JOURNAL OF COMBINATORIAL THEORY, Series B 30, 32-35 (1981)

q-Coverings, Codes, and Line Graphs

PETER HAMMOND

Department of Mathematics, St. Mary's College, Twickenham, Middlesex, England

Communicated by the Editors

Received October 26, 1978

In this paper we consider the relationship between q-coverings of a regular graph and perfect 1-codes in line graphs. An infinite class of perfect 1-codes in the line graphs $L(O_k)$ is constructed.

1. INTRODUCTION

Let e be a positive integer. A perfect e-code in a graph Γ is a non-empty subset C of the vertex set of Γ with the property that every vertex of the graph is at distance at most e from a unique vertex in C. In [2] Biggs proves that if a regular graph Γ contains a perfect 1-code, then -1 is an eigenvalue of its adjacency matrix. In Section 2 we generalize this result to a particular class of q-coverings and we also establish a connection between the existence of these q-coverings of Γ and perfect 1-codes in the line graph of Γ . In Section 3 we construct an infinite family of perfect 1-codes in the regular line graphs $L(O_k)$ (k > 2).

2. q-COVERINGS AND PERFECT 1-CODES

Let q denote a mapping of the non-negative integers into the rationals with the property that q(i) = 0 implies q(j) = 0 for all j > i. Let σ be the largest integer for which q is non-zero. Γ denotes a connected, finite graph with distance function ∂ , diameter d, and vertex set VT. Let ∂_L be the distance function in the line graph, $L(\Gamma)$, of Γ . The above notation will remain fixed throughout the paper.

DEFINITION. If q and Γ are given, such that $\sigma < d$, then a subset C of VT will be called a *q*-covering of Γ when the numbers

$$\alpha(v) = \sum_{c \in C} q(\partial(c, v)) \qquad (v \in V\Gamma)$$
32

0095-8956/81/010032-04\$02.00/0 Copyright ^c 1981 by Academic Press, Inc. All rights of reproduction in any form reserved. are all equal to some constant α . If $\alpha = q(0)$, then the q-covering is said to be *sparse*.

If $\partial(v, C)$ is at most e' for each $v \in V\Gamma$, then we say that C has external distance e' in Γ .

In [4] Biggs states that if q(i) = 1 ($0 \le i \le e$) and q(i) = 0 (i > e), then a sparse q-covering of Γ is a perfect e-code. A necessary condition for the existence of a perfect 1-code in a regular graph is that -1 is an eigenvalue of its adjacency matrix [2, p. 2]. We generalize this result to sparse q-coverings with q satisfying

$$q(1) = 1$$
 and $q(i) = 0$ $(i > 1)$. (*)

LEMMA 1. If the regular graph Γ contains a sparse q-covering, with the particular q defined in (*), then -q(0) is an eigenvalue of the adjacency matrix of Γ .

Proof. For each $v \in V\Gamma$

$$q(0) = \alpha(v) = \sum_{c \in C} q(\partial(c, v)) = q(0) |\theta_0(v)| + |\theta_1(v)|,$$

where $\theta_i(v) = \{c \in C \mid \partial(v, c) = i\}$. If $\partial(v, C) = 1$, then $|\theta_0(v)| = 0$ and so $|\theta_1(v)| = q(0)$. Let Γ have adjacency matrix A and valency k. If c is defined by

$$(\mathbf{c})_u = \begin{cases} 1, & u \in C \\ 0, & \text{otherwise,} \end{cases}$$

then

$$A\mathbf{c} = q(0)(\mathbf{u} - \mathbf{c}),$$

where $\mathbf{u} = [1, ..., 1]^{t}$. Let $\mathbf{x} = \mathbf{u} - (1 + k/q(0)) \mathbf{c}$. Then

$$A\mathbf{x} = A\mathbf{u} - (1 + k/q(0)) A\mathbf{c}$$

= $k\mathbf{u} - (1 + k/q(0)) q(0)(\mathbf{u} - \mathbf{c})$
= $-q(0) \mathbf{x}$.

Thus -q(0) is an eigenvalue of A with corresponding eigenvector x.

From [4, p. 117] we know that a sparse q-covering defined by (*) has minimum distance at least 2 and it it is not difficult to see it also has external distance 1. If q(0) = 1, then such a q-covering is a perfect 1-code with minimum distance 3; and if q(0) > 1, then, in the terminology of [6], it is locally regular code with minimum distance 2, external distance 1, and parameter $p_{11}(C) = q(0)$. As we shall now see, the case where q(0) = k - 1 is particularly interesting.

LEMMA 2. A regular k-valent graph Γ contains a q-covering with q(0) = k - 1, q(1) = 1, and q(i) = 0 (i > 1) if and only if its line graph $L(\Gamma)$ contains a perfect 1-code.

Proof. Suppose that C_L is a perfect 1-code in $L(\Gamma)$. Let C be the set of vertices of $V\Gamma$ which are not incident with any member of C_L . Obviously C has external distance 1 and minimum distance 2. If $v \in C$, then

$$\alpha(v) = \sum_{c \in C} q(\partial(c, v)) = k - 1 + |\theta_1(v)| = k - 1$$

and if $v \notin C$, then

$$\alpha(v) = |\theta_1(v)| = k - 1,$$

since there is exactly one edge incident with v and also contained in C_L .

Conversely suppose that Γ contains a q-covering C with the relevant function q. Therefore, C has external distance 1 and for $z \in V\Gamma$ with $\partial(z, C) = 1$ there is a unique vertex u_z such that $\partial(z, u_z) = 1$ and $u_z \notin C$. Let C_L be the set of edges in Γ connecting each z, with $\partial(z, C) = 1$, and its unique u_z . Choose any edge e of Γ . If $e \notin C_L$, then e is incident with two vertices w and v of Γ such that $w \notin C$ and $v \in C$. There is exactly one edge e_1 , namely, the edge between w and u_w , which is in C_L and has $\partial_L(e, e_1) = 1$. Thus C_L is a perfect 1-code in $L(\Gamma)$.

Lemmas 1 and 2 imply that when $L(\Gamma)$ contains a perfect 1-code, -(k-1) is an eigenvalue of A, the adjacency matrix of Γ , and -1 is an eigenvalue of A_L , the djacency matrix of $L(\Gamma)$. These two necessary conditions are satisfied simultaneously because Sachs [7] has proved that for $l \neq -k$, λ is an eigenvalue of A if and only if $\lambda + k - 2$ is an eigenvalue of $L(\Gamma)$.

3. Perfect 1-Codes and Line Graphs

A number of perfect 1-codes other than those of classical coding theory ire mentioned by Biggs in [2]. New infinite classes of perfect 1-codes have been constructed by Cameron, Thas, and Payne [5], and Thas [8]. In the ollowing result we construct an infinite class of perfect 1-codes in the family of line graphs $L(O_k)$ (k > 2). The odd graphs O_k (k > 1) have the (k - 1)ubsets of a (2k - 1)-set as their set of vertices and two vertices are adjacent whenever the subsets are disjoint. O_k has valency k, diameter k - 1, and the igenvalues of its adjacency matrix are $(-1)^{k-i}i$ $(1 \le i \le k)$ [1].

THEOREM. If k > 2, then $L(O_k)$ contains a perfect 1-code.

Proof. Let $X = \{2, 3, ..., 2k - 2\}$ with k > 2. Let A be the set of (k - 2)-subsets of X and let $B = \{a \cup \{1\} \mid a \in A\}$. If $b = a \cup \{1\}$ and $a \in A$, then b' denotes $X \setminus a$. Let $C_L = \{b - b' \mid b \in B\}$, where u - v denotes the unique edge of Γ joining the vertices u and v. We prove that C_L is a perfect 1-code in $L(O_k)$. Choose any vertex c - d of $L(O_k)$. If $c \cup d = \{1, 2, ..., 2k - 2\}$, then $c - d \in C_L$. If $2k - 1 \in c \cup d$, then $c - d \notin C_L$. Suppose, without loss of generality, that $2k - 1 \in c$ and define c_1 to be $X \cup \{1\} \setminus d$. Then $c_1 - d \in C_L$ and $\partial_L(c - d, c_1 - d) = 1$. Thus every vertex of $L(O_k)$ is at distance at most 1 from a unique vertex of C_L .

COROLLARY. For k > 2, O_k contains a q-covering with q(0) = k - 1, q(1) = 1, and q(i) = 0 (i > 1).

Proof. This result follows immediately from the preceding theorem and Lemma 2.

Most of the recent results on perfect codes (and on the more general class of q-coverings) have been in the setting of distance-regular graphs. The number of line graphs which are distance-regular is small and $L(O_k)$ is distance-regular only when k < 4 [3]. However, there is at least one distance-regular line graph which contains a non-trivial perfect code. This is the perfect 1-code in the line graph of the 8-cage of valency 3. Perfect 1-codes are also contained in the line graphs of Desargue's graph and the dodecahedron.

REFERENCES

- N. L. BIGGS, "Algebraic Graph Theory," Cambridge Mathematics Tracts No. 67, Cambridge Univ. Press, London/New York, 1974.
- N. L. BIGGS, Perfect codes and distance-transitive graphs, in "Combinatorics," Proceedings of the British Combinatorial Conference, 1973 (T. P. McDonough and V. C. Mavron, Eds.), pp. 1-8, Cambridge Univ. Press, London/New York, 1974.
- 3. N. L. BIGGS, The symmetry of line graphs, Utilitas Math. 5 (1974), 113-121.
- 4. N. L. BIGGS, Designs, factors and codes in graphs, Quart. J. Math. Oxford Ser. 26, (1975), 113-119.
- 5. P. J. CAMERON, J. A. THAS AND S. E. PAYNE, Polarities of generalized hexagons and perfect codes, *Geometriae Dedicata*, in press.
- 6. P. HAMMOND AND D. H. SMITH, An analogue of Lloyd's Theorem for completely regular codes, *in* "Proceedings of the British Combinatorial Conference, Aberdeen 1975," Utilitas Mathematica Publishing Inc., Winnepeg, Canada, 1976..
- 7. H. SACHS, Über Teiler, Faktoren und charakterische Polynome von Graphen II, Wiss. Z. Techn. Hochsch. Illenau 13 (1967), 405-412.
- 8. J. A. THAS, Two infinite classes of perfect codes in metrically regular graphs, J. Combinatorial Theory (B) 23 (1977), 236-238.