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a b s t r a c t

The utility of the Weibull distribution has been traditionally justified with the belief that it
is the mathematical expression of the weakest-link concept in the case of flaws locally ini-
tiating failure in a stressed volume. This paper challenges the Weibull distribution as a
mathematical formulation of the weakest-link concept and its suitability for predicting
probability of failure locally initiated by flaws. The paper shows that the Weibull distribu-
tion predicts correctly the probability of failure locally initiated by flaws if and only if the
probability that a flaw will be critical is a power law or can be approximated by a power
law of the applied stress.

Contrary to the common belief, on the basis of a theoretical analysis and Monte Carlo
simulations we show that in general, for non-interacting flaws randomly located in a
stressed volume, the distribution of the minimum failure stress is not necessarily a Weibull
distribution. For the simple cases of a single group of identical flaws or two flaw size groups
each of which contains identical flaws, for example, the Weibull distribution fails to predict
correctly the probability of failure. Furthermore, if in a particular load range, no new crit-
ical flaws are created by increasing the applied stress, the Weibull distribution also fails to
predict correctly the probability of failure of the component. In all these cases however, the
probability of failure is correctly predicted by the suggested alternative equation. This
equation is the correct mathematical formulation of the weakest-link concept related to
random flaws in a stressed volume. The equation does not require any assumption con-
cerning the physical nature of the flaws and the physical mechanism of failure and can
be applied in cases of locally initiated failure by non-interacting entities.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The most important aspect of the load-strength interaction is the interaction of the upper tail of the load distribution and
the lower tail of the strength distribution. The values from the lower tail of the strength distribution control reliability, not
the high or central values. Consequently, an adequate model of the strength distribution should faithfully represent its lower
tail.

In a number of cases, the Weibull distribution (Weibull, 1951) has been a suitable model for the variation of the strength of
materials whose failure is locally initiated by flaws (e.g. ceramics, glasses, low-carbon steels at low temperatures, and other
brittle materials). For the probability of failure of a chain consisting of n links, Weibull (1951) proposed the following
equation:
. All rights reserved.
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pf ðrÞ ¼ 1� exp½�nuðrÞ� ð1Þ
where u(r) is positive, non-decreasing and vanishing at some value rl. Weibull approximated u(r) with the function
u(r) � [(r � rl)/ra]b satisfying these conditions and obtained the distribution:
pf ðrÞ ¼ 1� exp � r� rl

ra

� �b
" #

; b > 0 ð2Þ
As a result, the probability of failure pf(r) at a loading stress r is given by the Weibull distribution (2) where rl, ra and b are
the location, scale and shape parameters, respectively. Often, rl = 0 is assumed which ensures conservatism in the calcula-
tions. Material with non-interacting flaws locally initiating failure has been compared to a chain with many links each of
which corresponds to a flaw. The material fails when any of the flaws initiates failure during loading.

As a result, for a long time, the Weibull model
pf ðrÞ ¼ 1� exp �V
r� rl

r0

� �m� �
; m > 0 ð3Þ
has been used to model the probability of failure pf(r) locally initiated by flaws of a loaded component in uniaxial homoge-
neous tensile stress state. In Eq. (3), r is the loading tensile stress, V is the stressed volume, r0 and m are constants. Eq. (3) is a
three-parameter Weibull distribution, where rl is a location parameter or a threshold stress below which the probability of
failure is zero.

The utility of the Weibull distribution has been traditionally justified with its capability to fit well a wide range of failure
data. The theoretical justification of the Weibull distribution is the extreme value theory (Gumbel, 1958). According to the
extreme value theory, the Weibull model is the asymptotic distribution for the minimum of a large number of bounded on
the left, identically distributed random variables.

Freudenthal (1968) and Trustrum and Jayatilaka (1983), for example, used arguments based on the extreme value theory
and concluded that the distribution of the fracture stress is insensitive to the flaw size distribution and that distributions of
different types lead to a Weibull distribution.

In most publications related to the Weibull distribution, the utility of the Weibull distribution has also been justified with
the belief that it is the mathematical formulation of the weakest-link concept. In other words, if a number of random flaws are
present in a stressed volume it is believed (e.g. Freudenthal, 1968) that the Weibull distribution is the model for the distri-
bution of the minimum failure stress characterizing these flaws.

There exists mounting experimental evidence however, showing that in some cases the Weibull distribution fails to fit
data related to failure locally initiated by flaws.

According to Danzer et al. (2007), the Weibull distribution is not an appropriate model for brittle materials containing bi-
or multi-modal flaw size distributions or materials having a high defect density. Furthermore, according to Danzer et al.
(2007), published data claimed to be Weibull distributed which are based on small samples may not necessarily come from
a Weibull population. This is because it is very difficult to decide on the basis of a small sample whether the data follow a
Weibull distribution or not. Danzer (2006) noted that on the basis of a small sample size (e.g. containing fewer than 30 spec-
imens) it is not possible to differentiate between a Weibull, a Gaussian or other similar distribution functions. Because of the
flexibility of the three-parameter Weibull distribution, a strength distribution built on the basis of a small sample appears to
be a Weibull distribution in almost any case.

In Zhang and Knott (2000), the value of the conventional fitting of fracture toughness to Weibull distribution has been
questioned. Good estimates for the lower-tail fracture toughness values were reported for a single-phase homogeneous bai-
nite or martensite and for a fine-mixed bainite/martensite microstructure. For a coarse-grained bainite/martensite mixed
microstructures however, the Weibull fits resulted in ultra-pessimistic estimates for the lower-tail fracture toughness val-
ues. These were below the fracture toughness values of the phase characterized by a smaller fracture toughness (bainite). As
a result, no physically reasonable lower-bound fracture toughness could be obtained from a Weibull fit of coarse mixed
microstructures.

In cases where measured strength does not follow the Weibull distribution, fitting a Weibull distribution to the data
sets and extrapolating towards low strength values may result in wrong estimates for the lower tail of the strength
which is of significant importance to estimating the risk of structural failure. It seems that in some cases, the Weibull
distribution is a good model for fracture locally initiated by flaws, while in other cases it is clearly not an appropriate
model.

Furthermore, experiments on notched specimens reported by Milella and Bonora (2000), showed that the Weibull mod-
ulus m depends on the specimen geometry (the notch radius). These experimental findings were confirmed by experiments
involving failure of notched ceramic specimens conducted by Gerguri et al. (2004). They reported that the calculated Weibull
modulus depends on whether the specimen has a notch or not. For notched graphite bars, a value m = 29 was obtained,
which was almost three times higher than the value m = 10 obtained for bars without notches. Similar results were obtained
for silicon nitride bars. In other words, without altering the flaw population and the material of the specimens, different
notch radii yield different Weibull moduli m. A major implication from these experimental results is that the Weibull mod-
ulus m is probably not a material constant.
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A recent theoretical study (Todinov, 2008) showed that existing statistical theories of fracture (e.g. Batdorf and Crose,
1974; Evans, 1978; Lamon, 1988; Weibull, 1951), can be reduced to pf(r) = 1 � exp[�ncr(r)V] where pf(r) is the probability
of failure at a loading stress r, ncr(r) is the number density of the flaws causing failure at a loading stress r and V is the
stressed volume. These theories assume a power-law stress dependence of the number density of the critical flaws (Batdorf
and Heinisch, 1978; Lamon and Evans, 1983; Evans and Jones, 1978). In the same work (Todinov, 2008), for material con-
taining flaws, simulation counter-examples were developed that demonstrate cases where this assumption is violated.

Despite this analysis, no fundamental reason has been given as to why despite the violation of the power law stress
dependence, the Weibull distribution fits well such a large amount of data. Furthermore, no analysis has been conducted
related to the correctness of the Weibull distribution as a mathematical formulation of the weakest-link concept in the case
of failure locally initiated by non-interacting flaws.

This paper aims to fill this gap by: (i) deriving a necessary and sufficient condition for the validity of the Weibull distri-
bution, (ii) testing the widely held belief that the Weibull distribution is the mathematical formulation of the weakest-link
concept in the case of failure initiated by random non-interacting flaws, (iii) suggesting the correct mathematical formula-
tion of the weakest-link concept in the case of failure locally initiated by non-interacting random flaws and (iv) generating
insight into why the Weibull distribution fits well such a vast range of failure data.

2. Analysis of the Weibull distribution and counter-examples

Consider a bar containing random flaws, loaded in tension (Fig. 1) where the loading stress r is below the minimum frac-
ture stress rM of the homogeneous matrix. Consequently, in this case, failure can only be initiated by a flaw residing in the
stressed volume. A flaw that will initiate failure with certainty, if it is present in the volume of the loaded bar will be referred
to as critical flaw (Batdorf and Crose, 1974). A critical flaw, for example, can be a flaw whose size exceeds a particular limit
that depends on the loading stress. Assume a population of fracture initiating flaws with finite number density k, whose loca-
tions in the stressed volume of the bar follow a homogeneous Poisson process. The critical flaws whose number density at a
loading stress r will be denoted by kcr(r) will also follow a homogeneous Poisson process in the volume of the loaded bar
(the filled circles in Fig. 1).

The probability that no critical flaws will be present in the stressed volume V at a loading stress r is exp[�Vkcr(r)]. Failure
initiated by flaws will occur if and only if at least one critical flaw resides in the stressed volume V. Consequently, the prob-
ability of failure at a loading stress r (the probability that at least one critical flaw will be present in the volume V) is
Fig. 2.
critical
σ

V

σ

Fig. 1. Stressed bar with volume V containing flaws with finite number density k.

Applied stress, σ

Probability of initiating
failure associated with a single flaw

Fc(σ) = 1

Fc(σ)

Power laws

If no new critical flaws are created by the applied stress, with increasing the magnitude of the applied stress, the probability that a flaw will be
approaches unity and cannot be approximated by a power-law stress dependence in this region.
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pf ðrÞ ¼ 1� exp½�VkcrðrÞ� ð4Þ
Now assume that the Weibull Eq. (3) holds. Since Eqs. (4) and (3) have the same functional form, from the comparison, the
dependence
kcrðrÞ ¼
r� rl

r0

� �m
in the Weibull distribution (3), must necessarily give the number density of the critical flaws at a loading stress r. In other
words, the Weibull model (3) requires the number density of the critical flaws kcr(r) to be a power law dependence of the
applied stress r. Let us now make use of the concept conditional individual probability of initiating failure Fc(r) at a stress
level r, given that a flaw resides with certainty in the stressed volume V (Todinov, 2005). The probability Fc(r) can also be
interpreted as the probability that a flaw residing in the stressed volume will be critical.

The expected number of critical flaws is then equal to the product kVFc(r) of the expected number kV of flaws residing in
the volume V and the probability Fc(r) that a flaw will be critical. As a result, the number density kcr(r) of the critical flaws at
a stress level r is linked with the number density k of all flaws with the relationship kcr(r) = kFc(r). This means that the Wei-
bull distribution holds if and only if, the probability Fc(r) that a flaw will be critical is a power law dependence (or can be
approximated well by a power law dependence) of the applied stress.
FcðrÞ ¼
r� rl

rm

� �m

; m > 0 ð5Þ
where rm = r0k
�1/m.

This is a necessary and sufficient condition for the validity of the Weibull distribution in the case of non-interacting flaws whose
locations follow a homogeneous Poisson process.

In the stress range corresponding to low values of the applied stress, the power law dependence often provides a good
approximation of the probability Fc(r) that a flaw will be critical. According to the weakest-link concept, in a stressed volume
containing a large number of flaws, failure will be initiated by the flaw characterized by the smallest failure stress. Conse-
quently, for a relatively large number of flaws in a tested specimen, the recorded failure stress is likely to remain within the
lower tail of the dependence Fc(r) – the region that can often be approximated well by a power law stress dependence. This
argument goes towards explaining the wide range of data that are fitted well by the Weibull distribution. In the general case
however, a good approximation by a power law of all regions of the Fc(r) curve is not possible.

Indeed, the probability Fc(r) is bounded by Fc(r) = 1 (Fig. 2). It is therefore impossible to approximate Fc(r) by a power law

stress dependence, beyond a stress level r* for which Fc(r*) = 1. A further increase of the applied stress r beyond r* does not
result in an increase of the probability Fc(r) = 1 that a flaw will be critical.

Consider dependence (5). It is strictly increasing for r > 0, because d
dr ½ðr� rlÞ=rm�m
� �

> 0. As a result, according to the
Weibull model, the probability that a flaw will be critical must increase with increasing the loading stress. Consequently,
a power law approximation of the type given by Eq. (5), requires that the probability Fc(r) increases, with increasing the
loading stress r beyond r* for which Fc(r*) = 1. In fact, the probability Fc(r) for r > r* should remain equal to one!

In short, the probability that a flaw will be critical must have an upper bound. The power law dependence however, of the
conditional probability of failure associated with a single flaw does not have an upper bound (Fig. 2).

This point will further be illustrated by a counterexample.
A piece of wire with length L and unit cross sectional area S = 1, contains only a single type of identical flaws (e.g. random

tool marks) with number density k. The wire is subjected to tensile loading in the range (rmin,rmax) which is below the min-
imum fracture stress rM of the homogeneous wire (with no flaws on it) (Fig. 3). Suppose that the stress level rmin is such that
Applied 
stress, σ

F(σ), Conditional probability of initiating
 failure associated with a single flaw

F(σ) = 1

Fig. 3. Variation of the conditional probability of initiating failure associated with a single tool mark.
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any flaw (tool mark), will cause failure if present on the stressed piece of wire. In other words, beyond the stress level rmin,
all flaws are critical (Fc(r) = 1, r > rmin), Fig. 3.

Clearly, the probability of failure in the stress region (rmin,rmax) is equal to the probability of existence of a flaw on the
stressed piece of wire. This probability, which is given by
pðrÞ ¼ 1� expð�kLÞ ð6Þ
is constant in the stress range (rmin,rmax). However, the Weibull distribution gives
pðrÞ ¼ 1� exp �L½ðr� rlÞ=r0�m
� �

; m > 0 ð7Þ
for the probability of failure. According to the Weibull distribution, within the stress range (rmin,rmax) as r varies from rmin

towards rmax, the probability of failure will increase (p(rmax) > p(rmin)). In fact, the probability of failure will remain the same
because the expected number of flaws (tool marks) in the stressed volume has not been altered!

This counterexample and the previous analysis show that in the case where the probability that a flaw will be critical remains
the same during increasing the loading stress, the Weibull distribution is incapable of predicting correctly the probability of failure
initiated by flaws.

Furthermore, with increasing the loading stress, the probability that a flaw will be critical may increase, without neces-
sarily following a power law dependence.

Now let us introduce another counterexample based on flaws of the same type but with different size: a larger size a1

with a number density k1 and a smaller size a2 (a2 < a1) with a number density k2. The size distribution of the flaws is there-
fore given by the discrete distribution:
Flaw size : a1 a2

Probability : k1=ðk1 þ k2Þ k2=ðk1 þ k2Þ
ð8Þ
where k1/(k1 + k2) and k2/(k1 + k2) are the probabilities that a random flaw will be of size a1 or a2, respectively. The first (lar-
ger) size of flaws contains identical flaws with number density k1 and the probability that a flaw will be critical is
Fc1ðrÞ ¼
0; r 6 r10

1; r > r10

�
ð9Þ
where r10 is the stress threshold beyond which all flaws with size a1 become critical (initiate failure). Compared with the
first size, the second flaw size group contains identical flaws with number density k2 = k � k1 where k P 0. Since the flaws
from the second group are of smaller size compared to the flaws from the first group, they will initiate failure at a higher
stress threshold r20 > r10. The probability that a flaw from the second group will be critical is then
Fc2ðrÞ ¼
0; r 6 r20

1; r > r20

�
ð10Þ
The probability that a flaw will be critical irrespective of the group to which it belongs is then given by
FcðrÞ ¼
1

1þ k
� Fc1ðrÞ þ

k
1þ k

Fc2ðrÞ ð11Þ
where 1
1þk ¼

k1
k1þk2

and k
1þk ¼

k2
k1þk2

are the probabilities that the flaw will belong to the first or the second size group, corre-
spondingly. This dependence, which has been graphically illustrated in Fig. 4a, is not a power law.

The dependence related to the probability of failure associated with the whole stressed volume is given in Fig. 4b. In the
stress range 0 6 r 6 r10, the probability of failure initiated by flaws is zero, because no flaw can initiate failure below the
stress threshold r10. In the stress range r10 < r 6 r20, the probability of failure of the stressed volume is equal to
1 � exp(�k1V) – the probability of existence of at least a single flaw of size a1, because only flaws of the larger size a1 can
initiate failure below the stress threshold r20. In the stress range r20 < r < rM, located below the fracture stress rM of the
matrix, the probability of failure of the stressed volume is equal to 1 � exp[�(k1 + k2)V]. This is the probability of existence
of at least a single flaw from any size, because flaws from both sizes can initiate failure beyond the stress threshold r20.

As can be seen, the dependence from Fig. 4b cannot be approximated by a Weibull distribution. This counterexample
shows that there exist simple flaw size distributions for which the distribution of the minimum failure stress is not a Weibull
distribution.

In short, for non-interacting flaws with number density k, characterized by a strength distribution Fc(r), the distribution
of the minimum failure stress is not necessarily the Weibull distribution.

3. Distribution of the minimum failure stress and a mathematical formulation of the weakest-link concept

The case where the minimum failure stress rmin,f characterizing the flaws in the stressed volume is greater than the load-
ing stress r, is equivalent to the case where no critical flaws are present in the stressed volume V. Indeed, suppose that for
the minimum failure stress rmin,f characterizing the flaws in the stressed volume, rmin,f > r is fulfilled. This means that there
will be no failure initiated by a flaw in the stressed volume, therefore no critical flaws are present in the stressed volume. On
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Fig. 4. (a) Variation of the probability that a flaw will be critical for flaws from by two size groups; (b) variation of the probability of failure of a bar
containing flaws of the same type, from two different size groups.
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the other hand, if no critical flaws reside in the stressed volume, the minimum failure stress characterizing the flaws in the
stressed volume will certainly be greater than the loading stress r.

Since the expected number of critical flaws in the stressed volume V is kVFc(r), for the probability that the minimum fail-
ure stress will be greater than r, P(rmin,f > r) = exp[�kVFc(r)] holds. The probability distribution function of the minimum
failure stress characterizing the flaws in the stressed volume is therefore given by:
Pðrmin;f 6 rÞ ¼ 1� exp½�kVFcðrÞ� ð12Þ
The dependence Fc(r) is not necessarily a power law. Consequently, the distribution of the minimum strength of the flaws is not
necessarily described by the Weibull distribution. Eq. (12) does not require any assumption concerning the physical nature of
the flaws and the physical nature of failure. The flaws in real materials are rarely simple cracks that satisfy the equations of
the fracture mechanics! The equation can therefore be applied in any case of a locally initiated failure by non-interacting
entities, where a random entity is characterized by a probability Fc(r) of initiating failure given that it is present with
certainty.

Eq. (12) is a special case of the equation
pf ¼ 1� expð�kVFcÞ ð13Þ
part of a methodology proposed in earlier work (Todinov, 2007, 2008) for determining the probability of failure of compo-
nents with complex shape initiated by flaws, where Fc is the conditional individual probability of initiating failure charac-
terizing a single flaw given that it resides with certainty in the component/structure.

The distribution of the minimum failure stress can also be derived in the case where the locations of the flaws do not
necessarily follow a homogeneous Poisson process.

Indeed, suppose that the locations of the flaws in the stressed volume follow a non-homogeneous Poisson process with
density k(x,y,z) and the distribution of the strength of the flaws is given by Fc(r). The probability that the failure stress will be
greater than r is a sum of the probability of the following mutually exclusive and exhaustive events: the probability that
there will be no flaws in the stressed volume V which is given by expð�

R
V kðx; y; zÞdmÞ, the probability that there will be a

single flaw in the volume V and its strength will be greater than r which is given by
expð�

R
V kðx; y; zÞdmÞ � ð

R
V kðx; y; zÞdÞ � ½1� FcðrÞ�; . . ., the probability that there will be k flaws in the volume V and the

strength of each flaw will be greater than r, which is given by expð�
R

V kðx; y; zÞdmÞ � ð
R

V kðx; y; zÞdÞk � ½1�FcðrÞ�k
k!

and so on . . .

Adding these probabilities results in,
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Pðrmin;f > rÞ ¼ exp �
R

V kðx; y; zÞd
� �

� 1þ
R

V kðx; y; zÞ
� �1 � ½1�FcðrÞ�1

1!
þ
R

V kðx; y; zÞ
� �2 � ½1�FcðrÞ�2

2!
þ . . . :

� �
ð14Þ
After some algebraic manipulation, for the distribution of the minimum failure stress
Pðrmin;f < rÞ ¼ 1� exp �FcðrÞ
Z

V
kðx; y; zÞd

� �
ð15Þ
is obtained. Denoting, �k ¼ 1
V

R
V kðx; y; zÞd as an average number density of flaws, Eq. (15) can also be presented as
Pðrmin;f < rÞ ¼ 1� exp ��kVFcðrÞ
� �

ð16Þ
If k(x,y,z) is constant, Eq. (16) transforms into Eq. (12).
The distribution of the minimum failure stress in the stress range 0 6 r 6 rM is given by Eq. (16). Eq. (16), not the Weibull

distribution, is the correct mathematical expression of the weakest-link concept in the case of flaws whose locations follow a Pois-
son process in a stressed volume V.

As can be verified, Eq. (12) gives a correct result for the probability of failure of the wire containing flaws. Indeed, beyond
the stress level rmin, all flaws are critical and the conditional probability of initiating failure associated with a single flaw is
Fc(r) = 1 in Eq. (12). The probability of failure of the stressed length L is then given by Eq. (6). This probability is constant in
the stress interval (rmin,rmax) as it should be. As can be verified, Eq. (12) yields also correct results in all stress ranges for the
second counterexample, involving flaws from the same type and two different sizes, and avoids a major drawback discussed
in relation with the Weibull model.

Eq. (12) regarding the distribution of the minimum failure stress can be generalized naturally to model the distribution of
the minimum failure stress associated with multiple type of flaws (M type of flaws) present in the material.
Pðrmin;f 6 rÞ ¼ 1� exp �V
XM

i¼1

�kiFciðrÞ
 !

ð17Þ
where �ki is the average number density and Fci is the probability that a flaw from the ith type will be critical. Denoting by
�k ¼

PM
i¼1

�ki the total average number density of the flaws, Eq. (17) can be presented as
Pðrmin;f 6 rÞ ¼ 1� exp ��kV � FcðrÞ
� �

ð18Þ
where the expression
FcðrÞ ¼
XM

i¼1

�ki

�k1 þ . . .þ �kM
� FciðrÞ ð19Þ
is the probability that a flaw will be critical. This probability is formed from the sum of the probabilities that a flaw will be
critical given that it belongs to the kth type of flaws, where k = 1,2, . . . ,M. The probability that failure will be initiated by the
kth type of flaws is equal to the product

�kk
�k1þ...þ�kM

� FckðrÞ of the probability
�kk

�k1þ...þ�kM
that the flaw will belong to the kth type of

flaws and the conditional probability Fck(r) that given that the flaw belongs to the kth type, it will initiate failure at a stress
level r.

In general, for multiple type of flaws, Fc(r) is not necessarily a power law even if all Fci(r) are given by power laws. This
can be demonstrated for two types of flaws only. In this case, the probability that a flaw will be critical is
FcðrÞ ¼ a1rm1 þ a2rm2 ð20Þ
where a1 > 0, a2 > 0, r P 0, m1 > 1 and 0 6m2 < 1 are assumed. The second derivative of Fc(r) in Eq. (20) is
o2

or
ðFcðrÞÞ ¼ a1 �m1� ðm1� 1Þrm1�2 þ a2 �m2� ðm2� 1Þrm2�2 ð21Þ
Since m2 � 1 < 0 there will exist a positive value r > 0 where the second derivative will be zero, therefore, in this case, Fc(r)
cannot be described by a power law.

The requirement for non-interacting flaws is essential for the validity of the weakest-link concept. Clustering of two or
more flaws within a critical distance is associated with an interaction of their stress fields and the combined impact on
the probability of failure is stronger compared to the case where no such interaction is present.

In many cases, clustering of flaws within a critical distance is strongly correlated with the probability of failure, partic-
ularly for thin fibers and wires. Indeed, clustering of two or more flaws within a small critical distance often decreases dan-
gerously the load-bearing cross section and increases the stress concentration which further decreases the load-bearing
capacity.

In order for the weakest-link concept to be applicable, failure must be initiated locally, by a single flaw. In the case of
dense flaws, failure in fact can occur due to at least two failure modes: (i) due to individual flaws triggering failure and
(ii) due to clustering of flaws within a critical distance. Furthermore, these failure modes are not statistically independent.
Indeed, the fact that there exists clustering of flaws within a critical distance affects the probability that there will exist
flaws, some of which may locally initiate failure. Let A1 denote the event no failure initiated from individual flaws and A2
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denote the event no failure initiated by clustering of two or more flaws within a critical distance. A1 \ A2 is the event that no
failure will occur during loading at the stress level r. The probability of the intersection of events A1 and A2 (the probability
of no failure) is given by
PðA1 \ A2Þ ¼ PðA1ÞPðA2jA1Þ ð22Þ
where P(A2jA1) in Eq. (22) is the conditional probability of no failure due to clustering of flaws within a critical distance given
that ‘no failure has been initiated by individual flaws’. Detailed discussion related to determining these probabilities can be
found in Todinov (2005).

3.1. Monte Carlo verification regarding the distribution of the minimum failure stress of a stressed volume containing random non-
interacting flaws

The expression regarding the distribution of the minimum failure stress has been verified by Monte Carlo simulations. A
loading stress r* is first specified. The strength of the individual flaws follows a particular distribution Fc(r) (e.g. normal, log-
normal, exponential).

The algorithm of the simulation procedure in pseudo-code is as follows.
Algorithm 1

Define loading stress sigma_star;
failure_counter=0;
for i=1 to Number_of_trials do
{

num_flaws=Generate_random_number_of_flaws();
min_failure_stress=BIG_Number;
for j=1 to num_flaws do

{
flaw_strength=Sample_the_flaw_strength_distribution();
if (min_failure_stress < flaw_strength) min_failure_stress=flaw_strength;

}
if (min_failure_stress < sigma_star) failure_counter=failure_counter+1;

}
probability_of_failure=failure_counter/Number_of_trials;

For each simulation trial, a random number of flaws (num_flaws) following a homogeneous Poisson process is gener-
ated inside the stressed volume V by the procedure Generate_random_number_of_flaws(), whose algorithm can be
found in books on Monte Carlo simulation. The locations of the flaws follow a homogeneous Poisson process with a
specified density k.

Next, for each of the generated num_flaws a strength is generated in the variable flaw_strength by sampling the spec-
ified strength distribution Fc(r) of the flaws. The sampling from the strength distribution is performed by using the in-
verse transformation method – a well-documented method in books on simulation. Simultaneously, the flaw with the
smallest strength among the generated flaws is determined. After exiting the inner loop, the minimum strength charac-
terizing the generated flaws, stored in the variable min_failure_stress, is compared with the specified loading stress sig-

ma_star. If the min_failure_stress is smaller than the loading stress sigma_star, the specimen will fail and the failure
counter is incremented.

The probability of failure is obtained as a ratio of the number of simulations during which the minimum failure stress has
been smaller than the loading stress r* and the total number (Number_of_trials) of Monte Carlo simulation trials.

The results from the simulations coincided with the results obtained from a direct calculation using Eq. (12). A stressed
volume of V = 100 cm3 with a flaw number density k = 0.15 cm�3 were assumed.

For a flaw strength given by the exponential distribution Fc(r) = 1 � exp(�r/l), for example, where l = 900 MPa, and
the loading stress is r* = 200 MPa, the simulations yielded pf � 0.95 for the probability of failure. Since
Fc(r*) = 1 � exp(�200/900) = 0.199, the substitution in Eq. (12) yields pf = 1 � exp(�0.15 � 100 � 0.199) � 0.95 for the
probability of failure.

For a flaw strength described by a normal distribution with mean l = 900 MPa, standard deviation s = 108 MPa and the
loading stress is r* = 1000 MPa, the simulations yielded pf � 0.38 for the probability of failure. Since Fc(r*) =
Pr(r 6 1000) � 0.032 for the normal distribution, the substitution in Eq. (12) yields pf = 1 � exp(�0.15 � 100 � 0.032) � 0.38
for the probability of failure.

For a flaw strength described by a log-normal distribution with mean l = 8 MPa, standard deviation s = 0.6 MPa of the log-
data, and the loading stress is r* = 900 MPa, the simulations yielded pf � 0.29 for the probability of failure. Since Fc(r*) =
Pr(r 6 900) � 0.023 for the log-normal distribution, the substitution in Eq. (12) yields pf = 1 � exp(�0.15 � 100
� 0.023) � 0.29 for the probability of failure.
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4. Physical meaning of the probability that a flaw will be critical

4.1. Case I: Failure controlled by the size of the flaws

Suppose that the material of the loaded specimen contains flaws with a number density k, that become unstable if the
maximum tensile stress exceeds a particular critical value, inversely proportional to the square root of the flaw size. Accord-
ing to the stress intensity approach (discussed in any book on Fracture Mechanics), fast fracture occurs if the stress intensity
factor KI ¼ Yr

ffiffiffiffiffiffi
pa
p

becomes equal to the fracture toughness KIc:
Yr
ffiffiffiffiffiffi
pa
p

¼ KIc ð23Þ
where Y is the geometry factor and a is the flaw size. The failure criterion therefore has the form
rc ¼
Cffiffiffi
a
p ð24Þ
where C is a constant depending on the material and geometry. From this equation, for a specified loading stress r, the crit-
ical flaw size that causes fracture becomes:
acr ¼ C2=r2 ð25Þ
All flaws with size a P acr are also critical and will cause fracture if present in the stressed volume.
In the case of fracture controlled by the size of the flaws during uniaxial tension, the probability that a flaw will be critical

Fc(r) is simply the probability Fc(r) = P(a > acr) that the size of the flaw will be greater than the critical flaw size acr = C2/r2

corresponding to the applied stress r. For the probability Fc(r), we have
FcðrÞ ¼ Pða > acrÞ ¼ 1� GðacrÞ ð26Þ
where G(a) is the cumulative distribution of the flaw size. Substituting this in Eq. (12) gives
Pðrmin;f 6 rÞ ¼ 1� exp �kV ½1� GðC2=r2Þ�
� �

ð27Þ
for the distribution of the minimum failure stress. This dependence is valid for any flaw size distribution. Eq. (27) is partic-
ularly suited for determining the probabilities of failure from the lower tail of the distribution of the fracture stress – the
region corresponding to the largest flaws in the material.

For fracture controlled by the size of flaws, characterized by constant number densities k1, . . . , kM, Eq. (19) becomes
FcðrÞ ¼
XM

i¼1

ki

k1 þ . . .þ kM
½1� GiðC2=r2Þ� ð28Þ
where Gi(�) is the cumulative size distribution of the flaws from the ith type.
Now, assume a cumulative distribution of the flaw size, given by the exponential distribution:
GðaÞ ¼ 1� exp½�a=am� ð29Þ
where am is the mean flaw size in lm. Since 1 � G(C2/r2) = exp[�k/r2] where k = C2/am is a constant, Eq. (27) results in
Pðrf ;min 6 rÞ ¼ 1� exp �kV � exp½�k=r2�
� �

ð30Þ
for the probability of failure of the component at a loading stress r.
Eq. (30) has been verified by a simulation experiment. The mean flaw size am in Eq. (29) was assumed to be am = 300 lm.

The constant C in Eq. (24) was assumed to be 2000 � 106, k = C2/am = 13333 � 1012 is a constant, kV = 50 is the expected num-
ber of flaws in the stressed volume. The simulation experiments followed Algorithm 1. Random flaws were generated, whose
number inside the volume V of the ‘specimen’ follows a Poisson distribution with mean kV = 50. Each flaw size has been ob-
tained from sampling the tested flaw size distribution. For each flaw, the critical stress that makes it unstable was calculated.
The critical stress was calculated from Eq. (24). For each simulation, the minimum failure stress associated with the volume V
was determined as the minimum critical stress characterizing the generated population of flaws in the simulation trial. The
minimum failure stresses from 1000 simulation trials were finally analysed by a double-logarithm plot.

Taking a double logarithms from Eq. (30) results in
ln½� lnð1� pf ðrÞÞ� ¼ lnðkVÞ � k=r2 ð31Þ
If zi ¼ ln½� lnð1� F̂iÞ� are plotted versus 1=r2
f , where rf is the simulated minimum failure stress, a plot which conforms to a

straight line will be obtained if the stimulated minimum failure stress complies with Eq. (30). F̂ i � i=ðnþ 1Þ are rank approx-
imations for the probability of failure, xi, i = 1, 2, . . . , n are the ordered simulated minimum failure stresses and n is their
number (n = 1000).

The inverse of the square of the simulated minimum failure stress plotted versus zi produced points falling closely along a
straight line (Fig. 5). This shows that the simulated minimum failure stress complies with Eq. (30).
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In earlier work (Todinov, 2008), we showed that flaws whose size follows a normal distribution, result in a dependence
for the conditional probability of failure with an inflection point. Here we show that any unimodal flaw size distribution
must have an inflection point.

Indeed, assume that the size distribution of the flaws in the material is unimodal (Fig. 6a). With increasing the loading
stress r, the probability Fc(r) will increase or stay the same because more and more flaw sizes will become critical. The larg-
est increase of the probability Fc(r) will occur when the loading stress makes critical the flaws corresponding to the mode of
the flaw size distribution (Fig. 6a).

In the vicinity of the stress r ¼ Cffiffiffiffiffi
am
p , an elementary increase of the stress Dr will correspond to a maximum elementary

increase Dn = n(am) � Da of the number density of critical flaws. Therefore, the inflection point rinf, marking the fastest in-
crease of the probability of initiating failure associated with a single flaw, is linked with the mode am of the flaw size number
density by rinf ¼ Cffiffiffiffiffi

am
p . The probability Fc(r) therefore, cannot be approximated by a three-parameter power law. Despite this,

the three-parameter Weibull distribution often gives good fits even for the type of stress dependence in Fig. 6b.
Again, the reason is that if a large number of flaws are present in the stressed volume, there is increased likelihood that

relatively large flaw sizes will be present, associated with failure stress from the lower tail of Fe(r). If the lower tail of Fc(r)
can be closely approximated by a power law dependence, the Weibull distribution will yield a good fit.
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Fig. 5. A probability plot of the minimum simulated failure stress. The plot confirms the validity of Eq. (30).
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Fig. 6. For a unimodal distribution of the flaw size number density, the probability that a flaw will be critical is characterized by an inflection point that is
linked with the mode of the flaw size distribution.
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4.2. Case II: Failure controlled by the orientation of the flaws

Suppose that in the bar from Fig. 7a, subjected to a uniaxial tension, a number of flaws exist, shaped as thin discs of the
same size but with different orientation. The condition expressing the instability of a flaw is dependent solely on its orien-
tation. Suppose for simplicity, that if the normal stress rn to such a disc-shaped flaw exceeds a particular critical value rcr,
the flaw will initiate fracture.

Clearly, if the loading stress is smaller than the critical value rcr(r < rcr), irrespective of the flaw orientation, there will be
no locally initiated failure. In this case, the probability that a flaw will be critical is zero (Fc(r) = 0).

In the case where the loading stress is greater than the critical stress rcr, the condition for instability is rn = rcos2h P rcr

or h 6 h* = arccos(rcr/r)0.5. If the orientation of the normal is random, the conditional probability Fc(r) = P(rn P rcr) that
rn = rcos2h P rcr will be fulfilled is equal to the probability that the normal to the flaw will subtend with the direction of
the loading stress an angle smaller than the critical angle h* Fc(r) = P (rn P rcr) = P(h 6 h*), Fig. 7.

The probability P(h 6 h*) can be determined from the ratio of twice the curved area of the spherical cap defined by the
critical angle h* and the surface area of a sphere with radius R. The area of a spherical cap with radius R, defined by angle
h* is 2pR2(1 � cosh*). The total area of the sphere is 4pR2. The probability P(rn = rcos2h P rcr) is therefore given by
FcðrÞ ¼ Pðrn P rcrÞ ¼
4pR2ð1� cos h�Þ

4pR2 ¼ 1� cos h� ¼ 1� ðrcr=rÞ0:5 ð32Þ
Finally, for the probability that a flaw will be critical, the dependence
FcðrÞ ¼
0; r 6 rcr

1� ðrcr=rÞ0:5; r > rcr

�
ð33Þ
is obtained.
According to Eq. (12), for random flaws whose locations follow a homogeneous Poisson process, the distribution of the

minimum failure stress is given by
Pðrf ;min 6 rÞ ¼
0; r 6 rcr

1� exp½�kVð1� ðrcr=rÞ0:5Þ�; r > rcr

�
ð34Þ
Eq. (34) has also been verified by a simulation experiment, where the critical stress rcr has been taken to be rcr = 950 MPa.
The algorithm in pseudo-code is presented in what follows.

Algorithm 2

Define a critical stress sigma_cr;
Define a reference stress sigma_ref;
failure_counter=0;
for i=1 to Number_of_trials do
{

num_flaws=Generate_random_number_of_flaws();
min_failure_stress=BIG_Number;

for j=1 to num_flaws do
{
cos_fi=Generate_random_orientation_with_respect_to_acting_stress();
failure_stress=sigma_cr/ (cos_fi)2;
if (min_failure_stress < failure_stress) min_failure_stress=failure_stress;
}
if (min_failure_stress < sigma_ref) failure_counter=failure_counter+1;

}
probability_of_failure=failure_counter/Number_of_trials;

The difference from Algorithm 1 is that for each flaw, the cosine of a random orientation angle is generated with respect
to the direction of the acting stress. The cosine of a random angle is generated from
cosðuiÞ ¼ 1� 2� ui ð35Þ
where ui are uniformly distributed numbers in the interval (0,1) (Sobol, 1994).
The failure stress rf,i characterizing a randomly oriented flaw is generated from rf,i = rcr/(cos(ui))2 because failure occurs

if the component of the loading stress r � (cos(ui))2 is equal to or greaterthan the critical stress rcr.
The results from the simulation were confirmed by results obtained directly from Eq. (34). Thus, for a loading stress of

950 MPa, k = 0.15 cm�3 and V = 100 cm3, both the simulations and Eq. (34) yielded zero for the probability of failure. For a
loading stress of 970 MPa, both the simulation and Eq. (34) yielded probability of failure 0.144. For a loading stress of
1000 MPa, both the simulation and Eq. (34) yielded 0.316 for the probability of failure. As can be verified from Fig. 8, the



σσ
(a)

Fig. 7. A bar subjected to a uniaxial tension, containing disc-type flaws of equal size and random orientation.
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probability of failure controlled by the flaw orientation quickly increases with increasing the loading stress after which the
rate decreases. For a flaw number density k = 0.3 cm�3, in the vicinity of the critical stress rcr = 950 MPa, a variation of the
loading stress of 2% only causes an increase of the probability of failure by 27%.

This result is confirmed by taking the differential of expression (34) in the vicinity of r = 950 and substituting the
numbers.
Fig. 8.
Dpf ðrÞ �
kV

2rcr
Dr ð36Þ
The increase of the magnitude of the probability of failure Dpf(r) is directly proportional to the flaw number density k.
Fig. 9 shows simulation results regarding the variation of the probability of failure of a specimen with volume V = 100 cm3

containing two types of flaws. The first type of flaws is characterized by a number density k1 = 0.015 cm3 and a critical nor-
mal stress of triggering fracture rcr,1 = 450 MPa; the second type of flaws is characterized by a flaw number density
k2 = 0.085 cm3 and a critical normal stress of triggering fracture rcr,2 = 950 MPa.

Clearly, the distribution from Fig. 9 cannot be approximated by a Weibull distribution. Eq. (18) however, yields the correct
probability of failure.

Indeed, the conditional probability for initiating failure characterizing the two types of flaws is Fc1(r) = 1 � (rcr,1/r)0.5 and
Fc2(r) = 1 � (rcr,2/r)0.5, respectively. According to Eq. (19), the probability that a flaw will be critical is
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Fig. 9. Variation of the probability of failure with the loading stress in the case of failure controlled by the orientation of two types of flaws.
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FcðrÞ ¼
k1

k1 þ k2
ð1� ðrcr;1=rÞ0:5Þ þ

k2

k1 þ k2
ð1� ðrcr;2=rÞ0:5Þ ð37Þ
For a loading stress of r = 1100 MPa, Eq. (37) yields Fc(r) = 0.114. Substituting this value in Eq. (18) gives
pf ðrÞ ¼ 1� exp½�0:1� 100� 0:114� � 0:68
for the probability of failure.
This result is confirmed by the simulation (see the dashed line in Fig. 9) which illustrates the validity of Eq. (18) regarding

the distribution of the minimum failure stress in the case of multiple types of flaws.

5. The negative power law flaw size distribution and the Weibull distribution

According to the earlier discussion, for a finite number of flaws following a homogeneous Poisson process, if the Weibull
Eq. (3) holds, the relationship:
kcrðrÞ ¼ k� Pða P acrÞ ¼ ððr� rlÞ=r0Þm ð38Þ
will also hold for the number density of the critical flaws. Assume that rl = 0. From Eq. (25) we get r ¼ C=
ffiffiffiffiffiffi
acr
p

and introduc-
tion of this in Eq. (38) results in
Pða P acrÞ ¼
C

r0k
1=m ffiffiffiffiffiffi

acr
p

 !m

ð39Þ
Suppose that the smallest flaw size is a0. For a loading stress
rmax ¼ C=
ffiffiffiffiffi
a0
p

ð40Þ
the smallest flaw will become critical, therefore all existing flaws in the material will also be critical. Considering this and
also the fact that for the smallest flaw size a0, P(a P a0) = 1 holds, Eq. (38) yields
k ¼ ðrmax=r0Þm ð41Þ
for the number density of all flaws. Substituting rmax obtained from Eq. (40) results in
k1=m ¼ C
r0

ffiffiffiffiffi
a0
p

� �
ð42Þ
which, after the introduction in Eq. (39) gives
Pða P acrÞ ¼
a0

acr

� �m=2

ð43Þ
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As a result, the negative power law distribution of the size X of the flaws
FðxÞ � PðX 6 xÞ ¼ 1� ða0=xÞm=2 ð44Þ
is compatible with the Weibull distribution in the stress range 0, rmax.
Indeed, considering Eq. (43), the number density of the critical flaws at a loading stress r is
kcr ¼ k� Pða P acrÞ ¼ ða0=acrÞm=2 ð45Þ
Since
ffiffiffiffiffiffi
acr
p ¼ C=r, substituting in Eq. (38) results in kcr = (r/r0)m, where r0 ¼ C

k1=m ffiffiffiffi
a0
p , rl = 0. Finally, substituting kcr = (r/r0)m

in Eq. (4) yields the Weibull distribution (3).
The negative power law distribution is very common. Phase transitions in thermodynamic systems, for example, are asso-

ciated with the emergence of power law distributions. Furthermore, the upper tails of various flaw size distributions can of-
ten be approximated well by the negative power law distribution. This all goes towards explaining why such a large number
of fracture data sets are often fitted very well by the Weibull distribution.

Beyond the stress rmax however, all existing flaws will become critical and increasing the stress will no longer increase
the number density of critical flaws. As a result, the negative power law distribution of the flaw size is compatible with the
Weibull distribution up to a stress level corresponding to the smallest flaw size a0. Beyond this stress level, the Weibull dis-
tribution will yield a larger probability of failure initiated by flaws. The actual probability of failure will remain the same in
this case, because the number density of the critical flaws will not increase.

6. Conclusions

1. The Weibull distribution is incapable of correctly predicting the probability of failure in the simple cases of:

– identical flaws;
– two flaw size groups, each of which contains identical flaws;
– failure controlled by the orientation of two different types of flaws;
– and also beyond a stress level where no new critical flaws are created by increasing the applied stress.

In all these cases, the probability of failure is correctly predicted by the suggested alternative equation.
2. In the case of non-interacting flaws randomly distributed in a stressed volume, the Weibull distribution predicts correctly

the probability of failure if and only if the stress dependence of the probability that a flaw will be critical is a power law or
can be approximated well by a power law.

3. Contrary to the common belief, in the case of non-interacting flaws in a stressed volume, the Weibull distribution is not
the mathematical formulation of the weakest-link concept.

4. For non-interacting flaws characterized by a strength distribution Fc(r), whose locations in a volume V follow a Poisson
process with average number density �k, the distribution of minimum failure stress is described by
Pðrf ;min 6 rÞ ¼ 1� exp½��kVFcðrÞ�. This is the mathematical expression of the weakest-link concept in the case of failure
locally initiated by flaws. The equation does not require any assumptions concerning the physical nature of the flaws and
the physical mechanism of failure and can be applied in any situation of a locally initiated failure by non-interacting
entities.

5. For a relatively large number of flaws in the tested specimens, the recorded failure stress often remains in the stress
region of the lower tail of the probability that a flaw will be critical. Often, this region can be approximated well by a
power law stress dependence and the Weibull model produces a good fit of the failure data.

6. The negative power law distribution of the flaw sizes is compatible with the Weibull distribution up to the stress level
corresponding to the smallest flaw size. Beyond this threshold, the Weibull distribution fails to predict correctly the prob-
ability of failure.

7. The probability of failure controlled by the orientation of the flaws is directly proportional to the flaw number density and
increases quickly with increasing the loading stress after which the rate decreases.

8. The probability that a flaw will be critical has a clear physical meaning both in the case of failure controlled by the size of
the flaws and in the case of failure controlled by the orientation of the flaws.

References

Batdorf, S.B., Crose, J.G., 1974. A statistical theory for the fracture of brittle structures subjected to non-uniform poly-axial stresses. Journal of Applied
Mechanics 41, 459–464.

Batdorf, S.B., Heinisch Jr., M.L., 1978. Weakest link theory reformulated for arbitrary fracture criterion. Journal of the American Ceramic Society 61, 355–358.
Danzer, R., Supancic, P., Pascual, J., Lube, T., 2007. Fracture statistics of ceramics – Weibull statistics and deviations from Weibull statistics. Engineering

Fracture Mechanics 74, 2919–2932.
Danzer, R., 2006. Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens? Journal of the

European Ceramic Society 26, 3043–3049.
Evans, A.G., 1978. A general approach for the statistical analysis of multiaxial fracture. Journal of the American Ceramic Society 61, 302–308.
Evans, A.G., Jones, R.L., 1978. Evaluation of a fundamental approach for the statistical analysis of fracture. Journal of the American Ceramic Society 61, 157–

160.



M.T. Todinov / International Journal of Solids and Structures 46 (2009) 887–901 901
Freudenthal, A.M., 1968. Statistical approach to brittle fracture. In: Liebowitz (Ed.), Fracture, vol. II, pp. 591–619.
Gerguri, S., Fellows, L.J., Durodola, J.F., Fellows, N.A., Hutchinson, A.R., Dickerson, T., 2004. Prediction of brittle failure of notched graphite and silicon nitride

bars. Applied Mechanics and Materials 1–2, 113–119.
Gumbel, E.J., 1958. Statistics of Extremes. Columbia University Press.
Lamon, J., 1988. Statistical approaches to failure for ceramic reliability assessment. Journal of the American Ceramics Society 71 (2), 106–112.
Lamon, J., Evans, A.G., 1983. Statistical analysis of bending strengths for brittle solids: a multiaxial fracture problem. Journal of the American Ceramics

Society 66 (3), 177–182.
Milella, P.P., Bonora, N., 2000. On the dependence of the Weibull exponent on geometry and loading conditions and its implications on the fracture

toughness probability curve using a local approach criterion. International Journal of Fracture 104, 71–87.
Sobol, I.M., 1994. A Primer for the Monte-Carlo Method. CRC Press.
Todinov, M.T., 2005. Limiting the probability of failure for components containing flaws. Computational Materials Science 32, 156–166.
Todinov, M.T., 2007. An efficient algorithm for determining the risk of structural failure locally initiated by faults. Probabilistic Engineering Mechanics 22,

12–21.
Todinov, M.T., 2008. Selecting designs with high resistance to overstress failure initiated by flaws. Computational Materials Science 42, 306–315.
Trustrum, K., Jayatilaka, A.De.S., 1983. Applicability of Weibull analysis for brittle materials. Journal of Materials Science 18, 2765–2770.
Weibull, W., 1951. A statistical distribution of wide applicability. Journal of Applied Mechanics 18, 293–297.
Zhang, X.Z., Knott, J.F., 2000. The statistical modeling of brittle fracture in homogeneous and heterogeneous steel microstructures. Acta Materialia 48, 2135–

2146.


	Is Weibull distribution the correct model for predicting probability  of failure initiated by non-interacting flaws?
	Introduction
	Analysis of the Weibull distribution and counter-examples
	Distribution of the minimum failure stress and a mathematical formulation of the weakest-link concept
	Monte Carlo verification regarding the distribution of the minimum failure stress of a stressed volume containing random non-interacting flaws

	Physical meaning of the probability that a flaw will be critical
	Case I: Failure controlled by the size of the flaws
	Case II: Failure controlled by the orientation of the flaws

	The negative power law flaw size distribution and the Weibull distribution
	Conclusions
	References


