = 0.54, p = 0.01), and resting memory B cells were
moderately negatively correlated with viral load at baseline
(r = �0.45, p = 0.026) (data not shown). No association was
observed between CD4 cell counts and AM or RM cells at any of
the investigated time points (data not shown).

The effect of HAART on distinct B cell subpopulations, along
with the vaccine effect during the study period, is summarized in
Table 3. Moreover, certain differences in B cell frequencies are
illustrated compared to healthy individuals. There were significant
variations in distinct memory B cell subsets in HIV-1 patients.
Vaccination with the 23-PPV had an immunological effect on
certain B cell subsets like AM, EM, RM, and ITS memory B cells,
triggering alterations in their counts in the peripheral blood of
HIV-infected patients. Moreover, HAART intake appears to have
controversial implications in a few of these memory B cell
populations.

4. Discussion

HIV-1 infection in its natural course leads to significant B cell
defects, including hyperactivation, cell switch, and finally the onset
of cell subsets that are normally lacking or appear at low levels in
healthy individuals, and HIV patients present poor antibody
responses to polysaccharide vaccines. The introduction of HAART
triggered further study of these populations, concluding that these
alterations are reversible with successful antiviral treatment,
suggesting a causal relationship with viremia. The effect of viremia
in B cell divergences has not been assessed thoroughly except in a
few studies,32 and consequently several differences have been
recorded among ART-naı̈ve and treated patients. This study, in line
with those of other authors, showed that viremia is correlated with
specific B cell populations. Patients with a viral load >50 copies/ml
had elevated activated B cells and a decline in resting memory B
cells.32

It was found that ART-treated patients had higher levels of
several B cell subsets before vaccine administration. Moreover, it
was determined that naı̈ve patients with continuous viral
replication preserved increased AM and ITS memory B cell counts,
while nadir CD4 predicted low RM and ITS over time. It has been
confirmed that HAART has a restoring effect on their population,
triggering their increase, which is in line with the present results,
in which treated patients had higher levels of RM B cells compared
to naı̈ve patients.20 Similarly, activated memory B cells are
expanded in chronic viral replication, which is in line with the
present data; these showed that naı̈ve patients maintained higher
levels of this subset compared to the treated group, confirming the
normalizing effect of HAART. With regard to isotype-switched
memory B cells, it is known that this subset is dependent on T cell
help, which has been thought to be defective in ART-treated adults
compared to naı̈ve; hence it is believed that the present results
may reflect the better immunological status of naı̈ve patients,
reflected in higher nadir CD4 cell levels compared to treated
patients. However, it should be noted that these differences are
minor.43

Furthermore, it was observed that total B cells, memory B cells,
and ITS memory B cells correlated with IgG responses at baseline.
Finally, ART was associated with increased total B cells and the EM
B cell compartment, which seemed to predict IgG responses.

HIV-1 infection impairs memory B cells, and seropositive
patients display a low antibody response in T cell-independent (TI)
antigens, such as those included in the 23-valent polysaccharide
vaccine, irrespective of HAART, which further declines over time.
These data were also confirmed in the present study, along with
the fact that the majority of non-vaccine responders were ART-
treated; the data further enhance the aspect that the antibody



Table 3
Effect of HAART and polysaccharide vaccine administration on different B cell subpopulations at weeks 4 and 48, compared to the frequencies of B cells in healthy adultsa

Viral load before vaccination in the treated group: <47 copies/mm3 (undetectable)

Viral load before vaccination in the naı̈ve group: 36 503 (165 080) copies/mm3

Baseline B cell

subpopulations

Treatment

effect

B cell subpopulations

4 weeks

Vaccination effect

from baseline

B cell subpopulations

48 weeks

Vaccination effect

from baseline

Total B cells (NR 4.9–18.4%)

Treated 8.25 Increase 8.49 No change 7.64 No change

Naı̈ve 6.62 NA 6.36 No change 5.92 No change

Memory B cells (NR 7.2–18.9%)

Treated 2.16 Increase 2.28 Increase 1.91 Decrease

Naı̈ve 1.98 NA 2.07 Increase 1.76 Decrease

Resting memory B cells (NR 44–78.3%)

Treated 40.89 No change 60.63 Increase 59.61 Decrease

Naı̈ve 40.66 NA 44.62 Increase 46.55 Decrease

Exhausted memory B cells (NR 7.2–11.2%)

Treated 55.19 Increase 46.36 Decrease 45.28 Decrease

Naı̈ve 47.49 NA 37.99 Decrease 39.55 Decrease

IgM memory B cells (NR 7.3–32.5%)

Treated 20.02 Increase 24.64 No change 28.73 No change

Naı̈ve 23.99 NA 24.44 Increase 28.24 Increase

Isotype- switched memory B cells (NR 6.5–29.1%)

Treated 22.29 No change 26.11 Increase 38.73 Increase

Naı̈ve 22.42 NA 25.03 Increase 37.28 Increase

Activated memory B cells (NR 1.0–3.6%)

Treated 58.87 Decrease 39.48 Decrease 40.68 Decrease

Naı̈ve 61.62 NA 54.79 Decrease 52.78 Decrease

HAART, highly active antiretroviral therapy; NR, normal range; NA, not applicable.
a Activated memory B cells increase in HIV-infected individuals, with conflicting HAART impact on normalization of their frequencies and activity. It is regarded to restore

their expansion, especially if the initiation of HAART is prompt. The fact that activated memory B cells are expanded in chronic viral replication is in line with the data of the

present study, which show that naı̈ve patients maintain higher levels of this subset compared to treated patients, confirming the normalizing effect of HAART. These cells are

prone to extrinsic apoptosis during the natural course of HIV infection. Due to the decline in their frequencies post vaccination in this study, irrespective of HAART, it is

speculated that this is attributed to PPV-23 administration. Resting memory B cells are depleted during HIV infection, whereas their levels are high in healthy adults. It has

been confirmed that HAART has a restoring effect on their population, triggering their increase, which is in line with the results of the present study, in which treated patients

had higher levels of RM B cells compared to naı̈ve patients. Regarding the subset of exhausted memory B cells, it is known that they accumulate in HIV-infected patients

irrespective of viral control and HAART intake, and this has been attributed to high plasma viral loads, chronic immune activation, or disease progression. Additionally, their

levels may change independent of immune activation or viral replication. Moreover, similar to healthy individuals, HIV controllers have been detected to have a high

frequency of exhausted, tissue-like B cells, despite having low to undetectable viral loads. This suggests that the accumulation of dysfunctional exhausted memory B cells may

be linked to intrinsic infection-induced alterations in the B cell compartment, which in the case of the present study could be attributed to the initial impairment of the CD4 T

cell counts of the treated patients group (low nadir CD4 cell counts), despite current HAART intake. Isotype-switched memory B cells are known to depend on T cell help,

which has been thought to be defective in ART-treated adults compared to naı̈ve, so it is believed that the results of this study may reflect the better immunological status of

naı̈ve patients, imprinted on higher nadir CD4 cell levels compared to treated patients. However, these differences are minor.
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response alone does not constitute an efficient protection index for
pneumococcal infection in immunocompromised individuals.42,44

In this study, vaccination with the 23-PPV elicited satisfactory
antibody responses in both groups, in accordance with previous
studies.40,42 Studies investigating long-term serological responses
to 23-valent PPV in HIV patients have produced inconsistent
results.45–48

Treated patients had higher levels of antibodies throughout
the study period, although their progress over time was similar,
irrespective of HAART intake. It was found that HIV viral
suppression was associated with higher rates of antibody
response.42 This is consistent with other reports, which have also
implied a negative correlation between plasma HIV RNA load and
serological responses to PPV-23 that could be restored by
HAART.47,48 A moderate response to vaccine in treated patients
probably reflects the exhaustion of the immune system along with
the natural course of HIV infection.42

A recent study assessing the effectiveness of PPV-23 also
suggested that, irrespective of CD4 cell count at immunization, the
vaccine gave no benefit when it was administered to patients with
high viremia.49 This may be related to continuous HIV replication,
which probably perturbs B cell function, or may be correlated to
the premature exhaustion of B cells, which results in ineffective
humoral responses to antigen stimulation.25,50 The present study
also suggests that CD4 cell restoration upon HAART improved the
antibody responses of HIV-infected patients receiving 23-valent
PPV during the study period.
No significant correlation between baseline CD4 cell counts and
the studied B cell subsets was identified, which is in line with
previous data.30 In contrast, on multivariate analysis, low levels of
nadir CD4 correlated with the diminished levels of resting and
activated memory B cells. This implies an intense effect of initial
CD4 cell count levels, despite the subsequent immune restoration
by following HAART, in the preservation and functionality of vital
B cell populations.

The phenotype of the B cells responsible for immune responses
to the polysaccharide pneumococcal vaccine has been controver-
sial, and this was the reason for the present investigation into most
of the correlated B cell subsets. More precisely, IgM and isotype-
switched memory B cells have a significant role in the immune
response to 23-PPV. The present study is in line with those
reported by other authors,43 who tried to investigate the effect of B
cell subsets on the final response to 23-PPV. Total B cells and BMCs
were elevated in treated patients compared to naı̈ve patients both
pre and post vaccination, as shown in other studies as well.19–21

It has been confirmed that patients with diminished or a lack of
IgM memory B cells, respond modestly to polysaccharide vaccine
and are susceptible to invasive pneumococcal disease.51,52 Several
studies have demonstrated the loss of IgM and/or switched
memory B cells in HIV patients, which were also confirmed in the
present data. However, IgM memory B cells are not solely
responsible for anti-polysaccharide antibody formation. Isotype-
switched memory B cells have also been shown to produce
effective antibodies post vaccination in vitro.53,54 In agreement
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with other authors, higher levels of isotype-switched memory B
cells were seen in treated patients compared to naı̈ve patients,33

which correlated with the baseline levels of IgG against S.

pneumoniae.
Moreover, it is speculated that the association of the IgG

response with total B cells and exhausted memory B cells reflects
that these two B cell compartments participate in mounting an
adequate response to PPV-23. Exhausted memory B cells comprise
a rare population expanded in chronic HIV infection irrespective of
HAART and viral replication.55 It is known that EM accumulate in
HIV-infected patients irrespective of viral control and HAART
intake, and this has been attributed to high plasma viral loads,
chronic immune activation, or disease progression. Additionally,
their levels may change independent of immune activation or viral
replication. Moreover, similar to healthy individuals, HIV con-
trollers have been detected to have a high frequency of exhausted B
cells despite having low to undetectable viral loads. This suggests
that the accumulation of dysfunctional exhausted memory B cells
may be linked to intrinsic infection-induced alterations in the B cell
compartment, which in the case of the present study could be
attributed to the initial impairment of the CD4 T cell counts of the
treated patients group (low nadir CD4 cell counts), despite current
HAART intake.55

This study has some limitations. The peripheral blood B cell
population was studied since this is by far the easiest accessible
compartment and the most widely investigated, and the peripheral
blood B cell subsets are only representative of cells participating in
the response. The data indicate that total B cells and the exhausted
memory B cell compartment are the only peripheral populations
that can be used to predict the IgG response to PPV-23, although
other significant associations are reported, which may lead to
further investigations on the role of B cells in effective vaccine
responses.

This study emphasizes the fact that the disturbance of certain B
cell subsets is associated with a poor vaccine response among HIV-
infected patients and supports the idea that B cell defects play an
important and independent role in the antibody response over time.
Moreover, antibody assessment cannot comprise an index of
effective protection against S. pneumoniae in immunocompromised
hosts. In conclusion, an integrated study of all implicated aspects
of the immune response may be a better approach to the evaluation
of immunogenicity of the 23-PPV in HIV-infected patients.
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